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Abstract—To offer diverse computing capabilities, the emer-
gent modern system on a chip (SoC) might include heteroge-
neous multi-core processors. The current SoC design is ofie
constrained by a given power budget that forces designers to
consider different decision trade-offs, e.g., to choose tweeen
many slow cores, fewer faster cores, or to select a combinati
of them. In this work, we design a new Hadoop scheduler, calie
DyScale, that exploits capabilities offered by heterogermels cores
for achieving a variety of performance objectives. Our prelm-
inary performance evaluation results confirm potential berefits
of heterogeneous multi-core processors for “faster” procssing
of the small, interactive MapReduce jobs, while at the same
time offering an improved throughput and performance for large,
batch job processing.

I. INTRODUCTION

from the “scale-up” approach, where the tasks comprisicf su
jobs can be executed in “faster” resources.

Using heterogeneous multi-core processor to improve per-
formance has been well studied [5], [3], [8], [14], [9], [15]
However, the earlier papers focus on a single machine emviro
ment while Hadoop is a distributed framework and needs to
manage a cluster environment. Thus, it is difficult to apply t
traditional techniques for a Hadoop framework. In additive
aim to support different performance objectives for differ
classes of Hadoop jobs, and it requires an exact control of
running different types of slots in different cores, so teagral
dynamical thread to core mapping is not suitable here.

Job scheduling in Hadoop is performed by a master node
called the JobTracker, which manages a number of worker

One of the new trends in the emergent modern system Ofpdes in the cluster. Each worker node in the cluster is
a chip (SoC) is to include heterogeneous cores for offeringonfigured with a fixed number of map and reduce slots, and
a variety of computing capabilities. The current SoC desigithese slots are managed by the local TaskTracker. The worker
is often constrained by a given power budget that forcesaskTracker periodically connects to the master JobTracke

designers to consider different decision trade-offs,, elg.

report current status and the available slots. The Job@&rack

choose between many slow, power-efficient cores, feweerfast decides the next job to execute based on the reported infor-
cores (which consume more power per core), or to select gation and according to a scheduling policy. The popular job
combination of them. Intuitively, an application that need schedulers include FIFO, Hadoop Fair scheduler (HFS) [21],
to support a higher throughput and that can distribute itsand Capacity scheduler [2]. In the case of Hadoop deployment
load across many cores will favor a choice of many slowon heterogeneous servers [22], [10], [11], [20], one has to
cores, while the completion time sensitive applicationthwi deal with data locality issues and balancing the data placém
performance goals will benefit from fewer, faster cores [13] according to the server capabilities as presented in tHeear

A SoC design with heterogeneous multi-core processorstmighyork cited above. One of the biggest advantages of Hadoop
offer the best of both worlds for appllcatlons that can take a dep|0yed with heterogeneous processors is that tastand

advantage of these heterogeneous processing capabilities

MapReduce [6] and its open source implementatio
Hadoop offer a scalable and fault-tolerant framework for

slow slots have a similar access to the underlying HDFS data

nthat eliminates the data locality issues.

In this work, we outline design of a new Hadoop scheduler,

processing large data sets. MapReduce jobs are autorhaticata|led DyScale, that exploits capabilities offered by hege-

parallelized, distributed, and executed on a large cluster

neous multi-core processors for achieving a variety of per-

commodity machines. Originally, Hadoop was designed fokormance objectives. It enables creating virtual resopmes

batch-oriented processing of large production jobs. Tlagse
plications belong to a class of so-called scale-out apiptins.

based on the core types for multi-class priority schedubltig
describe new mechanisms for enabling the “slow” and “fast”

Traditionally, a simple rule of thumb (applied by the Hadoops|ots in Hadoop and creating the corresponding virtuatehss
users) states [19] that the completion time of a MapReduce

job can be reduced twice by processing this job on the double There is a list of interestingpportunitiesfor MapReduce
size Hadoop cluster. This rule applies to the large MapReducprocessing offered by the heterogeneous processor d&sigin.
jobs that need to process large datasets and that consist ob#all, both fast and slow Hadoop slots have a similar access
large number of map (reduce) tasks. Thus, efficient proegssi to the underlying HDFS data. This eliminates the data locali
of such jobs is “throughput-oriented” and can be signifigant issues that could make the heterogeneous Hadoop clusters

improved with additional (scale-out) resources.

comprised of thefast and slow servers being inefficient [1].
Therefore, any dataset can be processed by eifwror

However, when multiple users are sharing the same Hadoa@o\y virtual resource pools, or their combination. Second,

cluster, additionally, there are many interactive ad-hoerges

the task (job) migration between slow and fast cores enables

and small MapReduce jobs that are completion time sensitivenpanced performance guarantees and more efficient resourc
For improving the execution time of small MapReduce jobs,se. Among thechallengesis the increased complexity of

one cannot use the scale-out approach, but rather can benginagement , e.g., how to dynamically partition the resesirc
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for different workloads and track such changes. Since rlot al



applications benefit the same from using fast cores, there is e maintain the mapping information between a task and
obvious trade-offs between performance and efficiency. the assigned slot type.

Our preliminary performance evaluation results demon-TaskTracker always starts a new JVM for each task instafce (i
strate the efficiency and robustness of the proposed frankewo the JVM reuse feature in Hadoop is disabled). It is done for a
Within the same power budget, the DyScale scheduler thagason that the JVM failure does not impact other tasks @ tak
operates over the heterogeneous multi-core processarisipso  down the TaskTracker. Running a task on a specific core can
a much better performance for small, interactive jobs caegha be achieved by binding the JVM to that core. We useGReJ
to using homogeneous processors with (many) slow cores. Affinity to implement this feature. By setting the CPU affinity,
the same time, DyScale running with heterogeneous multia process can be bounded to one or a set of cores. TaskTracker
core processors preserves a good performance of large bateflls spawnNewJvrslass to spawn JVM in a new thread. The
jobs compared to using a homogeneous fast core desigaPU affinity can be specified during the spawn to force the
(with a fewer cores) that results in a significant perforneanc JVM to run on the desired core (e.g., fast or slow).

degradation. Thus, the heterogeneous multi-core proesso  aqgitional advantage of using the CPU affinity is that it
offer a sweet spot for efficient processing of MapReduce joly,, e changed during the runtim@herefore, if the JVM
with different performance objectives. The remainder of th reuse feature is enabled (note that the JVM reuse can be

paper presents our results in more detail. enabled only for the tasks of the same job), the task can be
II. FRAMEWORK DESIGN placed on a desired core by changing the CPU affinity of the
: : : : JVM. The mapping information between tasks and cores can

In this section, we outline a new Hadoop scheduling frameie maintained by recordin@sk 1D, JVM_pid, core id) in the

m%%_g%gcglr%’cévsg'grs C]%? &ﬁallglsr;%Cléseprtgceeshsei;egro%\elgeﬁru askTracker table. So when a task finishes, the TaskTracker
introduce the basic features of DyScale scheduler and tieen w nows whether the released slot is a fast slot or a slow slot.

talk about the enhanced feature of handling spare resaurces The JobTracker also needs to know whether the available

DyScale scheduler offers the capability of scheduling job§0t is a slow or fast slot to make resource allocation denisi

according to their performance objectives and the resource; ™~ :
preference. Such feature is offered by partitioning désfer hich is essentially RPC (Remote Procedure Call) between

resources into different dedicated virtual resource peaish TaskTracker at a worker and JobTracker at the master node.

with its own Job Queue. For example, as shown in Figure 1, TaskTracker asks the JobTracker for a new task when the

fast slots (running on fast cores) can be grouped into thealir  currently running tasks are below the configured maximum

Fast (vFast) resource pool for serving the Interactive JobU®  allowed number of map/reduce tasks through a boolean pa-

and the slow slots (running on slow cores) can be grouped aameteraskForNewTasklIf the TaskTracker can accept new

the Virtual Slow (vSlow) resource pool for serving the Batchtask, JobTracker calls the Hadoop Scheduler for a decision t

Jothueue. A userbcan submitk;[he small, éinge-fsensitive joba('jssign a task to this TaskTracker (to this worker node).

to the Interactive Job Queue to be executed by fast cores, an

the large throughput-oriented jobs to the Batch Job Quene fo, 1he Scheduler checkBaskTrackerStatu® know whether

processing by (many) slow cores. the available slots are Map or Reduce slots. In the DyScale
case, the Scheduler additionally needs to distinguish lifte s

Interactive Job Batch Job type (i.e., slow or fast slot). There are four types of sld}s:
Job Queve Level el | | Yarlae fast map slotji) slow map slotjii) fast reduce slot, aniV)
el slow reduce slot.

In the DyScale framework, the Scheduler checks the

“Fsst Pool vSlow Pool JobQueuebased on the slot type, e.g., if the available slot

yScale communicates this information through tieartbeat

Virtual Dedicated aes SRR L is a fast slot, then this slot belongs to vFast pool, and the
Resource Pool Level T — i data InteractiveJobQueuis selected for a job/task allocation. After
(bl Selecting theJobQueuegit takes the first job in the queue and
; allocates the available slot.
G ESE (e (guas gees There could be different policies for ordering the jobs
Sess Bsss Bess Bass inside theJobQueues well as different slot allocation policies.
Node1 Node2 Node3 Noded4 The default policy is FIFO. However, in a general case, the

job ordering/resource allocation depends on the perfocaman
objectives and can be defined by either Hadoop Fair Scheduler
(HFS) [21], or the ARIA SLO-driven scheduler [17], etc..

The JobTracker then puts a list of current actions, such as

The attractive part of such virtual resource pool arrange;  ncH TASK ’
i i i , (or KILL_TASK), etc., in the TaskTracker-
ment is that itpreserves data localitpecause both the fast , i Tlistio tell tr(1e Task'l'_racker)what to do next througk th

Hadoop Cluster

Fig. 1. Virtual Resource Pools.

and slow slots have the same data access to the datas

stored in the underlying HDFS. Therefore, any dataset caﬁ artbeatResponse

be processed by eithéast or slow virtual resource pools, or Hadoop jobs may arrive with a different intensity over
their combination. time and not all tasks finish at the same time, so when a

To support a virtual resource pool design, the TaskTrackelgSourC® OO has spare resources (siots) but the cortisgon
needs additional mechanisms such as o pty while the othedobQueueshave jobs that
are waiting for resources, the static resource partitiod an
e the ability to start a task on a specific core, i.e., to runallocation becomes inefficient. To improve the efficiency of
a slot on a specific core and assign a task to it , andresource usage, we use Virtual Shared (vShared) Resouste po



to utilize the spare resources. The spare slots can be mut intWe generate 1000 hadoop jobs according to the distribution
the vShare pool and used by any job queue. shown in Table Ill. We consider the jobs from the 1st to 5th
IIl. EXPERIMENTAL EVALUATION group as small interactive jobs (e.g., with less than 10Ksbas
and the jobs in remaining five groups as large batch jobs. The
In this section, we conduct simulation experiments tointeractive jobs are 82% of the total jobs and the batch jobs
emulate the Facebook workload’s execution on the Hadoopre 18%. The task duration of the Facebook workload can be
cluster with servers using homogeneous versus heterogenedest fit with LogNormal distribution [18] and the following
processors. We select configurations with the same powegyarameters: LN(9.9511, 1.6764) for map task duration and
budget and compare the completion time of Hadoop job$N(12.375, 1.6262) for reduce task duration.
executed on homogeneous versus heterogeneous processors

configurations. Bin | Map Tasks | Reduce Tasks | # % Jobs
. T T NA 38%
As the heterogeneous multi-core processors are not yet 2 2 NA 6%
available, we perform a simulation study using the MapRe- 3 10 3 14%
duce simulator SiImMR [16] and a synthetic Facebook work- : Lo e o
load [21]. Our goal is to compare the job completion times and 3 200 50 5%
to perform a sensitivity study when a workload is executed by 7 400 NA 4%
different Hadoop clusters deployed with either homogeseou S o = L0
or heterogeneous multi-core processors. 0 7800 NA S
SimMR consists of the following three components: TABLE Ill.  JOB DESCRIPTION FOR EACH BIN INFACEBOOK

WORKLOAD (FROM TABLE 3 IN [21]).
e Trace Generatothat creates a replayable MapReduce

workload. In addition, thdrace Generatocan create
traces defined by a synthetic workload description

that tv ch ori the durati f For a fair comparison of these three configurations, each
at compactly characterizes theé duration ot map angn, js sypmitted in the FIFO order, so that there is no bias due
reduce tasks as well as the shuffle stage characteristi

- > o HIS ' ; 8 the specific ordering policy nor queuing waiting time for
via corresponding distribution functions. This feature o5y jopb e g., each job can use the entire cluster resources
IS (Lj‘sef‘“ for a s”en5|tt|_v|ty anla'ys's of i?eg’ t’scr(iief?ulerstFor the heterogeneousonfiguration, the SImMR simulation
\?vr:)rklrgasglii/%eesa ocation policies applied 1o diterentyiso supports the vShared resource pool so that a job can use
e Simulator Engine- a discrete event simulator that both fast and slow resources of the entire cluster.

accurateiy emuiates the JOb master fUnCtlonallty in the 1o Interactive Jobs - Cluser Size: 25 20 Batch Jobs - Cluser Size: 25
Hadoop cluster. o) )
e A pIuggabIe scheduling polighat dictates the sched- 3 Zg < 500
uler decisions on job ordering and the amount of £ a0
resources allocated to different jobs over time. £ - £ 200
We have extended SimMR to emulate the DyScale enwrog 40 g 200
ment, i.e., the heterogeneous slow/fast cores that camespg 3, g
to slow and fast Hadoop slots. § 10 § 100
We approximate the performance and power consumpE n’ Moo, Tomo, g, eter ° Moo, Tomo, g, eter
of different cores from the available measurements of ‘ v (b) ‘ v
existing Intel processors [_‘]_3] [7] executing PARSEC bench Interactive Jobs - Cluser Size: 40 Batch Jobs - Cluser Size: 40
mark [4]. The Intel processors i7-2600 and E31240 (used fn g ¥
the HP Proliant DL 120 G7 server) are from the same Sandy g < 300
Bridge microarchitecture family and have almost identical 7o £ 250
performance [12]. We summarizes all this data in Table Ihwit§ % g 200
a power budget of 84W, we choose three multi-core procesg)r ig 2 150
configurations as shown in in Table IlI. g 20 § 100
= 20 =)
In our experiments, we simulate the execution of the Face- 10 g 50
book workload on three different Hadoop clusters with multi®  © o Hor e < 0 py v ry
'Mo., 'Mo. ler OMo.z, . "OMo.g, " Cler
core processors shown in Table II. For sensitivity anaJyses (c) Tasy Sloy, (d) fagy OSloy,

evaluate reSUItS Wlth dlﬁerent CIUSter S|ZeS Here WSWE Interactive Jobs - Cluser Size: 70 Batch Jobs - Cluser Size: 70
the results for cluster sizes with 25, 40 and 70 nodes as theyiow 250

reflect the interesting possible performance situations. g w @
m 80 o 200
We configure each Hadoop cluster with 1 map and 1 reduee 70 é
slot per core, e.g., for a Hadoop cluster size with 40 nodes, o g
the three c0n5|dered configuration have the following numb,e 20 g 100
of map and reduce slots: S a0 S
2 20 S 50
e theHomogeneous-fastuster has 160 fast map/reduc@ 10 g
slots in total, 0 o R H 0 o b
. Homogeneous slowconfiguration has 840 slowe) 0t 05l " (f) M0ty Oy

map/reduce slots in total, and

® the HeterogeneOU$onf|guratlon has 120 fast map/ Fig. 2. Completion time of interactive jobs and batch jobslemdifferent

. configurations: (a)-(b) the Hadoop cluster with 25 nodel{(d} the Hadoop
reduce slots and 360 slow map/reduce slots in total. Jj sier with 40 nodes, (e)-(f) the Hadoop cluster with 70@sd



Power Normalized Normalized Normalized
Type Processor Technology | Frequency per Normalized (PARSEC) Map Task Reduce Task
Name Core Power Performance Performance | Performance
Type 1 | i7-2600 Sandy Bridge| 32 nm 3.4 Ghz 21 W 1.0 1.0 1.0 1.0
Type 2 i5-670 Nehalem 32 nm 3.4 Ghz 16 W 0.81 0.92 0.92 0.98
Type 3 AtomD Bonnell 45 nm 1.7 Ghz IW 0.19 0.45 0.45 0.83
TABLE I. PROCESSORSPECIFICATIONS
Configuration Type 1 | Type 2 | Type 3 | Power
Homogeneous-fast| 4 0 0 84 W
Homogeneous-siow] 0 0 21 84 W
Heterogeneous 0 3 9 84 W

TABLE II.

PROCESSOR CONFIGURATIONS UNDER THE SAME POWER BUDGET @4 W.

We plot the results in Figure 2 and each row correspondscheduler to more state-of-the-art schedulers, and undez m
to the cluster size of 25, 40, 70 respectively. The left calum challenge scenarios.

shows the average completion time for interactive jobs aed t
right column is the average completion time for batch jobs.

From these graphs, we can see that for interactive jobi
Homogeneous-fastnd Heterogeneousonfigurations achieve
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Homogeneous-slovonfiguration by being almost twice faster.
Indeed, the small interactive job performance does bemefit f
using faster cores compared to a larger number of slow corell
available inHomogeneous-sloaonfiguration. These jobs have |,
a limited parallelism and once their tasks are allocatecdsiec [3]
sary resources, these jobs cannot take advantage of the extr
slots available in the system. For small jobs, the fast slots[4]
(scale-up approach) are the effective way to achieve arbette
performance.
5

For batch jobs, as expected, the scale-out approach show[s]
its advantage because batch jobs have a large number of ma[g
tasks. For exampleidlomogeneous-slowonfiguration consis-

tently outperform$iomogeneous-fasind can be almost twice [7]
faster when cluster size is small (e.g., 25 nodes). Thedster

ing result is that theHeterogeneougonfiguration is almost (8]
neck-to-neck with theHomogeneous-slowonfiguration for
batch jobs. Moreover, as the Hadoop cluster size incretses, [9]
performance ofHeterogeneougonfiguration becomes more [10]
close to theHomogeneous-slowonfiguration (note, that the
batch jobs can effectively utilize the additionally avaikafast

slots in the vShared resource pool). [11]

By comparing these results, it is apparent that the heterq;
geneous multi-core processors with both fast and slow coreg3s
become an interesting design point for supporting differen
performance objectives of MapReduce jobs. For time-seasit (14]
interactive jobs, it may significantly improve the job comypl
tion time (at the same power budget). The large batch jobgs)
are benefiting from the larger number of the slower cores that
improve throughput of these jobs. Moreover, the batch job? 6]
are capable of taking advantage and effectively utilizihg t
additionally available fast slots in the vShared resourgel p
supported by the DyScale framework.

[17]

[18]
IV. CONCLUSIONS

We proposed a new Hadoop scheduling framework, calle@g]
DyScale, which aims at taking the advantage of heterogeneou
multi-core processors’ capabilities for achieving a Vgrief
performance objectives. Our experimental evaluation showl21]
with proper scheduling strategy, heterogeneous mul&-cor
processors configuration outperforms traditional homeges  [22]
processors under the same power budget. In the future work,
we plan to exploit the possible migration features, compairre
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