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Abstract—It is common nowadays to architect and design
scaled-out systems with off-the-shelf computing components op-
erated and managed by off-the-shelf open-source tools. While
web services represent the critical set of services offered at scale,
big data analytics is emerging as a preferred service to be co-
located with cloud web services at a lower priority raising the
need for off-the-shelf priority scheduling. In this paper we report
on the perils of Linux priority scheduling tools when used to
differentiate between such complex services. We demonstrate that
simple priority scheduling utilities such as nice and ionice
can result in dramatically erratic behavior. We provide a remedy
by proposing an autonomic priority scheduling algorithm that
adjusts its execution parameters based on on-line measurements
of the current resource usage of critical applications. Detailed
experimentation with a user-space prototype of the algorithm on
a Linux system using popular benchmarks such as SPEC and
TPC-W illustrate the robustness and versatility of the proposed
technique, as it provides consistency to the expected performance
of a high-priority application when running simultaneously with
multiple low priority jobs.

I. INTRODUCTION

Computer systems composed of off-the-shelf hardware
running open-source operating systems are evolving to support
emerging web applications and big data analytics at a large
scale. The goal, exemplified by the Open Compute initiative,
which was started by Facebook but has been widely adopted
by the larger tech community, is to keep down the cost of
very large systems, data, computation, and overall web ser-
vices. While traditional computer systems, particularly those
supporting enterprise applications, have included sophisticated
(and often proprietary) resource management and scheduling
modules, the industry is increasingly turning to commodity
hardware and un-modified software to accomplish large-scale
services and computation.

This trend offers a challenge. Such systems are expected to
run a wide array of web applications alongside significant sup-
port applications ensuring data redundancy and computation to
deliver individualized services to customers. For example, in a
system with tens to hundreds of nodes supporting a web store,
there may be background processes that would need to analyze
the logs collected during the operation of the system, to
generate preferences of the web store users, or even to analyze
failures and generate failure detection, isolation, and handling
rules that are critical in ensuring resilience at scale [1]. In
order to enable systems of the scale proposed in [2], the
system architecture would follow the shared-nothing model [3]
where individual servers (or nodes) operate independently in a
large distributed system while exchanging messages with other
participating servers (or nodes). The individual servers are
expected to be off-the-shelf hardware running general-purpose

operating systems such as Linux, yet still provide enterprise-
grade computing services.

In such systems, the focus is on the ability to locate
important but relatively time-insensitive tasks alongside user-
facing applications where demand fluctuates semi-randomly
and short response time is critical to meeting service level
agreements and maintaining user engagement. This problem,
i.e., prioritizing systems work, is often solved via scheduling
policies at the kernel [4], [5] or at the application level [6],
[7], [8], [9]. In Linux, the most popular commodity operating
system, priority scheduling is achieved through nice and
ionice. Though these are static prioritization tools, dynamic
amount of CPU and memory resources can be allocated to a
given process via renice.

Using the web-driven TPC-W benchmark [10], [11] as
a representative foreground application, we experiment with
a number of background tasks from the SPEC benchmark
suite [12] and also our own microbenchmark. We find that
nice is at best erratic in its ability to isolate the performance
of the high priority, time-sensitive application from the low
priority time-insensitive background work in the system. We
also explore the effect of adding ionice prioritization to the
background processes, which helps background jobs that re-
quire significant memory resources, but can seriously damage
effectiveness in CPU-intensive cases.

To address the limitations of off-the-shelf prioritization
tools like nice and ionice, we develop smart, a portable
tool which runs in user-space and observes the behavior of the
foreground task in order to calculate reasonable parameters
for suspending and resuming background work. Extensive
experimentation shows that smart effectively utilizes system
resources by scheduling background jobs only when these
resources are lightly utilized by high priority processes. Ad-
ditionally, smart better isolates the foreground performance
than nice or nice plus ionice, as well as doing so
more consistently than either of those off-the-shelf options.
Thus, smart can be seen as a more intelligent tool that can
effectively differentiate the level of service received by high
and low priority processes, independent of the complexity of
competing workloads.

The rest of the paper is organized as follows. In Sec-
tion II, we provide results from characterizing the behavior
of nice under several scenarios. Section III develops a new
prioritization scheme which determines when and for how long
to schedule the low priority processes according to the CPU
utilization in the system. The new framework is evaluated via
extended experiments in Section IV. We conclude the paper
and summarize future work in Section VI.
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II. BACKGROUND AND MOTIVATION

Proprietary systems often have their own scheduling algo-
rithms that allow them to maintain performance of user work-
load while other lower priority jobs are running in the back-
ground. The available off-the-shelf tools for priority scheduling
in any Unix-based system are nice, which prioritizes access
to the CPU resource, and ionice, which prioritizes access
to the disk resource. While different distributions of Unix
have different implementations of nice and ionice, they
operate similarly: when enabled, they allow users to adjust the
execution priority of processes.

A process that is invoked via nice can have a scheduling
priority between -20 (the highest priority) and 19 (the lowest
priority), as determined by a single parameter in the nice
command. If the priority parameter of nice is set to zero or
the process is invoked without the nice command then the
process is run with the default (i.e., normal) priority. nice
uses the priority parameter to determine the chunk of CPU time
for a specific process, i.e., the higher the priority the larger
the chunk of CPU time the process gets. The exact relation
between the nice parameter and the amount of CPU time
dedicated to a process are implementation dependent and vary
between Unix/Linux distributions. The mechanism is generally
simple to use and depends on fine-grained CPU consumption.

Similarly, ionice allows ranking the priority of a process
from 0 to 3, where 3 is meant to designate a process that should
be given IO resources only when the IO system is otherwise
idle. A user may select to invoke both nice and ionice. In
our experiments, we combine nice 19 with ionice 3 to
give the lowest priority setting for both resources, which we
label “allnice”.

Independent of which resource the nice or ionice
tool try to prioritize, they differentiate concurrent jobs by
giving them a different time share on the resource. The time
share depends on the total demands of all concurrent jobs,
irrespective of their priority. Consequently, higher priority jobs
receive their proportional share of the available resource rather
than their own absolute demand. Thus, differentiating via
nice or ionice, which operates at the kernel-level and in
fine-grain time scales, may result in fluctuating performance
for higher priority jobs especially if their resource demands
fluctuate across time or high demands in multiple resources.
Isolating the performance of high priority jobs under such
conditions becomes challenging.

To illustrate the ineffectiveness of nice and ionice
in preserving performance of high priority processes, we
measure the slowdown of a high priority workload (“fore-
ground”) when executed concurrently with a low priority
(“background”) workload. All workloads are selected from
the SPEC benchmark suite [12], see Section IV-A for a
detailed description of the experimental setup. The foreground
benchmark is scheduled using the default priority in the OS
scheduler (i.e., corresponding to the value 0 of the nice
priority parameter), while the background job is executed with
nice with parameters ranging from 0 to 19 and also “allnice”,
i.e., with the lowest CPU and IO priority. The execution time
of the foreground job is our target performance measure.

We show two scenarios in Figure 1, i.e., one where allnice
works as expected (left graph), and one where nice and
ionice fail (right graph). In both graphs, the x-axis illus-
trates the “amount” of the background work that is executed
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Fig. 1. Foreground performance with 2 and 4 background jobs (all jobs are
SPEC benchmarks). For each experiment, the background job runs with default
priority (no nice, baseline case), with nice 19, 10, 0, -20, and “allnice”
(i.e., nice 19 and ionice 3).

concurrently with the foreground job, i.e., no background, 2,
and 4 concurrent background instances. In the left graph, SPEC
hmmer is the foreground job and SPEC libquantum is the
background one. In this experiment, nice and ionice are
effective in isolating the performance of the foreground work-
load independent of the amount of background work in the
system. Specifically, the baseline case (where the background
job is scheduled without nice) achieves the same foreground
performance as when the background job is scheduled with
nice 0, as expected. Experiments where libquantum is
scheduled with nice 10 and nice 19 maintain the perfor-
mance of hmmer at the same level as without any background
job. When libquantum is scheduled with priority -20, then
indeed its priority is higher than that of hmmer and as a result
hmmer suffers from significant performance slowdown.

The right graph of Figure 1 shows a very different behavior.
Here, the performance trends of the foreground job become
clearly unpredictable and does not follow the relative priority
set by nice. In some cases any priority parameter (even -
20) works better for the foreground job (see the second bar
from right in the graph with 4 bzip2 as background jobs).
With “allnice”, foreground performance improves but gcc still
suffers from unexpected delays.

The results in Figure 1 corroborate that nice does not
isolate performance of high priority jobs in the presence of
memory and IO demands from the background jobs. The
problem persists even with the added boost of ionice. A
straightforward approach to remedy this problem is to limit
the impact of background jobs on foreground performance
by slowing down the background jobs in periods of CPU
contention only, by suspending their execution periodically
during those times.

To give a first proof-of-concept that intelligent suspending
of the background will work, we conduct a controlled experi-
ment where the foreground workload is TPC-W [10], a web-
service benchmark that has significant variability across time
in its CPU and memory demands [13] and background work
consists of 2 and 8 simultaneous executions of hmmer from the
SPEC suite. In these experiments, we deliberately control the
demands of TPC-W on the various resources by changing the
number of its emulated browsers such that we know a priori
when TPC-W’s resource demands are high or low. Figure 2
plots the CDH (Cumulative Distribution Histogram) of TPC-
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Fig. 2. Performance comparison for periodic suspending of the background jobs according to a prior known foreground behavior.

W’s transaction response time, the overall average response
time of the TPC-W transactions, and the CPU share that is
allocated to the background job. We report on four different
ways of handling the background work: 1) invoking it with the
default OS priority, (i.e., without nice or ionice, this is the
baseline case), 2) invoking it using nice 19 (the lowest CPU
priority; we label this “nice”), 3) invoking it using nice 19
and ionice 3 (the lowest CPU and IO priority; we label this
”allnice“), and 4) suspend the execution of background job in
periods of high CPU utilization (which are known a priori; we
label this “suspend”). As a reference, the TPC-W response time
with no background job is also reported. We observe that nice
is very ineffective for both experiments (see the two rows of
graphs in Figure 2, the top representing a light background
workload of 2 hmmers and the bottom representing a heavy
background workload of 8 hmmers). “allnice” improves TPC-
W’s performance compared to nice but suspend is steadily
a better option. Remarkably, it improves TPC-W’s performance
while not starving the background job, see the rightmost col-
umn of background utilization graphs. These results motivate
us to develop a smart scheduler that can remedy the pitfalls of
nice and ionice while also being lightweight and easy to
use.

III. METHODOLOGY

Parameter Description
UTILuser FG CPU util during the last Monitoring Window
UTILnoBG long term average FG CPU util, run in isolation
UTILwBG long term average FG CPU util, run with BG
BWnoBG Bursty Window size of FG CPU util, run in isolation
BWwBG Bursty Window size of FG CPU util, run with BG
BGstatus BG status, active or suspend

TABLE I. SUMMARY OF THE PARAMETERS IN ALGORITHM.

As discussed in Section II, when CPU increases and there
is contention among processes to utilize the resource, nice
scales down the share of all processes according to their
priorities. In a system where low priority jobs are treated as
best-effort processes rather than requiring steady but limited

resources, the performance of high priority jobs can be signif-
icantly improved by allowing the background jobs to utilize
the CPU only during periods when the high priority processes
are not requesting a large portion of the resource.

As clarification, we illustrate how the foreground work-
load, TPC-W, uses the CPU across time, see Figure 4. The
CPU utilization and corresponding TPC-W response times
are shown across time. In the top graph, TPC-W executes in
isolation, i.e., there is no background work other than system
processes. We can see that there are lulls, when TPC-W is not
demanding much CPU time, these periods correspond to low
TPC-W response times. These are the time periods where it
would be most beneficial to schedule the background work.
In the second graph, we see the behavior of TPC-W with 2
simultaneous executions of hmmer, the graph corresponds to
the default priorities, i.e., the baseline experiment. Here, we
see the dramatic effect of uncontrolled executions of hmmer
on TPC-W’s response time. In addition, the change trends of
CPU utilization and response times suggests that monitoring
the CPU utilization is a good choice for our purpose.

Our proposed algorithm, smart, aspires to schedule back-
ground/lower priority jobs only during low-demand time peri-
ods when the background jobs are not going to damage the
responsiveness of the high priority jobs. When foreground
jobs have high CPU demands, smart chooses to suspend the
background jobs rather than allow the built-in scheduler to
scale back all running processes to fit the available resources.

The smart scheduling algorithm observes the behavior of
the foreground process to determine what level of CPU demand
constitutes “high” activity for that process and how long the
periods of high activity last. This allows smart to determine
when to suspend the low priority processes and for how long to
keep them suspended before checking the foreground demand
again. The main premise of this scheduling algorithm is that
the foreground job is expected to be an interactive application,
having periodic bursts of demand punctuated by periods of
low usage. Furthermore, we take response time to be the best
measure of the foreground’s performance, due to the interactive
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nature of the application. By scheduling background work
during the lulls in foreground activity and suspending them
during the peaks, we can protect the responsiveness of the
foreground job while serving background work at the most
opportune times.

The algorithm monitors the foreground job both while it
runs alone and while it runs with the background work. From
the data collected, smart “learns” the stochastic characteris-
tics of the foreground resource demands. Specifically, smart
monitors the CPU utilization at 10 second intervals and at
the end of the observation period, categorizes each interval
as being either of high utilization or low utilization, based
on the average observed utilization during the period. Finally,
smart uses the collected information to determine the average
window length of consecutive high utilization intervals, which
we term Bursty Window (BW ) length.

When smart is in active scheduling mode, it continues
to monitor the foreground process at 10 second intervals as
long as the background jobs are running. When an interval
of higher than average utilization is detected, the background
processes are suspended for a BW amount of time. After
BW time elapses, smart checks the foreground utilization
again and resumes the background processes only if CPU
utilization is below the average value. Otherwise, smart
keeps the background jobs suspended for another BW period.
The scheduling decisions made by smart are based on the
appropriate average utilization and BW lengths for the current
system state.

1. if system in characterization state do
collect utilization information to calculate
UTILnoBG, UTILwBG, BWnoBG and BWwBG.

2. if system in scheduling state do
a. if BGstatus = suspend

i. if UTILuser < UTILnoBG

resume BG work
BGstatus = active
wait Monitoring Window

ii. else if UTILuser >= UTILnoBG

wait BWnoBG

iii.go to Step 2.a
b. else if BGstatus = active

i. if UTILuser < UTILwBG

wait Monitoring Window
ii. else if UTILuser >= UTILwBG

suspend BG work
BGstatus = suspend
wait BWwBG

iii.go to Step 2.a
3. if detect system change events (e.g., new application

added, system upgrade, system failure, etc.)
go to Step 1

Fig. 3. The algorithm of smart scheduling.

A summary of the main parameters used in smart is given
in Table I. All parameters labeled as noBG correspond to
measurements with no active background jobs, while wBG

corresponds to measurements with active background work.
The algorithm itself is given in Figure 3. We emphasize that
the CPU utilization patterns may change over the time and
keep on updating the scheduling parameters can reflect these
changes, as described in the Step 3 in the algorithm, such
update can be event driven or periodical.

Finally, the monitoring and suspending/resuming tools re-
quired by the algorithm are handy in the Linux system, so
the algorithm is lightweight and can be implemented and
deployed in the user space easily, please see experiment setup
for more details about the prototype we implemented. By
using the system tools, the overhead of the algorithm is almost
negligible.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed scheduling algo-
rithm. First we give an overview of the experimental setup and
then we outline and discuss our results.

A. Experimental Setup

All experiments presented in this paper are conducted on
a Dell Precision WorkStation with Intel Pentium Dual Core
2.4GHz processor, 1GB memory, Seagate 7.2K SATA hard
drives, running openSUSE 11.4 (64 bit). As foreground work-
load, we use a Java implementation of the TPC-W benchmark.
As background, we use benchmarks from the SPEC CPU2006
suite and our own microbenchmark.

TPC-W is a web server and database performance bench-
mark. The Java implementation that we use in this paper is
developed from the distribution by the University of Wisconsin
- Madison[14]. We use tomcat as the web server and mysql
as the database server. TPC-W provides a large number of pa-
rameters. We use the browsing mix with 50 emulated browsers
and 100000 items in the database. TPC-W is a challenging
workload for our purposes here because it is characterized by
continuous variability in its resource demands across time [11],
as also shown in Figure 4.

SPEC CPU2006 is an industry-standard, CPU-intensive
benchmark suite [12]. SPEC CPU2006 is composed from a
series of real-world applications designed to stress CPU and
memory usage. The five workloads from SPEC we use here are
the following: bzip2 performs compression, decompression,
and checking against the original at several compression scales
for sample input. The SPEC version of the bzip2 algorithm
prevents any IO beyond the initial read of the input so as
to make this benchmark CPU and memory intensive with
very little IO activity. gcc performs optimized compilation
of a large sample program, with a slight alteration to the gcc
algorithm to force more memory usage than would be typical
of the real-world gcc compiler. hmmer performs searching and
ranking of sequence matches in a database, simulating gene
sequence matching. libquantum simulates factorization as
it would be performed on a quantum computer. povray is a
ray-tracer that simulates the way rays of light travel in a scene.
For a fair comparison, when the SPEC benchmark is used as
background workload, we repeat its execution so that it ends
at the same time with TPC-W.

We also wrote our own microbenchmark to run as back-
ground work. Most importantly, this allows us to get precise
metrics for the behavior of the background task under smart
and the comparison methods. Additionally, the microbench-
mark allows us to experiment with a broader range of CPU,
memory, and IO demands from the background task. In the
results reported here, the microbenchmark steadily consumed
approximately 25% of the system’s total CPU resource and
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Fig. 4. TPC-W utilization and response time across time without background work and under 2 hmmer bookmarks as background work.

20% of memory capacity 1. This is accomplished simply by
performing multiplications in a tight loop which is embedded
in a larger loop containing array initialization and file writes.

B. Implementation

In order to provide a simple and easily portable im-
plementation, our monitoring and scheduling algorithms are
implemented entirely in user space, making use of the readily
available Linux commands (e.g., pidstat and kill). For
monitoring, we launch a shell script to call classifying the
results into three main categories: foreground (TPC-W-related)
processes, background (SPEC-related or microbenchmark)
processes, and other system processes. The coarse granularity
of our intervals is quite different from what is generally seen
in scheduling algorithms in the literature, where measurements
and decisions are made at the microsecond level. The long
intervals are actually a benefit to our method, since we are
performing a predictive analysis of trends. Th monitoring
interval here 10 seconds for the purpose of balancing overhead
and accuracy.

To control the execution of the background work, we use
the STOP and CONT signals and pass them to process by
the kill command to “pause” and “resume” the background
task execution. The process is suspended by being starved
of resources, but because it is not actually killed, it can be
immediately resumed from where it is paused.

C. Results

To thoroughly evaluate the performance of smart, we
run TPC-W as the foreground task with a variety of SPEC
benchmarks and our own microbenchmark as background
tasks. In Figures 6, 7, and 8, we report key performance
metrics from each experiment in order to compare the smart
algorithm to four existing possibilities. As an upper bound, we
take the case where TPC-W runs alone with no background
tasks. As a lower bound, the “baseline” case is where TPC-
W and the background tasks run together with no attempt to
control their behavior. We also include two competitors to the
smart algorithm: the case where the background task runs

1we also experiment with different CPU, memory and IO demands set-
tings for the microbenchmark, but due to the interest of space and similar
observations, we only show one case here as an example.

under lowest nice priority and the “‘allnice” case, where the
background runs with both lowest nice priority and lowest
ionice priority.

To evaluate the performance of the foreground tasks, we
focus on the CDH of the TPC-W response times, which is
the best measure of perceived responsiveness for an interactive
application. The horizontal axis shows response time lengths in
milliseconds, while the vertical axis shows probability. Thus, if
the curve intersects the point (500, 0.80), this means that 80%
of the observed response times were 500 ms or less in that
experiment. So, the more quickly the curve rises initially and
the more tightly it makes the knee bend toward the asymptote
of 1, the better the foreground performance the users perceive.

First, we conduct experiments to show the importance
of “when” to initiate the suspension of background work.
In this experiment, we also report results with a periodic
suspension of the background job (labeled “suspend”). Note
that in this experiment we assume no a priori knowledge of the
foreground workload demands, i.e., the experiment is not the
same as in Figure 2 where perfect future workload knowledge
was assumed. Figure 5 illustrates than when compared to
the periodic suspension, which is completely oblivious of
the variability in resource demands of the foreground work,
smart improves response time for the foreground task without
further reducing the CPU time given to the background task.
Indeed, in the 2 hmmer case, smart actually increases the
resources given to the background (see the utilization graphs),
without hurting the performance of TPC-W. We can conclude
that the smart strategy is an improvement over the periodic
sleep strategy.

Observation 1: The smart implementation improves fore-
ground performance and sometimes also background perfor-
mance better than periodically throttling the background tasks.

We show the results of TPC-W run with our microbench-
mark as background in Figure 6. We can see that smart is
able to significantly improve the response time for TPC-W,
e.g., up to 60% less compared to nice, while at a relatively
low expense of slowing down the background task, as can be
seen in the BG iterations and BG utilization graphs in the
third and fourth rows. Furthermore, the smart algorithm is
less susceptible to degrading the foreground response time in
the presence of a larger number of background processes than
the other methods.
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Fig. 5. Performance comparison between suspend, smart and other methods.

Observation 2: The smart implementation is a significant
improvement over off-the-shelf methods, especially in cases of
memory contention.

For the rest of our experiments, we report only the
utilization given to the background task because the SPEC
benchmarks take too long to complete to be able to use the
number of iterations as a useful metric. As expected and shown
in the microbenchmark results in Figure 6, the amount of
utilization given to the background task closely aligns with
the number of complete iterations.

Figure 7 shows results for two instances of SPEC back-
ground tasks running with TPC-W. It is easy to see that for
the gcc and bzip2 background cases, the smart algorithm
bends the response time CDH very close to the ideal case of no
background work, significantly improving this key metric over
the result achieved by nice, which actually performs worse
than the expected lower bound baseline case, or “allnice”,
which does little better than the lower bound. We note that
smart makes this dramatic improvement in the foreground
response time while giving the background task approximately
the same, admittedly small, CPU share as “allnice”.

In the case of povray as shown in Figure 7, smart
still improves the response time of the foreground, but not as
dramatically. Compared to the gcc and bzip2 cases, there
is simply less room for improvement between the lower and
upper bounds. This is because povray is a CPU-intensive
benchmark with relatively less IO and memory activities,
which plays to the strengths of the built-in schedulers. It is
worth noting, however, that smart also gives a small boost to
the background performance while improving the foreground
performance.

Observation 3: The smart implementation has the poten-
tial to produce a win/win situation, where both the foreground
and background performance benefit over the built-in priority
methods.

In Figure 8, we report analogous results for experiments
with 8 instances of the background task running. These results

show a much bigger spread between the upper and lower
bounds for all three cases, more like the 2 bzip2 case. This
is because as multiple instances run together, the lower IO and
memory usage of the povray benchmark add up and start to
become an issue. As the graphs show, the smart algorithm
performs solidly well in all three cases, in contrast to nice,
which falls near the baseline in all cases, and “allnice”, which
consistently lies below smart. Additionally, we note that in
these cases smart is able to achieve its stronger protection of
the foreground without penalizing the background more than
“allnice”.

Realistically, no systems administrator would attempt to
run this level of background demand on a server whose
response time mattered. However, smart clearly handles
this kind of poor judgment better than the built-in priority
mechanisms do.

Observation 4: The smart implementation is robust in the
face of unreasonably heavy amounts of attempted background
work.

Finally, we examine the behavior of the smart algorithm
across time in the graphs shown in Figure 9. Here, the top
graph shows the lighter background load of 2 hmmer instances
and the bottom graph shows the heavier 8 hmmer load. We
can see that length of suspend periods has increased when
the background load is heavier and that this is providing the
necessary extra protection to the foreground task.

Observation 5: The smart implementation correctly
learns the behavior of the foreground task and permits the
background tasks to run in a complementary manner.

To further evaluate and improve smart, we plan to experi-
ment with less regular background work, especially less regular
memory and IO access patterns. We also plan to work with
multiple targets that can also provide throughput or completion
deadline protection for background work. There may be more
complex workload that can not be well-served by smart’s
reliance on the average CPU utilization of the foreground task
as the key threshold for scheduling decisions. In that case, we
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Fig. 6. Performance results for microbenchmark as background.

plan to add more scheduling parameters by capturing more
sophisticated statistical information to make our scheduling
framework even more intelligent and robust.

V. RELATED WORK

In this paper we have presented an implemented approach
to protect the response time of a high-priority task which
has bursty behavior that cannot be matched to a predictable
schedule but nevertheless can be statistically characterized in
some useful ways. This is quite different from traditional
work on real-time scheduling disciplines, which is heavily
focused on strictly or semi-strictly predictable periodic tasks,
such as media players, and which generally require kernel
modification, changes to application code in order to take
advantage of the system, and keeping track of specific deadline
information for every task [6], [7], [8].

We also differ from works such as [4], which look to
provide kernel support for differentiating Quality of Service

for individual customers. We are focused on preventing back-
ground tasks on the server from interfering with any response-
time-sensitive tasks rather than on separating tasks requiring
different QoS. Indeed, our course-grained predictive approach
to background task management could be combined with QoS
differentiation schemes by using different thresholds to protect
higher QoS processes more than lower.

Recent scheduling research has often focused on the partic-
ular problems of scheduling jobs on multicore machines and
computing clusters [15], [16]. When priority schedulers are
considered, it is generally with the intention of improving their
fairness or maintaining fairness when adapting a scheduler
to more complex circumstances [16], [17]. The individual
characteristics of particular tasks are often taken into account
for scheduling purposes, for instance to save energy during
periods of low utilization [18] or to spread out intensive tasks
to prevent thermal damage to a machine [19]. In some cases the
non-linear interaction of different co-located jobs is taken into
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Fig. 7. Performance results for 2 SPEC benchmarks as background tasks.

account [20]. In this work, we look to use as much of the spare
capacity as possible for time-insensitive background tasks, as
in the case of a server handling the continuous and bursty
workload of foreground user traffic while also intending to
perform replication, integrity checking, data analysis, or other
work [21], [22].

Virtual machines can also be used to isolate high priority
tasks [5]. However, this approach requires significant overhead
to manage, monitor, and adjust resource allocation to the
different virtual machines. Our approach is less expensive,
simpler to use, and does not require the deployment of any
additional software.

Priority-based schedulers are wide-spread and intuitive, but
it is well-known that they cannot strongly protect a high-
priority foreground task, especially in the case of numerous
background tasks, because they never starve the background
tasks [23], [24]. We have found that under certain circum-
stances, the behavior of Linux nice can be quite unpre-
dictable, sometimes with worse foreground performance when
background processes are given the lowest nice priority than
when nice is not used at all.

There are a variety of approaches to address this problem
in the literature, though differing in both approach and ultimate
goals from our own. Cucinotta et. al. focus on meeting accept-
able throughput for ”soft real-time” applications, specifically
media streaming, which has a range of acceptable frame rates
from ideal to tolerable for brief periods [25]. To do this, they
take a signal processing approach to characterize the activ-

ity periodicity behavior of the blackbox legacy applications
they are attempting to control, and use the results to budget
resources for each application. Their implementation requires
kernel modification and does not explicitly stop low priority
background tasks in order to better protect foreground tasks,
as ours does. Meehean et. al. propose a very flexible system
which requires kernel modification and demonstrate a scenario
similar to ours [26].

Other researchers have focused on the progress rate of
applications to determine appropriate resource sharing between
them [27], [28]. Ferguson et. al. describe a weighted fair-
sharing system that uses the progress rate to effectively bal-
ance between jobs with specific deadlines of varying impor-
tance [28]. Douceur and Bolosky share our goal more clearly,
identifying very low priority tasks that should not be allowed
to impact the foreground task [27]. To determine whether
the background task should be run or temporarily stopped,
they monitor the progress rate of the background applications,
assuming that when the progress rate falls below a particular
threshold, it must be because of foreground process contention
for shared resources. The background tasks are then stopped
for a window of time, then tried again. Inspired by the TCP
congestion control mechanism, the sleep window increases
exponentially as resource contention is repeatedly observed.
These approaches work well, but require a way to monitor the
progress rate of background applications, by the application
themselves reporting an application-specific measure during
execution or by a test run paired with detailed information
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Fig. 8. Performance results for 8 SPEC benchmarks as background tasks.
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Fig. 9. TPC-W utilization and background status across time under the smart algorithm.

about the job.

Also closely related to our work, Abe et. al. consider
distributed computing projects like SETI@home, which allow
individuals to donate computing time to scientific calculations
when their computer is otherwise idle [23]. Similar to our
work, Abe et. al. find built-in priority scheduling insufficient
to protect foreground performance and choose to turn off
background processing when the system detects resource con-
tention with foreground processes. Similar to systems focused
on background task progress rate mentioned above, Abe et.

al. monitor the background process to detect this contention
and apply an exponential back off to reduce the impact on
the foreground. Instead of attempting to measure the progress
of the background tasks, however, they monitor the share of
resources given to the background process. If the share drops,
they assume that the foreground processes are now demand-
ing more resources and could benefit from the background
dropping altogether. In contrast, we focus on the behavior of
the foreground task, looking for the best periods in which to
perform background work. We also include a learning phase,
in which we characterize the statistical distribution of the fore-
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ground traffic’s busy periods to determine the optimal periods
to suspend the background job execution. This additionally
allows our monitoring intervals to be much longer than most
of other approaches, which reduces the overhead of smart
and allows it to function entirely in the user space without
special kernel modification.

To sum up, smart scheduling differs from all the above
work in that it does not require changing the kernel or depend
on complex software. It does not require making changes to
the foreground application or its processes, it can be even
deployed without interrupting the current services. Therefore,
it is lightweight, portable and flexible.

VI. CONCLUSIONS

Scheduling high-priority jobs together with low-priority
ones in off-the-shelf systems using nice and ionice, a
standard non-proprietary software that is available with any
Unix-based distribution, can be erratic, often resulting in severe
performance inconsistencies, especially when the resource
consumption of the high priority job is not constant across
time and when all jobs compete for more resources than just
the CPU. To remedy this, we present smart, a new algorithm
for improving the performance inconsistencies of nice and
ionice, which bases its operation on restricting the resource
consumption of background tasks when necessary, such that
service differentiation across jobs with different priorities is
consistent. smart is based on online monitoring of the CPU
consumption of the foreground job and on observing differ-
ences between the average CPU utilization of the high-priority
job versus the utilization observed within a short time window.
Based on these differences, best-effort jobs are suspended and
restarted.

smart is effective for high-priority workloads that are
resource-hungry with a periodic or bursty pattern, but some-
times at the detriment of the low priority jobs, i.e., the
throughput or completion times of low priority jobs is not part
of the algorithm. Our on-going work focuses on addressing
this by providing multiple targets in terms of different perfor-
mance metrics (e.g., throughput versus response times versus
completion deadlines) and different jobs (e.g., both high and
low priority ones). Furthermore, a more intelligent and robust
algorithm will be developed by capturing and taking advantage
of more sophisticated statistical information.
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