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ABSTRACT
Depth is a key component of Deep Neural Networks (DNNs), how-
ever, designing depth is heuristic and requires many human efforts.
We propose AutoGrow to automate depth discovery in DNNs: start-
ing from a shallow seed architecture, AutoGrow grows new layers
if the growth improves the accuracy; otherwise, stops growing and
thus discovers the depth. We propose robust growing and stop-
ping policies to generalize to different network architectures and
datasets. Our experiments show that by applying the same policy
to different network architectures, AutoGrow can always discover
near-optimal depth on various datasets of MNIST, FashionMNIST,
SVHN, CIFAR10, CIFAR100 and ImageNet. For example, in terms of
accuracy-computation trade-off, AutoGrow discovers a better depth
combination in ResNets than human experts. Our AutoGrow is effi-
cient. It discovers depthwithin similar time of training a single DNN.
Our code is available at https://github.com/wenwei202/autogrow.
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1 INTRODUCTION
Layer depth is one of the decisive factors of the success of Deep
Neural Networks (DNNs). For example, image classification accu-
racy keeps improving as the depth of network models grows [12,
15, 17, 32, 35]. Although shallow networks cannot ensure high
accuracy, DNNs composed of too many layers may suffer from
over-fitting and convergence difficulty in training. How to obtain
the optimal depth for a DNN still remains mysterious. For instance,
ResNet-152 [12] uses 3, 8, 36 and 3 residual blocks under output
sizes of 56 × 56, 28 × 28, 14 × 14 and 7 × 7, respectively, which
don’t show an obvious quantitative relation. In practice, people
usually reply on some heuristic trials and tests to obtain the depth
of a network: they first design a DNN with a specific depth and
then train and evaluate the network on a given dataset; finally, they
change the depth and repeat the procedure until the accuracy meets
the requirement. Besides the high computational cost induced by
the iteration process, such trial & test iterations must be repeated
whenever dataset changes. In this paper, we propose AutoGrow
that can automate depth discovery given a layer architecture. We
will show that AutoGrow generalizes to different datasets and layer
architectures.

There are some previous works which add or morph layers to in-
crease the depth in DNNs. VggNet [32] and DropIn [33] added new
layers into shallower DNNs; Network Morphism [5, 36, 37] mor-
phed each layer to multiple layers to increase the depth meanwhile
preserving the function of the shallower net. Table 1 summarizes
differences in this work. Their goal was to overcome difficulty of
training deeper DNNs or accelerate it. Our goal is to automati-
cally find an optimal depth. Moreover, previous works applied layer
growth by once or a few times at pre-defined locations to grow a
pre-defined number of layers; in contrast, ours automatically learns
the number of new layers and growth locations without limiting
growing times. We will summarize more related works in Section 4.

Figure 1 illustrates an example of AutoGrow. It starts from the
shallowest backbone network and gradually grows sub-modules
(A sub-module can be one or more layers, e.g., a residual block);
the growth stops once a stopping policy is satisfied. We studied
multiple initializers of new layers and multiple growing policies,
and surprisingly find that: (1) a random initializer works equally or
better than complicated Network Morphism; (2) it is more effective
to grow before a shallow net converges. We hypothesize that this
is because a converged shallow net is an inadequate initialization
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Figure 1: A simple example of AutoGrow.

Table 1: Comparison with previous works about layer
growth.

Previous works Ours

Goal Ease training Depth automation
Times Once or a few Unlimited

Locations Human defined Learned
Layer # Human defined Learned
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for training deeper net, while random initialization can help to
escape from a bad starting point. Motivated by this, we intentionally
avoid full convergence during the growing by using (1) random
initialization of new layers, (2) a constant large learning rate, and
(3) a short growing interval.

Our contributions are:

• We propose AutoGrow to automate DNN layer growing
and depth discovery. AutoGrow is very robust. With the
same hyper-parameters, it adapts network depth to various
datasets including MNIST, FashionMNIST, SVHN, CIFAR10,
CIFAR100 and ImageNet. Moreover, AutoGrow can also dis-
cover shallower DNNs when the dataset is a subset.
• AutoGrow demonstrates high efficiency and scales up to Ima-
geNet, because the layer growing is as fast as training a single
DNN. On ImageNet, it discovers a new ResNets with better
trade-off between accuracy and computation complexity.
• We challenge the idea of Network Morphism, as random
initialization works equally or better when growing layers.
• We find that it is beneficial to rapidly grow layers before a
shallower net converge, contradicting previous intuition.

2 AUTOGROW – A DEPTH GROWING
ALGORITHM

Figure 1 gives an overview of the proposed AutoGrow. In this
paper, we use network, sub-networks, sub-modules and layers to
describe the architecture hierarchy. A network is composed of a
cascade of sub-networks. A sub-network is composed of sub-modules,
which typical share the same output size. A sub-module (e.g. a resid-
ual block) is an elementary growing block composed of one or a few
layers. In this section, we rigorously formulate a generic version
of AutoGrow which will be materialized in subsections. A deep
convolutional network д(X0) is a cascade of sub-networks by com-
posing functions as д(X0) = l (fM−1 (fM−2 (· · · f1 (f0 (X0)) · · · ))),
where X0 is an input image, M is the number of sub-networks,
l(·) is a loss function, and Xi+1 = fi (Xi ) is a sub-network that
operates on an input image or a feature tensor Xi ∈ Rci×hi×wi .
Here, ci is the number of channels, and hi andwi are spatial dimen-
sions. fi (Xi ) is a simplified notation of fi (Xi ;Wi ), whereWi is a
set of sub-modules’ parameters within the i-th sub-network. Thus
W = {Wi : i = 0 . . .M − 1} denotes the whole set of parameters
in the DNN. To facilitate growing, the following properties are
supported within a sub-network: (1) the first sub-module usually
reduces the size of input feature maps, e.g., using pooling or con-
volution with a stride; and (2) all sub-modules in a sub-network
maintain the same output size. As such, our framework can sup-
port popular networks, including VggNet-like plain networks [32],
GoogLeNet [35], ResNets [12] and DenseNets [15]. In this paper, we
select ResNets and VggNet-like nets as representatives of DNNs with
and without shortcuts, respectively.

With above notations, Algorithm 1 rigorously describes the Au-
toGrow algorithm. In brief, AutoGrow starts with the shallowest net
where every sub-network has only one sub-module for spatial di-
mension reduction. AutoGrow loops over all growing sub-networks
in order. For each sub-network, AutoGrow stacks a new sub-module.
When the new sub-module does not improve the accuracy, the
growth in corresponding sub-network will be permanently stopped.

Algorithm 1 AutoGrow Algorithm.
Input:
A seed shallow network д(X0) composed of M sub-networks
F = { fi (·;Wi ) : i = 0 . . .M − 1}, where each sub-network has
only one sub-module (a dimension reduction sub-module);
an epoch interval K to check growing and stopping policies;
the number of fine-tuning epochs N after growing.

Initialization:
A Circular Linked List of sub-networks under growing:
subNetList = f0 (·;W0) → · · · → fM−1 (·;WM−1)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

;

The current growing sub-network:
growingSub = subNetList.head() = f0 (·;W0);
The last grown sub-network: grownSub = None;

Process:
# if there exist growing sub-network(s)
while subNetList.size()>0 do

train(д(X0),K) # train the whole network д(X0) for K epochs
if meetStoppingPolicy() then

# remove a sub-network from the growing list
subNetList.delete(grownSub);

end if
if meetGrowingPolicy() and subNetList.size()>0 then
# the current growing sub-network growingSub ==

fi (·;Wi )
Wi =Wi ∪W # stack a sub-module on top of fi (·;Wi )
initializer(W); # initialize the new sub-moduleW
grownSub = growingSub;
growingSub = subNetList.next(growingSub);

end if
end while
Fine-tune the discovered network д(X0) for N epochs;

Output:
A trained neural network д(X0) with learned depth.

The details of our method will be materialized in the following
subsections.

2.1 Seed Shallow Networks and Sub-modules
In this paper, in all datasets except ImageNet, we explore growing
depth for four types of DNNs:
• Basic3ResNet: the same ResNet used for CIFAR10 in [12],
which has 3 residual sub-networks with output spatial sizes
of 32 × 32, 16 × 16 and 8 × 8, respectively;
• Basic4ResNet: a variant of ResNet used for ImageNet in [12]
built by basic residual blocks (each of which contains two
convolutions and one shortcut). There are 4 sub-networks
with output spatial sizes of 32 × 32, 16 × 16, 8 × 8 and 4 × 4,
respectively;
• Plain3Net: a VggNet-like plain net by removing shortcuts
in Basic3ResNet;
• Plain4Net: a VggNet-like plain net by removing shortcuts
in Basic4ResNet.



In AutoGrow, the architectures of seed shallow networks and
sub-modules are pre-defined. In plain DNNs, a sub-module is a stack
of convolution, Batch Normalization and ReLU; in residual DNNs, a
sub-module is a residual block. In AutoGrow, a sub-network is a stack
of all sub-modules with the same output spatial size. Unlike [12]
which manually designed the depth, AutoGrow starts from a seed
architecture in which each sub-network has only one sub-module
and automatically learns the number of sub-modules.

On ImageNet, we apply the same backbones in [12] as the seed
architectures. A seed architecture has only one sub-module un-
der each output spatial size. For a ResNet using basic residual
blocks or bottleneck residual blocks [12], we respectively name
it as Basic4ResNet or Bottleneck4ResNet. Plain4Net is also ob-
tained by removing shortcuts in Basic4ResNet.

2.2 Sub-module Initializers
Here we explain how to initialize a new sub-moduleW mentioned
in Algorithm 1 (initializer(W)). Network Morphism changes
DNN architecture meanwhile preserving the loss function via spe-
cial initialization of new layers, that is,

д(X0;W) = д(X0;W ∪W) ∀X0. (1)

A residual sub-module shows a nice property: when stacking a
residual block and initializing the last Batch Normalization layer as
zeros, the function of the shallower net is preserved but the DNN
is morphed to a deeper net. Thus, Network Morphism can be easily
implemented by this zero initialization (ZeroInit).

In this work, all layers inW are initialized using default ran-
domization, except for a special treatment of the last Batch Nor-
malization layer in a residual sub-module. Besides ZeroInit, we
propose a new AdamInit for Network Morphism. In AdamInit, we
freeze all parameters except the last Batch Normalization layer in
W, and then use Adam optimizer [16] to optimize the last Bath
Normalization for maximum 10 epochs till the training accuracy
of the deeper net is as good as the shallower one. After AdamInit,
all parameters are jointly optimized. We view AdamInit as a Net-
work Morphism because the training loss is similar after AdamInit.
We empirically find that AdamInit can usually find a solution in
less than 3 epochs. We also study random initialization of the last
Batch Normalization layer using uniform (UniInit) or Gaussian
(GauInit) noises with a standard deviation 1.0. We will show that
GauInit obtains the best result, challenging the idea of Network
Morphism [5, 36, 37].

2.3 Growing and Stopping Policies
In Algorithm 1, a growing policy refers to meetGrowingPolicy(),
which returns true when the network should grow a sub-module.
Two growing policies are studied here:

(1) Convergent Growth: meetGrowingPolicy() returns true
when the improvement of validation accuracy is less than τ in
the last K epochs. That is, in Convergent Growth, AutoGrow
only grows when current network has converged. This is a
similar growing criterion adopted in previous works [3, 4, 9].

(2) Periodic Growth: meetGrowingPolicy() always returns true,
that is, the network always grows every K epochs. There-
fore, K is also the growing period. In the best practice of

AutoGrow, K is small (e.g. K = 3) such that it grows before
current network converges.

Our experiments will show that Periodic Growth outperforms Con-
vergent Growth. We hypothesize that a fully converged shallower
net is an inadequate initialization to train a deeper net. We will per-
form experiments to test this hypothesis and visualize optimization
trajectory to illustrate it.

A stopping policy denotes meetStoppingPolicy() in Algorithm
1. When Convergent Growth is adopted, meetStoppingPolicy()
returns true if a recent growth does not improve validation accu-
racy more than τ within K epochs. We use a similar stopping policy
for Periodic Growth; however, as it can grow rapidly with a small
period K (e.g. K = 3) before it converges, we use a larger win-
dow size J for stop. Specifically, when Periodic Growth is adopted,
meetStoppingPolicy() returns true when the validation accuracy
improves less than τ in the last J epochs, where J ≫ K .

Hyper-parameters τ , J and K control the operation of AutoGrow
and can be easily setup and generalize well. τ denotes the signif-
icance of accuracy improvement for classification. We simply set
τ = 0.05% in all experiments. J represents how many epochs to
wait for an accuracy improvement before stopping the growth of
a sub-network. It is more meaningful to consider stopping when
the new net is trained to some extent. As such, we set J to the
number of epochsT under the largest learning rate when training a
baseline. K means how frequently AutoGrow checks the polices. In
Convergent Growth, we simply set K = T , which is long enough to
ensure convergence. In Periodic Growth, K is set to a small fraction
of T to enable fast growth before convergence; more importantly,
K = 3 is very robust to all networks and datasets. Therefore, all
those hyper-parameters are very robust and strongly correlated to
design considerations.

3 EXPERIMENTS
In this paper, we use Basic3ResNet-2-3-2, for instance, to denote
a model architecture which contains 2, 3 and 2 sub-modules in the
first, second and third sub-networks, respectively. Sometimes we
simplify it as 2-3-2 for convenience. AutoGrow always starts from
the shallowest depth of 1-1-1 and uses the maximum validation
accuracy as the metric to guide growing and stopping. All DNN
baselines are trained by SGD with momentum 0.9 using staircase
learning rate. The initial learning rate is 0.1 in ResNets and 0.01 in
plain networks. On ImageNet, baselines are trained using batch size
256 for 90 epochs, within which learning rate is decayed by 0.1× at
epoch 30 and 60. In all other smaller datasets, baselines are trained

Table 2: Network Morphism tested on CIFAR10.

net backbone shallower deeper initializer accu % ∆∗

Basic3ResNet 3-3-3 5-5-5
ZeroInit 92.71 -0.77
AdamInit 92.82 -0.66

Basic3ResNet 5-5-5 9-9-9
ZeroInit 93.64 -0.27
AdamInit 93.53 -0.38

Basic4ResNet 1-1-1-1 2-2-2-2
ZeroInit 94.96 -0.37
AdamInit 95.17 -0.16

∗ ∆ = (accuracy of Network Morphism) − (accuracy of training from scratch)



Table 3: Ablation study of c-AutoGrow.

dataset learning
rate initializer found net† accu % ∆∗

CIFAR10

staircase ZeroInit 2-3-6 91.77 -1.06
staircase AdamInit 3-4-3 92.21 -0.59

constant ZeroInit 2-2-4 92.23 0.16
constant AdamInit 3-4-4 92.60 -0.41
constant UniInit 3-4-4 92.93 -0.08
constant GauInit 2-4-3 93.12 0.55

† Basic3ResNet

dataset learning
rate initializer found net† accu % ∆∗

CIFAR100

staircase ZeroInit 4-3-4 70.04 -0.65
staircase AdamInit 3-3-3 69.85 -0.65

constant ZeroInit 3-2-4 70.22 0.35
constant AdamInit 3-3-3 70.00 -0.50
constant UniInit 4-4-3 70.39 0.36
constant GauInit 3-4-3 70.66 0.91

∗ ∆ = (accuracy of c-AutoGrow) − (accuracy of training from scratch)

Morphing

ResNet-32

Learning rate decay

(a) (b)

Figure 2: An optimization trajectory comparison between (a)
Network Morphism and (b) training from scratch.

using batch size 128 for 200 epochs and learning rate is decayed by
0.1× at epoch 100 and 150.

Our early experiments followed prior wisdom by growing lay-
ers with Network Morphism [3–5, 9, 36, 37], i.e., AutoGrow with
ZeroInit (or AdamInit) and Convergent Growth policy; however,
it stopped early with very shallow DNNs, failing to find optimal
depth. We hypothesize that a converged shallow net with Network
Morphism gives a bad initialization to train a deeper neural net-
work. Section 3.1 experimentally test that the hypothesis is valid. To
tackle this issue, we intentionally avoid convergence during grow-
ing by three simple solutions, which are evaluated in Section 3.2.
Finally, Section 3.3 and Section 3.4 include extensive experiments
to show the effectiveness of our final AutoGrow.

3.1 Suboptimum of Network Morphism and
Convergent Growth

In this section, we study Network Morphism itself and its integra-
tion into our AutoGrow under Convergent Growth. When studying
Network Morphism, we take the following steps: 1) train a shal-
lower ResNet to converge, 2) stack residual blocks on top of each
sub-network tomorph to a deeper net, 3) use ZeroInit or AdamInit
to initialize new layers, and 4) train the deeper net in a standard way.
We compare the accuracy difference (“∆”) between Network Mor-
phism and training the deeper net from scratch. Table 2 summaries
our results. Network Morphism has a lower accuracy (negative “∆”)
in all the cases, which validates our hypothesis that a converged
shallow network with Network Morphism gives a bad initialization
to train a deeper net.

We visualize the optimization trajectories to illustrate the hy-
pothesis.We hypothesize that a converged shallower net may not be

an adequate initialization. Figure 2 visualizes and compares the op-
timization trajectories of Network Morphism and the training from
scratch. In this figure, the shallower net is Basic3ResNet-3-3-3
(ResNet-20) and the deeper one is Basic3ResNet-5-5-5 (ResNet-32)
in Table 2. The initializer is ZeroInit. The visualization method
is extended from [20]. Points on the trajectory are evenly sampled
every a few epochs. To maximize the variance of trajectory, we use
PCA to project from a high dimensional space to a 2D space and
use the first two Principle Components (PC) to form the axes in
Figure 2. The contours of training loss function and the trajectory
are visualized around the final minimum of the deeper net. When
projecting a shallower net to a deeper net space, zeros are padded
for the parameters not existing in the deeper net. We must note
that the loss increase along the trajectory does not truly represent
the situation in high dimensional space, as the trajectory is just
a projection. It is possible that the loss remains decreasing in the
high dimension while it appears in an opposite way in the 2D space.
The sharp detour at “Morphing” in Figure 2(a) may indicate that
the shallower net plausibly converges to a point that the deeper
net struggles to escape. In contrast, Figure 2(b) shows that the tra-
jectory of the direct optimization in the deeper space smoothly
converges to a better minimum.

To further validate our hypothesis, we integrate Network Mor-
phism as the initializer inAutoGrowwith Convergent Growth policy.
We refer to this version of AutoGrow as c-AutoGrow with “c-” denot-
ing “Convergent.” More specific, we take ZeroInit or AdamInit
as sub-module initializer and “Convergent Growth” policy in Al-
gorithm 1. To recap, in this setting, AutoGrow trains a shallower
net till it converges, then grows a sub-module which is initialized
by Network Morphism, and repeats the same process till there is
no further accuracy improvement. In every interval of K training
epochs (train(д(X0),K) in Algorithm 1), “staircase” learning rate
is used. The learning rate is reset to 0.1 at the first epoch, and de-
cayed by 0.1× at epoch K

2 and 3K
4 . The results are shown in Table 3

by “staircase” rows, which illustrate that c-AutoGrow can grow a
DNN multiple times and finally find a depth. However, there are
two problems: 1) the final accuracy is lower than training the found
net from scratch, as indicated by “∆”, validating our hypothesis; 2)
the depth learning stops too early with a relatively shallower net,
while a deeper net beyond the found depth can achieve a higher
accuracy as we will show in Table 8. These problems provide a
circumstantial evidence of the hypothesis that a converged shallow
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Figure 3: Optimization trajectory of AutoGrow, tested by Basic3ResNet on CIFAR10. (a) c-AutoGrow with staircase learning
rate and ZeroInit during growing; (b) c-AutoGrow with constant learning rate and GauInit during growing; (c) p-AutoGrow
with K = 50; and (d) p-AutoGrow with K = 3. For better illustration, the dots on the trajectory are plotted every 4, 20, 5 and 3
epochs in (a-d), respectively.

Table 4: p-AutoGrow with different growing interval K .

CIFAR10
K found net† accu %

50 6-5-3 92.95
20 7-7-7 93.26
10 19-19-19 93.46
5 23-22-22 93.98
3 42-42-42 94.27
1 77-76-76 94.30
† Basic3ResNet

CIFAR100
K found net† accu %

50 8-5-7 72.07
20 8-11-10 72.93
10 18-18-18 73.64
5 23-23-23 73.70
3 54-53-53 74.72
1 68-68-68 74.51
† Basic3ResNet

Table 5: p-AutoGrow under initializers with K = 3.

CIFAR10
initializer found net† accu

ZeroInit 31-30-30 93.57
AdamInit 37-37-36 93.79
UniInit 28-28-28 93.82
GauInit 42-42-42 94.27
† Basic3ResNet

CIFAR100
initializer found net† accu

ZeroInit 26-25-25 73.45
AdamInit 27-27-27 73.92
UniInit 41-41-41 74.31
GauInit 54-53-53 74.72
† Basic3ResNet

net with Network Morphism gives a bad initialization. Thus, Au-
toGrow cannot receive signals to continue growing after a limited
number of growths.

Figure 3(a) visualizes the trajectory of c-AutoGrow corresponding
to row “2-3-6” in Table 3. Along the trajectory, there are many
trials to detour and escape an initialization from a shallower net.

3.2 Ablation Study for AutoGrow Design
Based on the findings in Section 3.1, we propose three simple but
effective solutions to further enhance AutoGrow and refer it as
p-AutoGrow, with “p-” denoting “Periodic”:
• Use a large constant learning rate for growing, i.e., 0.1 for
residual networks and 0.01 for plain networks. Stochastic
gradient descent with a large learning rate intrinsically in-
troduces noises, which help to avoid a full convergence into
a bad initialization from a shallower net. Note that staircase
learning rate is still used for fine-tuning after discovering
the final DNN;
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Figure 4: p-AutoGrow on CIFAR10 (K = 3). The seed net is
Basic3ResNet-1-1-1.

• Use random initialization (UniInit or GauInit) as noises to
escape from an inadequate initialization;
• Grow rapidly before a shallower net converges by taking
Periodic Growth with a small K .

p-AutoGrow is our final AutoGrow. In the rest part of this sec-
tion, we perform ablation study to prove that the three solutions
are effective. We start from c-AutoGrow, and incrementally add
above solutions one by one and eventually obtain p-AutoGrow. In
Table 3, first, we replace the staircase learning rate with a con-
stant large learning rate, the accuracy of AutoGrow improves and
therefore “∆” improves; second, we further replace Network Mor-
phism (ZeroInit or AdamInit) with a random initializer (UniInit
or GauInit) and result in a bigger gain. Overall, combining a con-
stant learning rate with GauInit performs the best. Thus, constant
learning rate and GauInit are adopted in the remaining experi-
ments, unless we explicitly specify them. Figure 3(b) visualizes
the trajectory corresponding to row “2-4-3” in Table 3, which is
much smoother compared to Figure 3(a), implying the advantages
of constant large learning rate and GauInit.

Note that, in this paper, we are more interested in automating
depth discovery to find a final DNN (“found net”) with a high
accuracy (“accu”). Ideally, the “found net” has a minimum depth,
a larger depth than which cannot further improve “accu”. We will
show in Figure 6 that AutoGrow discovers a depth approximately
satisfying this property. The “∆” is a metric to indicate how well
shallower nets initialize deeper nets; a negative “∆” indicates that
weight initialization from a shallower net hurts training of a deeper



Table 6: p-AutoGrow with different seed architecture.

dataset seed net† found net† accuracy %

CIFAR10 1-1-1 42-42-42 94.27
5-5-5 46-46-46 94.16

CIFAR10 1-1-1-1 22-22-22-22 95.49
5-5-5-5 23-22-22-22 95.62

† Basic3ResNet or Basic4ResNet.

net; while a positive “∆” indicates AutoGrow helps training a deeper
net, which is a byproduct of this work.

Finally, we apply the last solution – Periodic Growth, and obtain
our final p-AutoGrow. Our ablation study results for p-AutoGrow are
summarized in Table 4. Table 4 analyzes the impact of the growing
period K . In general, K is a hyper-parameter to trade off speed and
accuracy: a smaller K takes a longer learning time but discovers
a deeper net, vice versa. Our results validate the preference of a
faster growth (i.e. a smaller K). On CIFAR10/CIFAR100, the accu-
racy reaches plateau/peak at K = 3; further reducing K produces a
deeper net while the accuracy gain is marginal/impossible. In the
following, we simply select K = 3 for robustness test. More impor-
tantly, our quantitative results in Table 4 show that p-AutoGrow
finds much deeper nets, overcoming the very-early stop issue in
c-AutoGrow in Table 3. That is, Periodic Growth proposed in this
work is much more effective than Convergent Growth utilized in
previous work.

Figure 3(c)(d) visualize the trajectories of p-AutoGrow with K =
50 and 3. The 2D projection gives limited information to reveal the
advantages of p-AutoGrow comparing to c-AutoGrow in Figure 3(b),
although the trajectory of our final p-AutoGrow in Figure 3(d) is
plausibly more similar to the one of training from scratch in Fig-
ure 2(b).

For sanity check, we perform the ablation study of initializers
for p-AutoGrow. The results are in Table 5, which further validates
our wisdom on selecting GauInit. The motivation of Network
Morphism in previous work was to start a deeper net from a loss
function that has been well optimized by a shallower net, so as not
to restart the deeper net training from scratch [3–5, 9, 36, 37]. In
all our experiments, we find that simple random initialization can
achieve the same goal. Figure 4 plots the convergence curves and
learning process for “42-42-42” in Table 4. Even with GauInit,
the loss and accuracy rapidly recover and no restart is observed.
The convergence pattern in the “Growing” stage is similar to the
“Fine-tuning” stage under the same learning rate (the initial learning
rate 0.1). Similar results on ImageNet will be shown in Figure 8.
Our results challenge the necessity of Network Morphism when
growing neural networks.

At last, we perform the ablation study on the initial depth of
the seed network. Table 6 demonstrates that a shallowest DNN
works as well as a deeper seed. This implies that AutoGrow can
appropriately stop regardless of the depth of the seed network. As
the focus of this work is on depth automation, we prefer starting
with the shallowest seed to avoid a manual search of a seed depth.

Table 7: AutoGrow improves accuracy of plain nets.

dataset net layer # method accu %

CIFAR10

Plain4Net-6-6-6-6 26 baseline 93.90

Plain4Net-6-6-6-6 26 AutoGrow
K = 30 95.17

Basic4ResNet-3-3-3-3 26 baseline 95.33

CIFAR10

Plain3Net-11-11-10 34 baseline 90.45

Plain3Net-11-11-10 34 AutoGrow
K = 50 93.13

Basic3ResNet-6-6-5 36 baseline 93.60
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Figure 5: Loss surfaces around minima found by baselines
and AutoGrow. Dataset is CIFAR10.
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Figure 6: AutoGrow vs manual search obtained by training
many baselines from scratch. x − axis is the number of pa-
rameters. Dataset is CIFAR10.

3.3 Adaptability of AutoGrow
To verify the adaptability of AutoGrow, we use an identical configu-
ration (p-AutoGrow with K = 3) and test over 5 datasets and 4 seed
architectures. Table 8 includes the results of all 20 combinations.
Figure 6 compares AutoGrow with manual search which is obtained
by training many DNNs with different depths from scratch. The
results lead to the following conclusions and contributions:

(1) In Table 8, AutoGrow discovers layer depth across all scenar-
ios without any tuning, achieving the main goal of this work.
Manual design needsm ·n ·k trials, wherem and n are respec-
tively the numbers of datasets and sub-module categories,



Table 8: The adaptability of AutoGrow to datasets

net dataset found net accu % ∆∗

Basic3ResNet

CIFAR10 42-42-42 94.27 -0.03
CIFAR100 54-53-53 74.72 -0.95
SVHN 34-34-34 97.22 0.04
FashionMNIST 30-29-29 94.57 -0.06
MNIST 33-33-33 99.64 -0.03

Basic4ResNet

CIFAR10 22-22-22-22 95.49 -0.10
CIFAR100 17-51-16-16 79.47 1.22
SVHN 20-20-19-19 97.32 -0.08
FashionMNIST 27-27-27-26 94.62 -0.17
MNIST 11-10-10-10 99.66 0.01

∗ ∆ = (accuracy of AutoGrow) − (accuracy of training from scratch)

net dataset found net accu % ∆∗

Plain3Net

CIFAR10 23-22-22 90.82 6.49
CIFAR100 28-28-27 66.34 31.53
SVHN 36-35-35 96.79 77.20
FashionMNIST 17-17-17 94.49 0.56
MNIST 20-20-20 99.66 0.12

Plain4Net

CIFAR10 17-17-17-17 94.20 5.72
CIFAR100 16-15-15-15 73.91 29.34
SVHN 12-12-12-11 97.08 0.32
FashionMNIST 13-13-13-13 94.47 0.72
MNIST 13-12-12-12 99.57 0.03

Table 9: The adaptability of AutoGrow to dataset sizes

Basic3ResNet on CIFAR10
dataset size found net accu %

100% 42-42-42 94.27
75% 32-31-31 93.54
50% 17-17-17 91.34
25% 21-12-7 88.18

Basic4ResNet on CIFAR100
dataset size found net accu %

100% 17-51-16-16 79.47
75% 17-17-16-16 77.26
50% 12-12-12-11 72.91
25% 6-6-6-6 62.53

Plain3Net on MNIST
dataset size found net accu %

100% 20-20-20 99.66
75% 12-12-12 99.54
50% 12-11-11 99.46
25% 10-9-9 99.33

Plain4Net on SVHN
dataset size found net accu %

100% 12-12-12-11 97.08
75% 9-9-9-9 96.71
50% 8-8-8-8 96.37
25% 5-5-5-5 95.68

and k is the number of trials per dataset per sub-module
category;

(2) For ResNets, a discovered depth (“ ” in Figure 6) falls at the
location where accuracy saturates. This means AutoGrow
discovers a near-optimal depth: a shallower depth will lose
accuracy while a deeper one gains little. The final accuracy
of AutoGrow is as good as training the discovered net from
scratch as indicated by “∆” in Table 8, indicating that initial-
ization from shallower nets does not hurt training of deeper
nets. As a byproduct, in plain networks, there are large posi-
tive “∆”s in Table 8. It implies that baselines fail to train very
deep plain networks even using Batch Normalization, but
AutoGrow enables the training of these networks; Table 7
shows the accuracy improvement of plain networks by tun-
ing K , approaching the accuracy of ResNets with the same
depth. Figure 5 visualizes loss surfaces around minima by
AutoGrow and baseline. Intuitively, AutoGrow finds wider or
deeper minima with less chaotic landscapes.

(3) For robustness and generalization study purpose, we stick to
K = 3 in our experiments, however, we can tune K to trade
off accuracy and model size. As shown in Figure 6, AutoGrow
discovers smaller DNNs when increasing K from 3 (“ ”)
to 50 (“#”). Interestingly, the accuracy of plain networks
even increases at K = 50. This implies the possibility of

discovering a better accuracy-depth trade-off by tuning K ,
although we stick to K = 3 for generalizability study and it
generalizes well.

(4) In Table 8, AutoGrow discovers different depths under differ-
ent sub-modules. The final accuracy is limited by the sub-
module design, not by our AutoGrow. Given a sub-module
architecture, our AutoGrow can always find a near-optimal
depth.

Finally, our supposition is that: when the size of dataset is smaller,
the optimal depth should be smaller. Under this supposition, we
test the effectiveness of AutoGrow by sampling a subset of dataset
and verify if AutoGrow can discover a shallower depth. Table 9 sum-
marizes the results. In each set of experiments, dataset is randomly
down-sampled to 100%, 75%, 50% and 25%. For a fair comparison,
K is divided by the percentage of dataset such that the number of
mini-batches between growths remains the same. As expected, our
experiments show that AutoGrow adapts to shallower networks
when the datasets are smaller.

3.4 Scaling to ImageNet and Efficiency
In ImageNet, K = 3 should generalize well, but we explore Auto-
Grow with K = 2 and K = 5 to obtain an accuracy-depth trade-off
line for comparison with human experts. The larger K = 5 enables
AutoGrow to obtain a smaller DNN to trade-off accuracy and model



Table 10: Scaling up to ImageNet

net K found net Top-1 Top-5 †∆ Top-1

Basic4ResNet
2 12-12-11-11 76.28 92.79 0.43
5 9-3-6-4 74.75 91.97 0.72

Bottleneck4ResNet
2 6-6-6-17 77.99 93.91 0.83
5 6-7-3-9 77.33 93.65 0.83

Plain4Net
2 6-6-6-6 71.22 90.08 0.70
5 5-5-5-4 70.54 89.76 0.93

† ∆ = (Top-1 of AutoGrow) − (Top-1 of training from scratch)

Table 11: The efficiency of AutoGrow

net GPUs growing fine-tuning

Basic4ResNet-12-12-11-11 4 GTX 1080 Ti 56.7 hours 157.9 hours
Basic4ResNet-9-3-6-4 4 GTX 1080 47.9 hours 65.8 hours

Bottleneck4ResNet-6-6-6-17 4 TITAN V 45.3 hours 114.0 hours
Bottleneck4ResNet-6-7-3-9 4 TITAN V 61.6 hours 78.6 hours

Plain4Net-6-6-6-6 4 GTX 1080 Ti 11.7 hours 29.7 hours
Plain4Net-5-5-5-4 4 GTX 1080 Ti 25.6 hours 25.3 hours
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size (computation) and the smaller K = 2 achieves higher accuracy.
The results are shown in Table 10, which proves that AutoGrow au-
tomatically finds a good depth without any tuning. As a byproduct,
the accuracy is even higher than training the found net from scratch,
indicating that the Periodic Growth in AutoGrow helps training
deeper nets. The comparison of AutoGrow and manual depth de-
sign [12] is in Figure 7, which shows that AutoGrow achieves better
trade-off between accuracy and computation (measured by floating
point operations).

Table 11 summarizes the breakdown of wall-clock time in Au-
toGrow. The growing/searching time is as efficient as (often more
efficient than) fine-tuning the single discovered DNN. The scalabil-
ity of AutoGrow comes from its intrinsic features that (1) it grows
quickly with a short period K and stops immediately if no improve-
ment is sensed; and (2) the network is small at the beginning of
growing. Figure 8 plots the growing and converging curves for two
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Figure 8: The convergence curves and growing pro-
cess on ImageNet for (a) Basic4ResNet-9-3-6-4 and (b)
Plain4Net-6-6-6-6 in Table 11.

DNNs in Table 11. Even with random initialization in new layers,
the accuracy converges stably.

4 RELATEDWORK
Neural Architecture Search (NAS) [42] and neural evolution [1, 22,
26, 30, 34] can search network architectures from a gigantic search
space. In NAS, the depth of DNNs in the search space is fixed,
while AutoGrow learns the depth. Some NAS methods [2, 6, 23]
can find DNNs with different depths, however, the maximum depth
is pre-defined and shallower depths are obtained by padding zero
operations or selecting shallower branches, while our AutoGrow
learns the depth in an open domain to find a minimum depth,
beyond which no accuracy improvement can be obtained. Moreover,
NAS is very computation and memory intensive. To accelerate NAS,
one-shot models [2, 28, 31], DARTS [23] and NAS with Transferable
Cell [21, 43] were proposed. The search time reduces dramatically
but is still long from practical perspective. It is still very challenging



to deploy these methods to larger datasets such as ImageNet. In
contrast, our AutoGrow can scale up to ImageNet thanks to its short
depth learning time, which is as efficient as training a single DNN.

In addition to architecture search which requires to train lots of
DNNs from scratch, there are also many studies on learning neural
structures within a single training. Structure pruning and growing
were proposed for different goals, such as efficient inference [7,
8, 11, 13, 14, 18, 19, 24, 25, 27, 38–40], lifelong learning [41] and
model adaptation [10, 29]. However, those works fixed the network
depth and limited structure learning within the existing layers.
Optimization over a DNN with fixed depth is easier as the skeleton
architecture is known. AutoGrow performs in a scenario where the
DNN depth is unknown hence we must seek for the optimal depth.

5 CONCLUSION
In this paper, we propose a simple but effective layer growing
algorithm (AutoGrow) to automate the depth design of deep neu-
ral networks. We empirically show that AutoGrow can adapt to
different datasets for different layer architectures without tuning
hyper-parameters. AutoGrow can significantly reduce human effort
on searching layer depth. We surprisingly find that a rapid growing
(under a large constant learning rate with random initialization of
new layers) outperforms more intuitively-correct growing method,
such as Network Morphism growing after a shallower net con-
verged. We believe our initiative results can inspire future research
on structure growth of neural networks and related theory.
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