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Abstract—Machine learning (ML) has been embedded in many
Internet of Things (IoT) applications (e.g., smart home and
autonomous driving). Yet it is often infeasible to deploy ML
models on IoT devices due to resource limitation. Thus, deploy-
ing trained ML models in the cloud and providing inference
services to IoT devices becomes a plausible solution. To pro-
vide low-latency ML serving to massive IoT devices, a natural
and promising approach is to use parallelism in computation.
However, existing ML systems (e.g., Tensorflow) and cloud ML-
serving platforms (e.g., SageMaker) are service-level-objective
(SLO) agnostic and rely on users to manually configure the
parallelism at both request and operation levels. To address
this challenge, we propose a region-based reinforcement learn-
ing (RRL)-based scheduling framework for ML serving in IoT
applications that can efficiently identify optimal configurations
under dynamic workloads. A key observation is that the system
performance under similar configurations in a region can be
accurately estimated by using the system performance under one
of these configurations due to their correlation. We theoretically
show that the RRL approach can achieve fast convergence speed
at the cost of performance loss. To improve the performance,
we propose an adaptive RRL algorithm based on Bayesian
optimization to balance the convergence speed and the optimal-
ity. The proposed framework is prototyped and evaluated on
the Tensorflow Serving system. Extensive experimental results
show that the proposed approach can outperform state-of-the-
art approaches by finding near-optimal solutions over eight times
faster while reducing inference latency up to 88.9% and reducing
SLO violation up to 91.6%.

Index Terms—Internet of Things (IoT), machine-learning-as-a-
service (MLaaS), model inference, parallelism parameter tuning,
reinforcement learning, service-level-objective (SLO), workload
scheduling.
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I. INTRODUCTION

ECENT years have witnessed the proliferation of Internet
Rof Things (IoT) in every aspect of people’s life, work,
and entertainment. Meanwhile, artificial intelligence (Al) has
recently shown a remarkable success in a wide range of
fields, spanning from computer vision [2], speech recogni-
tion [3], natural language processing [4] to chess playing (e.g.,
AlphaGo [5]) and robotics. With the emergence of diverse loT
applications (e.g., smart home, smart city, industrial automa-
tion, and connected car), it is envisaged that Al could deal with
these heterogeneous IoT environments. However, limited by
the IoT device capability, it is challenging to deploy machine
learning (ML) models on IoT devices, which prompts the
development of machine-learning-as-a-service (MLaaS) [6]
that provides the machine model inference service in the
cloud. Many major cloud service providers, including Google,
Microsoft, and Amazon have offered MLaaS in their cloud
environment. Different from local inference, IoT device will
use MLaaS and require a timely and highly available ML ser-
vice to function properly. MLaaS frees the IoT device from the
burden of providing storage and computation for ML models
and allows the manufacturer to update the models without hav-
ing to push the update to all the IoT devices. At the same time,
it becomes challenging to provide low-latency machine model
inference service to massive IoT devices in heterogeneous
environments.

In this article, we focus on providing low-latency model
inference service (also known as ML serving) for IoT devices
in heterogeneous environments. Unlike offline ML model
training, which may take hours or even days, one main require-
ment of ML serving is to achieve consistently low latency to
meet the need of interactive and real-time IoT applications like
smart home and autonomous driving. However, the challenge
lies in the fact that productional ML models for many compli-
cated tasks often contain billions of neural connections, and it
may take seconds or even minutes to fulfill users’ requests [7]!
if executed in a sequential manner, leading to unacceptably
long latency for IoT applications.

A natural and promising approach to meet the strict
latency service-level-objective (SLO) is to use parallelism
in computation [9], [10]. ML is an ideal application of

IThe time for fulfilling users’ requests includes the processing time and
the queuing time.

2327-4662 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 19,2021 at 05:35:25 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-0994-502X
https://orcid.org/0000-0002-5176-003X

6326

Cloud
Servers

Request parallelism Inter-op parallelism

Request Request

Request

|:| Request

Intra-op parallelism

Operation

Request
Queue

O Operation

A Thread

@ loT Applications

0

Fig. 1.
MLaaS.

Flow graph of how requests from IoT applications are handled in

Intra-op=1,Service Parallelism=3

10000
8000
6000
4000

Latency(ms)

2000

1 5 10
Inter-op Parallelism

Fig. 2. Tensorflow Serving performance under different parallelism configu-
rations for the Inception V3 model running on CPU. Appropriate parallelism
improves system performance yet excessive parallelism decreases it because
of interference. This observation is consistent with the previous study [8].
Experimental setup is detailed in Section VI-A.

parallelization because most underlying operations in these
models are vector—matrix multiplications or matrix—matrix
multiplications [11]. Parallelization usually have two levels [7]
for modern ML systems on CPU-based infrastructure. Upon
arriving at the system, multiple requests can be served in par-
allel, which is noted as request parallelism. Each request can
usually be decomposed into many operations. Further paral-
lelization happens at the operation level, including inter-op
parallelism where multiple operations executing simultane-
ously and intra-op parallelism where multiple threads working
on each operation. Fig. 1 illustrates these three parallel imple-
mentations. Distinct parallelization mechanism can be found
on hardware-accelerator-based infrastructure. For example,
GPU has the built-in parallelism, such as thread blocks and
scheduling partitions that are controlled by its own hardware
schedulers. These low-level parallelisms are difficult to control
directly through software-based approaches [12]. Fortunately,
even for GPU infrastructure, we can still indirectly impact the
parallelization by a few user-defined parameters. All of the
parallel implementations and related configurations become
control knobs in the ML-serving system. System performance
is significantly determined by parallelism configurations. As
indicated in Fig. 2, system performance can be boosted up to
ten times by a well-tuned parallelism configuration compared
to sequential execution (e.g., running Inception V3 on CPU
infrastructure).

To provide low-latency ML serving, we propose a swift
ML-serving scheduling framework for IoT applications. The
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Fig. 3. Difference in performance versus difference in configuration. The
difference in configurations is calculated by their Euclidean distance.

proposed framework is driven by a lightweight region-based
reinforcement learning (RRL) [1] approach that can efficiently
identify optimal parallelisms configurations under heteroge-
neous IoT environments. The key insight is that the system
performances under different similar configurations in a region
can be accurately estimated by using the system performance
under one of these configurations, due to their similarity (see
Fig. 3). This key finding motivates us to develop RRL that can
speed up the learning process by orders of magnitude faster
than the state-of-the-art deep reinforcement learning methods
with very limited training data. Theoretical analysis shows that
the speedup increases with the size of the region; however,
our initial results [1] show a performance gap between the
RRL and the optimal solution due to the estimation error.
To reduce such a performance gap, we propose an adaptive
algorithm, namely, RRL Plus to adaptively adjust the region
size to achieve fast learning speed as well as near-optimal
performance.

We prototype the proposed framework on top of the pop-
ular Tensorflow Serving [13] ML-serving system and support
both CPU and GPU-based hardware infrastructure. We release
the source code for public access.” Extensive experimental
evaluations on both CPU and GPU clusters show that by
continuously learning the new traffic patterns and updating
the scheduling policies, RRL Plus can quickly adapt to the
ever-changing dynamics of IoT workloads and system envi-
ronments. Compared to the state-of-the-art approaches (e.g.,
DeepRM [14] and CAPES [15]), RRL Plus can reduce the
average latency up to 88.9% on CPU-based infrastructure
and up to 71.5% on GPU-based infrastructure. In the SLO-
aware scenario, RRL Plus can offer SLO guarantee under strict
targets and provide up to 89.3% SLO violation reduction com-
pared to CAPES and up to 91.6% compared to DeepRM. In
addition, the proposed framework does not make assumptions
on workload or ML applications and thus is applicable to most
modern [oT applications.

II. CHALLENGES AND OBSERVATIONS

ML in IoT applications is often interactive and latency
sensitive [16] in contrast to model training or other cloud
applications which are usually throughput oriented (i.e., SLO-
agnostic). Compared with traditional services (e.g., Web

2https://github.com/SC-RRL/RRL
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Fig. 4. Latency under the arrival rate of 14 requests per second on CPU

with different parallel configurations (intra-op parallelism is set to ten) using
Inception V3 deployed in Tensorflow Serving. The lighter the color, the lower
the latency. The left plot shows a global performance view of configurations
and the right plot is the zoomed-in view of the performance in a small region
of configurations. The coarse-grained plot shows the latency is quite versatile
globally while the zoomed-in fine-grained plot shows the latency is smooth
locally (i.e., the neighboring points in the heatmap).

service), ML service usually involves hundreds to thou-
sands of operations together with complex correlation among
them [17], which makes it challenging to model or to break-
down and fine-tune at operation level. How to optimally con-
trol these knobs is an important yet challenging problem as the
overall performance depends on the performance requirement,
workload characteristic, and available computing resources.

Many recent works focus on parallelism configuration tun-
ing [18], [19]. However, existing methods rely on domain
specific information and techniques to tune the parallelism
configuration (see the detailed discussion in Section VII),
which may not be applicable to many ML applications.
Notably, Yan et al. proposed SERF in [8] and [20] using an
analytical queuing model to achieve optimal parallelism con-
figuration for ML serving, which works on exponential arrival
process and homogeneous request size in certain image clas-
sification applications. Unfortunately, the arrival process may
not be exponential for many other applications (such as video,
speech, and natural language processing) and their request
sizes can be heterogeneous. In addition, SERF supports only
request level parallelism and CPU-based hardware. Therefore,
there is a pressing need for a novel approach that can sup-
port two levels of parallelisms and hardware accelerators like
GPU to effectively and efficiently tune parallelism configura-
tion for ML applications with diverse arrival processes and
heterogeneous request sizes.

There are many challenges for tuning parallelism con-
figuration in modern ML-serving systems. For CPU-based
infrastructure, the multilevel parallelism results in a relatively
large configuration space. Fig. 4 illustrates request latency
under only two parallelism configurations with fixed intra-op
parallelism on a machine with only ten cores. The number
of configurations will be magnitude larger with more par-
allelism parameters or complicated hardware environments,
making it challenging for algorithms to locate the ideal one.
Fig. 5 shows the similar observation on GPU-based infras-
tructure. As the configuration parameters have a wider range
on GPU, the search space is even larger (e.g., batch timeout
alone can have hundreds to thousands of possible choices).
In addition, the indirect impact of configuration parameters
in the GPU case makes it even harder to model or predict
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Fig. 5. Latency under the arrival rate of 61 requests per second on GPU with
different parallel configurations (batch size is set to 50) using the Inception
V3 model deployed in Tensorflow Serving. The lighter the color, the lower
the latency. Left plot shows a global performance view of configurations and
the right plot is the zoomed-in view of the performance in a small region of
configurations.

the behaviors. Even for the optimal parallelism configuration,
it is also very sensitive to the load. When load experiences
a slight change, the latency distribution which composes of
both service time and queuing waiting time under different
parallelism configurations becomes quite different. Such sen-
sitivity significantly increases the search space and prohibits
the exhaustive search. Among parallel computations, there are
also complex interference behavior [8], [20] as a result of the
high computation and memory needs of ML models, which
leads to nonlinear performance behavior of different config-
urations. All these together brings significant challenges for
profiling and analytical modeling approaches [21].

Another challenge that could result in the state-of-the-
art modeling techniques [8], [20] ineffective is the tens of
thousands of operations with complex dependencies among
them in modern ML models. Moreover, the workload and
system environment in many [oT applications are often highly
dynamic [22]-[24], which requires the scheduling policy with
an agile adaptive ability, in order to meet the sensitive latency
SLO [25] of IoT applications. In this case, traditional learning-
based methods [21], requiring a large training set and a long
convergence time, can hardly be applicable. Therefore, it is
of paramount importance to provide ML serving with swift
deployment that can learn the dynamics of the IoT workload
and system environment and optimize the performance in an
online manner.

III. RRL-BASED SCHEDULING FRAMEWORK

In this section, we present the RRL-based scheduling frame-
work for ML service in IoT. The RRL-based scheduling
framework is designed to dynamically adjust the parallelism
configuration of ML-serving systems according to dynamic
system load, in order to optimize ML performance in IoT (e.g.,
response latency and resource consumption). It is challeng-
ing to model the relationship among the system performance,
parallelism configurations, and system load in a closed form.
As illustrated in Fig. 4, system performance varies under
different parallelism configurations even for the same load.
To tackle this challenge, a learning approach is used in the
proposed framework to find the optimal parallelism configu-
ration. Specifically, the proposed framework consists of three
main components: 1) profiler; 2) scheduler; and 3) RRL, as
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Fig. 6. Overview of the RRL-based scheduling framework for IoT
applications.

illustrated in Fig. 6. Various system characteristics are col-
lected by the profiler, including the current user traffic load
and the corresponding system performance under this load
and the present parallelism configuration. The scheduler then
adjusts the parallelism configuration for the measured load
level based on the current scheduling policy. Meanwhile, the
RRL asynchronously updates the scheduling policy to adapt
to the system dynamics based on the measured system load
and corresponding performance.

Profiler: The profiler measures the system performance,
including the system load (i.e., request arrival rate) and the
latency (also known as response time) of each request. The
profiler also collects hardware-related information (e.g., CPU
core number, CPU utilization, available GPUs, GPU utiliza-
tion, and network statistics). All the information can be used
in reward functions to optimize the system performance for
various scheduling objectives.

Scheduler: The scheduler takes into consideration the
current system load, scheduling policies, and hardware
information such as the availability of resource and adjusts
the parallelism configuration accordingly.

RRL: As the core of the proposed framework, the RRL com-
ponent aims to find the optimal scheduling policy and quickly
adjusts the scheduling policy to adapt to the system dynamics.
Specifically, the system performance measured by the profiler
will be passed to the reward function in Fig. 6 to calculate the
value of the system objective function, and then the learning
component learns the scheduling policy based on this observed
reward. Traditionally, the scheduling policy is incrementally
improved in a point-by-point learning manner that makes the
learning process significantly long. To address this challenge,
the proposed RRL can speedup this learning process by lever-
aging the key feature of the system as illustrated in Fig. 3 that
the system performances under different similar configurations
are similar. Based on this feature, the system performance
under one configuration can be used to estimate the system
performances under other similar configurations, which would
significantly reduce the number of samples needed to learn
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the optimal scheduling policy. For example, if we choose the
radius of the configuration region is equal to 2, then we can use
a single observation to update all configurations in this region
and obtain a roughly ten times faster convergence with lim-
ited performance loss due to the estimation error. The detailed
design is presented in Section IV.

IV. REGION-BASED REINFORCEMENT LEARNING

In this section, we propose an RRL approach, in order
to speed up the learning process of the scheduling policy
to meet the requirements of IoT applications. Specifically,
we first formulate the ML-serving scheduling as a Markov
decision process (MDP), and then theoretically show that the
RRL approach can achieve a near-optimal solution with fast
convergence speed.

A. ML-Serving Scheduling: MDP View

The objectives of the ML-serving scheduling in IoT are
1) to minimize response latency using a given amount of
resources [8] or 2) to minimize resource consumption while
meeting latency SLO [26]. Our scheduling framework supports
both objectives. We focus on the first objective of minimizing
response latency due to the space limitation.

Define system state as s € S, where s denotes the
overall load level and S denotes the set of possible load
levels. System action is defined as the parallelism configu-
ration ¢ € C which is a tuple of request parallelism cS°Vice,
inter-op parallelism ¢™®', and intra-op parallelism ¢"", i.e.,
c = (cservice cinter cintray “\where C denotes the set of possi-
ble parallelism configurations. For ML serving in IoT, it is
challenging to characterize latency in a closed form as it can
vary under different loads (system states) for the same paral-
lelism configuration [8]. Instead we use the average request
latency r(s, c¢) under the system state s and the parallelism
configuration ¢ as reward. In this article, we assume that
the scheduler does not have a priori knowledge of system
state transitions, except the Markov property (i.e., the state
transition depends on only the previous state).> Under this
model, the ML-serving scheduling is cast as an MDP, aim-
ing to minimize the expected cumulative discounted latency
E[ Z?io y'r(s;, ¢;)], where ¥ € (0, 1] is a discount factor and
r¢(ss, ¢;) denotes the latency observed at time ¢ under system
state s; and parallelism configuration c;.

At each time ¢, the scheduler chooses a parallelism configu-
ration based on a policy, defined as 7 : 7 (s, ¢) — [0, 1], where
7 (s, ¢) is the probability that configuration c is used in state s.
The Q-learning method can be applied to find the optimal
policy yet its convergence is slow, especially, when the space
of state—configuration pairs is large. One key reason for this
slow convergence is that it searches the space point by point
and incrementally improves the policy. To improve the conver-
gence speed, many approaches [28], [29] have been proposed
but they are still point-based learning essentially and would

3Markov models are often used to model the workload dynamics, e.g., [27]
verifies the Markov property for different applications. In our application,
the Markov property is also satisfied. The experiments in Section VI also
corroborate the correctness of the Markov model in our application.
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not be applicable to our problem with large state-configuration
space as shown in our experiments in Section VI.

B. RRL: From Point-Based to Region-Based Learning

To speed up the learning process, we propose the RRL
approach. The key idea is that when observing the latency
r(s, c¢), we will estimate the latency in a region with configu-
rations close to ¢ under this state s, and then use the estimated
latency in this region to learn the policy, as illustrated in Fig. 7.
Intuitively, the learning speed would be significantly improved
if this region-based learning approach uses a large region.
However, the potential estimation errors of the latency associ-
ated with the region may make the converged policy deviate
from the optimal one. In other words, the larger the region
is, the larger the potential errors might be, which indicates a
tradeoff between the learning speed and the optimality of the
policy depending on the size of the region and the latency esti-
mation scheme. When the region degenerates to a single point,
the RRL approach would degenerate to the traditional rein-
forcement learning approaches. In this article, the Euclidean
distance is used to measure the distance between two config-
urations since both CPU and GPU configurations are numeric
(see Fig. 8). Note that other similarity measures can also be
applied in RRL.

Specifically, the RRL approach consists of two main com-
ponents: 1) latency-estimation-based perception and 2) policy
update.

1) Latency-Estimation-Based Perception: Let Q(s:, ct)
denote the perception of the expected cumulative discounted
latency under state s; and configuration ¢;. Define the region
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Algorithm 1 RRL
Initialization: Choose 8, §, and y. Set r = 0 and Qg (s, ¢) =
1/IC| VceC,s e S.
For each time slot ¢
1) Choose a configuration based on the current policy ;.
2) Update the perception based on Eq. (2).
3) Update the policy for the current state s; using Eq. (3).

around ¢; as C(c;) = {c|l|lc — ¢;]] < & Yc € C}, where § > 0
denotes the size of the region. Using the observed latency
r¢(ss, ¢;), the latency under other configurations in C(c;) can
be estimated as

Fi(si, €) = fe, ri(si, ep)) Ve € Clcy) ey

where f : C x Rt — R7 is the latency estimation function
and f(cy, ri(sy, ¢1)) = ri(sy, ¢;). Based on (1), we update the
perception of the expected cumulative discounted latency in
the region by

Ve e Clcr), Q15 0) = (1 —a)Qi(sy, €)
+ at<;'t(sta c)+y Igélél Oi(Sr41, 5))
(2)

where o; € [0, 1] is the learning rate. As is standard, the learn-
ing rate is assumed to satisfy Y, oy = 0o and Y, a2 <c0.
The perceptions of other configurations (¢ ¢ C(c;)) will remain
the same, i.e., Qry1(ss, ¢) = Q:(st, ¢) Ve & Clcy).

2) Policy Update: Based on the perceptions, we can use the

Boltzmann distribution [30] to update the policy for state s,

exp(—BQ:(ss, ©))
Y eec exp(—BQi(s:. ¢))

where § > 0 controls the exploration—exploitation tradeoff.
When g is very small, the scheduler would explore the space
randomly; when g is large, the scheduler would tend to exploit
the configuration with the lowest perceived latency.

It is worth noting that the accuracy of the latency estima-
tion (1) directly impacts the performance of the RRL approach.
Due to the stochastic nature of the state and the latency, it is
challenging to characterize f in a closed form in practice. To
tackle this challenge, we use the neural network to implement
this estimation function as discussed in Section V. The detailed
description of the RRL approach is given in Algorithm 1.

(8¢, C) = VeeC 3)

C. Performance Analysis of RRL

In this section, we will analyze the convergence rate and
optimality performance of the RRL approach. To facilitate
the analysis, we assume that the estimation error of the
latency estimation (1) is upper bounded by A > 0 for all
state-configuration pairs in the space, i.e.,

|;’t(5t, ) — re(s, C)| <A VceCl(c), si€S8 4)

where r;(s;, ¢) denotes the real latency that can be observed if
the configuration ¢ is chosen. In (4), A is intimately related
to the size of the region §. In general, A increases with &,
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and A becomes zero when & is zero.* The main results are
summarized in the following theorem.

Theorem 1: The RRL approach can asymptotically con-
verge to a near-optimal solution with probability one as 7 goes
to infinity. The performance gap is upper bounded by (A /1 —
y). The asymptotic convergence rate is O(1/ (nsH)RA=1)y if
R(1 —y) < 1/2 and O(y/loglog(nst)/(nst)) otherwise, where
ng denotes the number of state-configuration pairs in the region
with size § and R denotes the ratio of the minimum and
maximum state-configuration selection probabilities.

Proof: Proof can be found in [1]. [ |

Remarks: Theorem 1 confirms our intuition that the RRL
approach can accelerate the convergence speed of the rein-
forcement learning such that the larger ns (i.e., the larger §),
the faster the RRL converges. However, the fast convergence
speed is at the cost of performance loss, i.e., there would be
a gap [A/(1 — y)] between the RRL and the optimal solu-
tion. When § = 0, we have ns = 1 and A = 0, and the
results of Theorem 1 degenerate to the results for the tra-
ditional point-based reinforcement learning [31]. Thanks to
the unique structure of our problem (see Fig. 3), we use the
Bayesian optimization to choose a suitable size of the region
with fast learning speed as well as near-optimal performance
(see Section IV-D).

D. Adaptive RRL

From the analysis of RRL, it is shown that excessive region
size can lead to a large performance gap, whereas small region
size leads to a low convergence rate. In order to find a suit-
able region size, we propose a Bayesian-based optimization
approach to automatically adjust region size to achieve fast
learning speed as well as near-optimal performance.

Specifically, we introduce an acquisition function to charac-
terize the expected latency improvement under a give region
size as our optimization target

«(®) =E[ (76" - r®)) "] 5)

where 7(6*) is the best observed average latency and &*
is the corresponding region size. r(8) denotes the latency
random variable following the Gaussian distribution G ~
N(@m(8),o(8,58")) with mean m(8) and covariance o (8, 8').
In each iteration, we choose the region size § that maximizes
the acquisition function « and uses this 6 for RRL perception.
Then, the observed average latency 7(§) will be added into the
sample set, and the mean m(8) and covariance o (8, ") of G
will be updated based on the Bayesian optimization [32]. The
idea is to model the unknown function between the region
size and the latency as a multivariate Gaussian distribution,
and then use a computational cheap acquisition function to
guide the search for the optimal point. Thus, we can reduce
the latency by adaptively adjusting region size. The details are
given in Algorithm 2.

4Note that A also highly depends on the accuracy of the estimation
function. In this article, a neural-network-based estimation function is imple-
mented, and the error bound is shown to be small in our experiments.
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Algorithm 2 RRL Plus
Initialization: Initialize sample set D.
For each time slot ¢
1) Calculate the region size § by maximizing «, i.e., § =
argmax o(8).

2) lsjpdate the perception with region size § using Eq. (2).
3) Update the policy for the current state s; using Eq. (3).
4) Get the current average latency 7,(5), and update the
sample set D = {D, (8, 7;(5))} and the parameters m(§) and
o (8,8") using D.

V. IMPLEMENTATION

In this section, we discuss the implementation of the
proposed approach. Specifically, we focus on the neural-
network-based estimation function design as the Tensorflow
Serving integration of the proposed framework has been
described in our previous work [1].

A. Neural-Network-Based Estimation Function

It is challenging to characterize the estimation function
in a closed form as discussed in Section IV. Since neural-
network-based approaches have shown great potentials in
many applications [5], we propose a neural-network-based
estimation function in this article. To support swift ML-serving
scheduling, one key challenge is how to find a suitable neu-
ral network structure for the estimation function (1). Simple
network structure may not effectively capture the structure
of the underlying state-configuration space, which may lead
to high estimation error [33]; complicated network structure
may take a long training time, which is not suitable for online
serving systems.

As indicated in the previous study [33], we need to strike
a balance between complexity and efficiency. Our network
design contains two hidden layers (one with 256 neurons
and the other with 64 neurons) using ReLu [34] as acti-
vation function and one output layer with linear activation,
after experimenting different network structures. Follow-the-
regularized-leader (FTRL) [35] optimizer is used to optimize
network parameters instead of the Adam method or other
popular optimizers. This is because the number of training
samples in our problem is far less than the number of state-
configuration pairs in the space during online tuning, and thus
FTRL performs well here. Moreover, FTRL is insensitive to
model parameters. Our experiments in Tensorflow Serving
show that FTRL performs well even where there is limited
training data (see Section VI).

B. Tensorflow Serving Integration

The proposed scheduling framework is integrated into
Tensorflow Serving [13], a popular production-ready ML-
serving system. While we do a case study with Tensorflow
Serving, we do not rely on any Tensorflow-specific features
and nothing prevents the proposed work being integrated into
other ML-serving systems. All the implementation details can
be found in [1].
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VI. EXPERIMENTAL EVALUATION

In this section, we conduct extensive experimental evalu-
ation simulating heterogeneous IoT environments and work-
loads to corroborate the effectiveness and robustness of the
proposed RRL-based scheduling framework using a rich selec-
tion of the state-of-the-art ML applications on both CPU
and GPU-based infrastructure. We first evaluate the sensitivity
of RRL in convergence speed by adjusting the region size,
and compare RRL Plus and RRL in terms of the conver-
gence process. Then, we compare RRL Plus with the latest
reinforcement learning approaches for the following four key
features in IoT applications: 1) minimizing latency for image
classification; 2) minimizing latency for speech recognition;
3) satisfying strict SLO guarantee; and 4) effectiveness of
meeting SLO while minimizing resource usage.

A. Experimental Setup

ML-Serving System: We prototype the RRL-based schedul-
ing framework and integrate it in Tensorflow Serving, refer
to [1] for more details.

Service Workloads: We use three ML models commonly
used in IoT applications for evaluation: 1) image classification
models Inception V3 [36]; 2) Inception ResNet V2 [37]; and
3) speech recognition model Deep Speech V2 [3]. They cover
popular ML tasks in IoT applications, such as smart home,
smart city, and autonomous driving.

Arrival Process: We use two nonexponential arrival
processes simulating IoT workloads for evaluation.

1) WiKi: An arrival process based on traces of user traf-
fic visiting Wikipedia website [38] with unpredictable
load spikes to simulate the request patterns in IoT
applications.

2) Dynamic: A synthetic dynamic arrival process com-
posed of periods of the Poisson process with a randomly
changing average, which has pronounced changes from
one period to the next.

Hardware: We use a cluster of ten identical servers. Each
of them is equipped with dual-sockets Intel Xeon CPU ES5-
2630 v4 @ 2.20 GHz with hyperthreading disabled and four
NVIDIA GeForce GTX 1080 Ti GPUs, 64 GB of memory,
and connected through Infiniband.

Baseline Approaches: Since there is no alternative intel-
ligent scheduling framework for a direct comparison, we
opt to implement the state-of-the-art reinforcement learning
approaches for tuning parallelism configuration in our schedul-
ing framework: CAPES [15] and DeepRM [14], as they are
the closest approaches for the online ML-serving scheduling.
DeepRM is a job scheduling algorithm designed to work under
limited resources and CAPES is a general-purpose parameter
tuning algorithm.

SLO Setting: As our testbed is not production level, we set
relatively loose SLOs in our evaluation, i.e., a range between
400 and 2500 ms to emulate different latency requirements for
ML serving in production, which is consistent with previous
studies [8], [20], [25].
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Fig. 9. Sensitivity analysis of RRL in terms of the convergence time in

iteration (left y-axis) and the prediction error (right y-axis) as a function of
region size using Inception and DeepSpeech.
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Fig. 10. Performance comparisons of RRL Plus with adaptive region size
and RRL with fixed region size on Inception. RRL Plus has shorter learning
process and lower latency.

B. Convergence Speed Analysis of RRL and RRL Plus

The key tuning parameter in RRL is the region size as it con-
trols the tradeoff between convergence speed and optimality.
We validate the theoretical results in Theorem 1 by sensitivity
analysis of RRL using Inception, as illustrated in Fig. 9. The
results show the convergence time measured in iteration (left
y-axis) and distance from optimal Q-learning function (right
y-axis) as a function of the region size. It is clear that conver-
gence time drops very quickly when the region size increases
while the prediction error increases in a much slower speed.
For example, when the region size is one, RRL converges
five times faster than (Q-learning, which verifies the poten-
tial of the region-based methodology. When region size is
zero, RRL degenerates to point-based learning, which has the
same accuracy and the longest convergence time as Q-learning.
We use RRL Plus to control the balance of performance and
convergence time.

We evaluate the effectiveness of our adaptive algorithm RRL
Plus by comparing it to the RRL with fixed region size. Fig. 10
shows the convergence process between RRL Plus and RRL.
It can be inferred that during the converging process, RRL
Plus performs better and has a shorter learning process. On
average, RRL Plus has 17.54% less converge time and 15.31%
less latency.

C. Minimizing Serving Latency for Image Classification

In this section, we evaluate the famous image classifica-
tion model Inception on RRL Plus and the two baseline
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Fig. 11. Comparisons of RRL Plus with CAPES and DeepRM under different

arrival processes and service workloads. (a) Arrival process (WiKi). (b) Arrival
process (dynamic). (c) Latency (WiKi). (d) Latency (dynamic). (a) and (c)
First scheduling objective of minimizing latency using WiKi as arrival process
for Inception. (b) and (d) Scheduling objective of minimizing latency but under
dynamic arrival process for Inception.

deep reinforcement learning approaches: 1) DeepRM [14] and
2) CAPES [15] to compare their effectiveness of minimiz-
ing serving latency on both CPU- and GPU-based infras-
tructure under WiKi and Dynamic arrival processes. This
evaluation aims to test the algorithms’ ability to keep low
response latency under perturbation which is common in IoT
applications.

WiKi Arrival Process: We show latency results of Inception
running on CPU cluster in Fig. 11(c) using WiKi trace to
drive the arrival process, which is demonstrated in Fig. 11(a).
The results verify that RRL Plus converges much faster
than the baseline approaches, i.e., RRL Plus converges to a
near-optimal performance in about 150 min, while DeepRM
roughly converges around 1400 min with variance and CAPES
could not converge even after 2000 min. The results also show
that RRL Plus is able to achieve better latency performance
compared to deep-reinforcement-learning-based approaches,
thanks to the swift learning capabilities. More specifically,
the average latency of RRL Plus improves from CAPES and
DeepRM by 70.1% and 75.2%, respectively, for Inception.

Dynamic Arrival Process: Workload can change dynami-
cally over time in practice. In this section, we evaluate the
robustness of the proposed scheduling framework in terms of
the ability to quickly adapt to the workload change. We use
a synthetic dynamic arrival process for evaluation, as shown
in Fig. 11(b), the arrival change is more pronounced than the
WiKi arrival process, which emulates the change of user traffic
patterns over time.

The latency results are shown in Fig. 11(d). The results
suggest that RRL Plus can adapt to the user traffic change
quickly with a limited number of samples thanks to the
region-based learning approach, which leads to a much shorter
adapting time and more stable latency performance com-
pared to CAPES and DeepRM. In contrast, DeepRM takes a
much longer time to update scheduling polices and CAPES
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Fig. 12. Comparisons of RRL Plus with CAPES and DeepRM under different
arrival processes and service workloads. (a) Arrival process (WiKi). (b) Arrival
process (dynamic). (c¢) Latency (WiKi). (d) Latency (dynamic). (a) and (c)
First scheduling objective of minimizing latency using WiKi as arrival process
for DeepSpeech on CPU. (b) and (d) Scheduling objective of minimizing
latency but under dynamic arrival process for DeepSpeech on CPU.

shows significant variation due to its slow learning pro-
cess. On average, RRL Plus reduces the latency of Inception
by 71.0% and 59.9% compared to CAPES and DeepRM,
respectively.

D. Minimizing Serving Latency for Speech Recognition

One key feature of speech recognition application is that
its requests are heterogeneous since the user can say a long
sentence as well as just a few words, which is challenging to
scheduling system as the system has no a priori knowledge of
the computation cost of requests. Thus, it requires the schedul-
ing system the ability to handle requests with various lengths.
The application we use is DeepSpeech V2, a reputable speech
recognition model.

Wiki Arrival Process: The latency results on CPU clus-
ter for DeepSpeech are shown in Fig. 12(c). Similar to the
previous evaluation, RRL Plus reaches a near-optimal config-
uration within shorter adapting time compared to CAPES and
DeepRM. RRL Plus has better performance than CAPES by
88.9% and DeepRM by 80.7% on average.

Dynamic Arrival Process: As is shown in Fig. 12(d),
even under ever-changing arrival process and heterogeneous
request, RRL Plus is still able to keep a stable and low
response latency whereas DeepRM has slower converge rate
and CAPES shows significant variation. On average, RRL
Plus reduces the latency of DeepSpeech by 86.0% and 63.3%
compared to CAPES and DeepRM, respectively.

E. Minimizing Serving Latency on GPU Infrastructure

As explained in earlier sections, the parallelism on GPU
is controlled by the hardware scheduler and difficult to be
adjusted through software approaches. Here, we control the
parallelism using an indirect approach by tuning the batch-
ing parameters (parallel batch threads, batch size, and batch
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Fig. 13. Comparisons of RRL Plus with CAPES and DeepRM under different
arrival processes and service workloads. (a) Arrival Process (WiKi). (b) Arrival
process (dynamic). (c¢) Latency (WiKi). (d) Latency (dynamic). (a) and (c)
First scheduling objective of minimizing latency using WiKi as arrival process
for Inception on GPU. (b) and (d) Scheduling objective of minimizing latency
but under dynamic arrival process for Inception on GPU.

timeout). Similar as CPU case, we use scaled WiKi workload
and CAPES and DeepRM as baselines and report the results in
Fig. 13. Compared with CPU results, the variance in latency is
higher on GPU which is caused by the indirect control mech-
anism. In spite of the challenge of high variance, RRL Plus
still converges quickly and outperforms CAPES and DeepRM
in latency. Specifically, RRL Plus performs 56.5% better than
DeepRM and 68.1% than CAPES.

Fig. 13(d) shows the evaluation on GPU-based infrastructure
under dynamic workload. The indirectly controlled paral-
lelism on GPU leads to a slower adapt speed than CPU case.
However, even in this challenging scenario, RRL Plus still
consistently outperforms CAPES and DeepRM by 71.5% and
55.7% on average, respectively.

F. Meeting SLO With Minimum Resources

We evaluate our approach under the scenario of meeting
strict SLO target, i.e., 95th percentile latency SLO of 235 ms
for Inception and 1060 ms for DeepSpeech.® Fig. 14 (note that
the x-axis is logscale) demonstrates the CCDF of RRL Plus
latency on CPU cluster and GPU cluster compared with the
baselines. The tail comparison indicates that RRL Plus has
shorter tail latency and can provide a strict SLO guarantee.
Compared with CAPES and DeepRM, RRL Plus achieves up
to 89.3% and 91.6% SLO violation reduction, respectively,
thanks to its SLO-aware design.

Our scheduling framework also supports another common
scheduling objective in IoT applications which is meeting rel-
atively loose SLO while minimizing the resource usage (e.g.,
cloud environment or shared cluster). The evaluations on CPU
and GPU infrastructure of this scheduling objective using

5Tt is worth to emphasize again that the relatively high latency is because
our testbed is not enterprise scale nor equipped with the latest hardware, so
both the processing time and the queuing waiting time is relatively high.
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Fig. 14. Comparisons of RRL Plus with CAPES and DeepRM under strict
SLO (95th percentile latency of 235 ms for Inception and 1060 ms for Deep
Speech). (a) Latency (dynamic) for Inception (CPU). (b) Latency (dynamic)
for DeepSpeech (CPU).

DeepSpeech, ResNet, and Inception under dynamic workload
are shown in Fig. 15.

CPU Cluster: Fig. 15(b) shows the latency of DeepSpeech
running on CPU cluster over the time using different schedul-
ing methods, where both CAPES and DeepRM perform poorly
on achieving the SLO target. DeepRM spent around 500 min
before finding a scheduling policy that can achieve the SLO
but at the expense of high CPU utilization whereas CAPES
violates the SLO when the workload increases. RRL Plus
in contrast always guarantees the SLO, even during abrupt
workload changes. Another comparison is on resource uti-
lization, which is critical for consolidating resources and
achieve cost-efficient serving. We report the CPU utilization
at Fig. 15(c), where RRL Plus consistently consumes much
less CPU resource than both CAPES and DeepRM, which is
especially important for commercial IoT applications with a
rather large number of requests from all end devices. Similar
observations hold for the ResNet results in Fig. 15(e) and (f),
where all three methods achieve SLO in a short time, but RRL
Plus uses only one-third CPU resources compared to the deep
reinforcement-learning-based methods. On average, compare
with CAPES and DeepRM, RRL Plus uses 32.0% and 35.0%
less CPU resources, respectively, for DeepSpeech. For ResNet,
the resource saving is even more significant: RRL Plus on aver-
age saved 61.8% compared to CAPES and 68.9% compared
to DeepRM.

GPU Cluster: We show the GPU results in
Fig. 15(h) and (i), where RRL Plus keeps a stable latency
right under SLO and only uses half GPU resources compared
with DeepRM. On average, RRL Plus saved 43.7% GPU
resources compared with DeepRM. Compared with CAPES,
RRL Plus uses the same level of GPU resources and achieves
38.8% latency reduction and 98.6% SLO violation reduction.

G. Discussion

Evaluation results show that RRL Plus outperforms RRL
and other standard deep reinforcement learning methods in
both speed and accuracy. RRL Plus uses the unique char-
acteristics of ML serving to accelerate the learning process:
when parallelism changes, the latency is quite versatile glob-
ally while smooth locally. Other methods do not have such
insights. Compared with RRL, PPL Plus automatically sets
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Fig. 15. Comparisons of RRL plus with CAPES and DeepRM when achieving SLO while optimizing resource usage (i.e., CPU and GPU utilization) under
dynamic arrival processes and service workloads. (a), (d), and (g) Arrival process (dynamic). (b), (e), and (h) Latency (dynamic). (c) and (f) show CPU
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the region size during optimization, which leads to less con-
vergence time. When environment/workload changes, RRL
Plus may have already converged to a near-optimal solu-
tion, whereas other methods may be still far away. Therefore,
in online systems, RRL Plus outperforms the standard deep
reinforcement learning methods in both speed and accuracy.

VII. RELATED WORK
A. Machine Learning in loT Applications

IoT applications have brought the number of end
devices and the information they collected to a magnitude
higher [39], [40]. To manage, process, and utilize such large
amount of data, ML has been applied to many IoT scenarios.

Mohammadi et al. [41] applied a semisupervised reinforce-
ment learning algorithm to smart city scenario that improves
the accuracy of indoor localization. Cao et al. [42] com-
bined SVM with belief network to optimize wireless network
capacity. Chen er al. [43] used extreme learning machine to
recognize human activity from data collected by smart health
sensors. Liang et al. [44] detected soil moisture by applying
neural network to sensor data.

However, a key challenge of combining ML with IoT
applications is that IoT devices are usually low energy and

embedded whereas ML models need considerable memory and
computational power to run. Reagen et al. [45] proposed a
design of hardware accelerator to accommodate DNN in IoT
devices. Dhurandhar et al. [46] developed a method to com-
press RNN models to reduce resource usage. Even with the
aid of these approaches, it is often infeasible to deploy ML
to end devices, thus using ML as cloud service is a popular
choice for many IoT applications.

B. Machine Learning Serving

How to efficiently deploy trained ML models in serving
(or sometimes called inference) mode to provide low-latency
services has drawn great attention in both academia and indus-
try [8], [20], [47]. Several ML-serving systems have been
open-sourced recently [13], [47], [48]. Hardware accelera-
tion [49] has been used to accelerate the computation in ML
serving. Software techniques using model compression and
simplification [50], compiler techniques [51] and acceleration
library [52] have also successfully reduced model computation
time.

Another promising technique for reducing the latency
of ML serving is parallelism [11]. Request parallelism,
inter-op parallelism, and intra-op parallelism are the typical
ways to parallel computation on CPU in today’s ML-serving
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systems. On GPU, computation is parallelized through SMs
and scheduling partitions which can be indirectly adjusted
through batching parameters, such as batch size, batch threads,
and batch timeout. As discussed in the introduction, exist-
ing methods [8], [18]-[20] either require domain-specific
information to tune the parallelism configuration or are appli-
cable for a special arrival process with homogeneous request
size in certain applications. To achieve a more general solu-
tion, we design a scheduling framework that can work with
general user traffic patterns and system environments on both
CPUs and GPUs-based infrastructure.

C. Parameter Tuning Using Reinforcement Learning

During 1940s, reinforcement learning [53] was first
proposed and has been widely used in different applica-
tions. Here, we focus on the works that apply reinforce-
ment learning to system parameter tuning. Mao et al. [14]
proposed a reinforcement-learning-based resource manage-
ment method for multiresource cluster scheduling problem.
Li et al. [15] developed a reinforcement-learning-based param-
eter tuning system for storage systems. Both works use tradi-
tional point-based reinforcement learning and suffer from slow
convergence and adaptivity. Mirhoseini ef al. [54] proposed
to optimize Tensorflow operation placement between CPU
and GPU using long short-term memory (LSTM), which is
applicable for only CPU-GPU co-design architecture. In our
previous work [1], we present the initial results of performance
tuning using the RRL approach. However, the region size
is hand-tuned and fixed throughout the optimization process,
which leads to a performance gap between the RRL solution
and the optimal one. In this article, we develop an enhanced
RRL-based framework using the Bayesian optimization to
dynamically update the region size, in order to improve the
convergence speed and the agility in a dynamic environment.

VIII. CONCLUSION

In this article, we proposed an RRL-based scheduling frame-
work for ML serving in IoT applications that can efficiently
identify optimal configurations under dynamic workloads. A
key observation is that the system performance under sim-
ilar configurations in a region can be accurately estimated
by using the system performance under one of these con-
figurations due to their correlation. We theoretically showed
that the RRL approach can achieve fast convergence speed
at the cost of performance loss. To reduce the performance
loss, we proposed an adaptive RRL algorithm, namely, RRL
Plus, to balance the convergence speed and the optimality.
The proposed framework was prototyped and evaluated on
the Tensorflow Serving system. Convergence analysis indi-
cates that RRL Plus can shorten the average convergence
time by 17.54% and reduce the average latency by 15.31%,
compared to RRL. Extensive experimental evaluation on both
CPU cluster and GPU cluster show that the RRL Plus can
quickly adapt to the dynamics of workloads and system envi-
ronments. The proposed scheduling framework can reduce
the average latency by up to 88.9% on the CPU cluster
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and 71.5% on the GPU cluster, compared to the state-of-the-
art deep reinforcement-learning-based methods (DeepRM and
CAPES). In the SLO-aware scenario, the RRL Plus can reduce
up to 91.6% SLO violation under strict SLO requirements,
while reducing the resource usage by up to 68.9% on CPU and
43.7% on GPU under loose SLO requirements. In addition, the
proposed solution does not have assumptions on workload or
underlying systems and thus can be used for most modern ML
systems and applications.
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