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Abstract—To offer diverse computing capabilities, the emer-
gent modern system on a chip (SoC) might include heteroge-
neous multi-core processors. The current SoC design is often
constrained by a given power budget that forces designers to
consider different decision trade-offs, e.g., to choose between
many slow cores, fewer faster cores, or to select a combination
of them. In this work, we design a new Hadoop scheduler, called
DyScale, that exploits capabilities offered by heterogeneous cores
for achieving a variety of performance objectives. Our prelim-
inary performance evaluation results confirm potential benefits
of heterogeneous multi-core processors for “faster” processing
of the small, interactive MapReduce jobs, while at the same
time offering an improved throughput and performance for large,
batch job processing.

I. I NTRODUCTION

One of the new trends in the emergent modern system on
a chip (SoC) is to include heterogeneous cores for offering
a variety of computing capabilities. The current SoC design
is often constrained by a given power budget that forces
designers to consider different decision trade-offs, e.g., to
choose between many slow, power-efficient cores, fewer faster
cores (which consume more power per core), or to select a
combination of them. Intuitively, an application that needs
to support a higher throughput and that can distribute its
load across many cores will favor a choice of many slow
cores, while the completion time sensitive applications with
performance goals will benefit from fewer, faster cores [13].
A SoC design with heterogeneous multi-core processors might
offer the best of both worlds for applications that can take an
advantage of these heterogeneous processing capabilities.

MapReduce [6] and its open source implementation
Hadoop offer a scalable and fault-tolerant framework for
processing large data sets. MapReduce jobs are automatically
parallelized, distributed, and executed on a large clusterof
commodity machines. Originally, Hadoop was designed for
batch-oriented processing of large production jobs. Theseap-
plications belong to a class of so-called scale-out applications.
Traditionally, a simple rule of thumb (applied by the Hadoop
users) states [19] that the completion time of a MapReduce
job can be reduced twice by processing this job on the double
size Hadoop cluster. This rule applies to the large MapReduce
jobs that need to process large datasets and that consist of a
large number of map (reduce) tasks. Thus, efficient processing
of such jobs is “throughput-oriented” and can be significantly
improved with additional (scale-out) resources.

However, when multiple users are sharing the same Hadoop
cluster, additionally, there are many interactive ad-hoc queries
and small MapReduce jobs that are completion time sensitive.
For improving the execution time of small MapReduce jobs,
one cannot use the scale-out approach, but rather can benefit

from the “scale-up” approach, where the tasks comprising such
jobs can be executed in “faster” resources.

Using heterogeneous multi-core processor to improve per-
formance has been well studied [5], [3], [8], [14], [9], [15].
However, the earlier papers focus on a single machine environ-
ment while Hadoop is a distributed framework and needs to
manage a cluster environment. Thus, it is difficult to apply the
traditional techniques for a Hadoop framework. In addition, we
aim to support different performance objectives for different
classes of Hadoop jobs, and it requires an exact control of
running different types of slots in different cores, so the general
dynamical thread to core mapping is not suitable here.

Job scheduling in Hadoop is performed by a master node
called the JobTracker, which manages a number of worker
nodes in the cluster. Each worker node in the cluster is
configured with a fixed number of map and reduce slots, and
these slots are managed by the local TaskTracker. The worker
TaskTracker periodically connects to the master JobTracker to
report current status and the available slots. The JobTracker
decides the next job to execute based on the reported infor-
mation and according to a scheduling policy. The popular job
schedulers include FIFO, Hadoop Fair scheduler (HFS) [21],
and Capacity scheduler [2]. In the case of Hadoop deployment
on heterogeneous servers [22], [10], [11], [20], one has to
deal with data locality issues and balancing the data placement
according to the server capabilities as presented in the earlier
work cited above. One of the biggest advantages of Hadoop
deployed with heterogeneous processors is that bothfast and
slow slots have a similar access to the underlying HDFS data
that eliminates the data locality issues.

In this work, we outline design of a new Hadoop scheduler,
called DyScale, that exploits capabilities offered by heteroge-
neous multi-core processors for achieving a variety of per-
formance objectives. It enables creating virtual resourcepools
based on the core types for multi-class priority scheduling. We
describe new mechanisms for enabling the “slow” and “fast”
slots in Hadoop and creating the corresponding virtual clusters.

There is a list of interestingopportunitiesfor MapReduce
processing offered by the heterogeneous processor design.First
of all, both fast and slow Hadoop slots have a similar access
to the underlying HDFS data. This eliminates the data locality
issues that could make the heterogeneous Hadoop clusters
comprised of thefast and slow servers being inefficient [1].
Therefore, any dataset can be processed by eitherfast or
slow virtual resource pools, or their combination. Second,
the task (job) migration between slow and fast cores enables
enhanced performance guarantees and more efficient resource
use. Among thechallengesis the increased complexity of
management , e.g., how to dynamically partition the resources
for different workloads and track such changes. Since not all978-1-4799-0913-1/14/$31.00c© 2014 IEEE



applications benefit the same from using fast cores, there is
obvious trade-offs between performance and efficiency.

Our preliminary performance evaluation results demon-
strate the efficiency and robustness of the proposed framework.
Within the same power budget, the DyScale scheduler that
operates over the heterogeneous multi-core processors provides
a much better performance for small, interactive jobs compared
to using homogeneous processors with (many) slow cores. At
the same time, DyScale running with heterogeneous multi-
core processors preserves a good performance of large batch
jobs compared to using a homogeneous fast core design
(with a fewer cores) that results in a significant performance
degradation. Thus, the heterogeneous multi-core processors
offer a sweet spot for efficient processing of MapReduce job
with different performance objectives. The remainder of the
paper presents our results in more detail.

II. FRAMEWORK DESIGN

In this section, we outline a new Hadoop scheduling frame-
work DyScale, which can efficiently use the heterogeneous
multi-core processors for MapReduce processing. We first
introduce the basic features of DyScale scheduler and then we
talk about the enhanced feature of handling spare resources.

DyScale scheduler offers the capability of scheduling jobs
according to their performance objectives and the resource
preference. Such feature is offered by partitioning different
resources into different dedicated virtual resource poolseach
with its own Job Queue. For example, as shown in Figure 1,
fast slots (running on fast cores) can be grouped into the Virtual
Fast (vFast) resource pool for serving the Interactive Job Queue
and the slow slots (running on slow cores) can be grouped as
the Virtual Slow (vSlow) resource pool for serving the Batch
Job Queue. A user can submit the small, time-sensitive jobs
to the Interactive Job Queue to be executed by fast cores, and
the large throughput-oriented jobs to the Batch Job Queue for
processing by (many) slow cores.

Fig. 1. Virtual Resource Pools.

The attractive part of such virtual resource pool arrange-
ment is that itpreserves data localitybecause both the fast
and slow slots have the same data access to the datasets
stored in the underlying HDFS. Therefore, any dataset can
be processed by eitherfast or slow virtual resource pools, or
their combination.

To support a virtual resource pool design, the TaskTracker
needs additional mechanisms such as

• the ability to start a task on a specific core, i.e., to run
a slot on a specific core and assign a task to it , and

• maintain the mapping information between a task and
the assigned slot type.

TaskTracker always starts a new JVM for each task instance (if
the JVM reuse feature in Hadoop is disabled). It is done for a
reason that the JVM failure does not impact other tasks or take
down the TaskTracker. Running a task on a specific core can
be achieved by binding the JVM to that core. We use theCPU
affinity to implement this feature. By setting the CPU affinity,
a process can be bounded to one or a set of cores. TaskTracker
calls spawnNewJvmclass to spawn JVM in a new thread. The
CPU affinity can be specified during the spawn to force the
JVM to run on the desired core (e.g., fast or slow).

Additional advantage of using the CPU affinity is that it
can be changed during the runtime. Therefore, if the JVM
reuse feature is enabled (note that the JVM reuse can be
enabled only for the tasks of the same job), the task can be
placed on a desired core by changing the CPU affinity of the
JVM. The mapping information between tasks and cores can
be maintained by recordingtask ID, JVM pid, core id) in the
TaskTracker table. So when a task finishes, the TaskTracker
knows whether the released slot is a fast slot or a slow slot.

The JobTracker also needs to know whether the available
slot is a slow or fast slot to make resource allocation decision.
DyScale communicates this information through theheartbeat,
which is essentially RPC (Remote Procedure Call) between
TaskTracker at a worker and JobTracker at the master node.

TaskTracker asks the JobTracker for a new task when the
currently running tasks are below the configured maximum
allowed number of map/reduce tasks through a boolean pa-
rameteraskForNewTask. If the TaskTracker can accept new
task, JobTracker calls the Hadoop Scheduler for a decision to
assign a task to this TaskTracker (to this worker node).

The Scheduler checksTaskTrackerStatusto know whether
the available slots are Map or Reduce slots. In the DyScale
case, the Scheduler additionally needs to distinguish the slot
type (i.e., slow or fast slot). There are four types of slots:i)
fast map slot,ii) slow map slot,iii) fast reduce slot, andiv)
slow reduce slot.

In the DyScale framework, the Scheduler checks the
JobQueuebased on the slot type, e.g., if the available slot
is a fast slot, then this slot belongs to vFast pool, and the
InteractiveJobQueueis selected for a job/task allocation. After
selecting theJobQueue, it takes the first job in the queue and
allocates the available slot.

There could be different policies for ordering the jobs
inside theJobQueueas well as different slot allocation policies.
The default policy is FIFO. However, in a general case, the
job ordering/resource allocation depends on the performance
objectives and can be defined by either Hadoop Fair Scheduler
(HFS) [21], or the ARIA SLO-driven scheduler [17], etc..

The JobTracker then puts a list of current actions, such as
LAUNCH TASK, (or KILL TASK), etc., in the TaskTracker-
Action list to tell the TaskTracker what to do next through the
heartbeatResponse.

Hadoop jobs may arrive with a different intensity over
time and not all tasks finish at the same time, so when a
resource pool has spare resources (slots) but the corresponding
JobQueueis empty while the otherJobQueueshave jobs that
are waiting for resources, the static resource partition and
allocation becomes inefficient. To improve the efficiency of
resource usage, we use Virtual Shared (vShared) Resource pool



to utilize the spare resources. The spare slots can be put into
the vShare pool and used by any job queue.

III. E XPERIMENTAL EVALUATION

In this section, we conduct simulation experiments to
emulate the Facebook workload’s execution on the Hadoop
cluster with servers using homogeneous versus heterogeneous
processors. We select configurations with the same power
budget and compare the completion time of Hadoop jobs
executed on homogeneous versus heterogeneous processors
configurations.

As the heterogeneous multi-core processors are not yet
available, we perform a simulation study using the MapRe-
duce simulator SimMR [16] and a synthetic Facebook work-
load [21]. Our goal is to compare the job completion times and
to perform a sensitivity study when a workload is executed by
different Hadoop clusters deployed with either homogeneous
or heterogeneous multi-core processors.

SimMR consists of the following three components:

• Trace Generatorthat creates a replayable MapReduce
workload. In addition, theTrace Generatorcan create
traces defined by a synthetic workload description
that compactly characterizes the duration of map and
reduce tasks as well as the shuffle stage characteristics
via corresponding distribution functions. This feature
is useful for a sensitivity analysis of new schedulers
and resource allocation policies applied to different
workload types.

• Simulator Engine- a discrete event simulator that
accurately emulates the job master functionality in the
Hadoop cluster.

• A pluggable scheduling policythat dictates the sched-
uler decisions on job ordering and the amount of
resources allocated to different jobs over time.

We have extended SimMR to emulate the DyScale environ-
ment, i.e., the heterogeneous slow/fast cores that correspond
to slow and fast Hadoop slots.

We approximate the performance and power consumption
of different cores from the available measurements of the
existing Intel processors [13], [7] executing PARSEC bench-
mark [4]. The Intel processors i7-2600 and E31240 (used in
the HP Proliant DL 120 G7 server) are from the same Sandy
Bridge microarchitecture family and have almost identical
performance [12]. We summarizes all this data in Table I. With
a power budget of 84W, we choose three multi-core processor
configurations as shown in in Table II.

In our experiments, we simulate the execution of the Face-
book workload on three different Hadoop clusters with multi-
core processors shown in Table II. For sensitivity analysis, we
evaluate results with different cluster sizes. Here, we present
the results for cluster sizes with 25, 40 and 70 nodes as they
reflect the interesting possible performance situations.

We configure each Hadoop cluster with 1 map and 1 reduce
slot per core, e.g., for a Hadoop cluster size with 40 nodes,
the three considered configuration have the following number
of map and reduce slots:

• theHomogeneous-fastcluster has 160 fast map/reduce
slots in total,

• Homogeneous-slowconfiguration has 840 slow
map/reduce slots in total, and

• the Heterogeneousconfiguration has 120 fast map/
reduce slots and 360 slow map/reduce slots in total.

We generate 1000 hadoop jobs according to the distribution
shown in Table III. We consider the jobs from the 1st to 5th
group as small interactive jobs (e.g., with less than 100 tasks)
and the jobs in remaining five groups as large batch jobs. The
interactive jobs are 82% of the total jobs and the batch jobs
are 18%. The task duration of the Facebook workload can be
best fit with LogNormal distribution [18] and the following
parameters: LN(9.9511, 1.6764) for map task duration and
LN(12.375, 1.6262) for reduce task duration.

Bin Map Tasks Reduce Tasks # % Jobs
1 1 NA 38%
2 2 NA 16%
3 10 3 14%
4 50 NA 8%
5 100 NA 6%
6 200 50 6%
7 400 NA 4%
8 800 180 4%
9 2400 360 2%
10 4800 NA 2%

TABLE III. J OB DESCRIPTION FOR EACH BIN INFACEBOOK
WORKLOAD (FROM TABLE 3 IN [21]).

For a fair comparison of these three configurations, each
job is submitted in the FIFO order, so that there is no bias due
to the specific ordering policy nor queuing waiting time for
each job, e.g., each job can use the entire cluster resources.
For the heterogeneousconfiguration, the SimMR simulation
also supports the vShared resource pool so that a job can use
both fast and slow resources of the entire cluster.
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Fig. 2. Completion time of interactive jobs and batch jobs under different
configurations: (a)-(b) the Hadoop cluster with 25 nodes, (c)-(d) the Hadoop
cluster with 40 nodes, (e)-(f) the Hadoop cluster with 70 nodes.



Power Normalized Normalized Normalized
Type Processor Technology Frequency per Normalized (PARSEC) Map Task Reduce Task

Name Core Power Performance Performance Performance
Type 1 i7-2600 Sandy Bridge 32 nm 3.4 Ghz 21 W 1.0 1.0 1.0 1.0
Type 2 i5-670 Nehalem 32 nm 3.4 Ghz 16 W 0.81 0.92 0.92 0.98
Type 3 AtomD Bonnell 45 nm 1.7 Ghz 4 W 0.19 0.45 0.45 0.83

TABLE I. PROCESSORSPECIFICATIONS.

Configuration Type 1 Type 2 Type 3 Power
Homogeneous-fast 4 0 0 84 W
Homogeneous-slow 0 0 21 84 W

Heterogeneous 0 3 9 84 W

TABLE II. PROCESSOR CONFIGURATIONS UNDER THE SAME POWER BUDGET OF84 W.

We plot the results in Figure 2 and each row corresponds
to the cluster size of 25, 40, 70 respectively. The left column
shows the average completion time for interactive jobs and the
right column is the average completion time for batch jobs.

From these graphs, we can see that for interactive jobs,
Homogeneous-fastand Heterogeneousconfigurations achieve
very close completion time and consistently outperform the
Homogeneous-slowconfiguration by being almost twice faster.
Indeed, the small interactive job performance does benefit from
using faster cores compared to a larger number of slow cores
available inHomogeneous-slowconfiguration. These jobs have
a limited parallelism and once their tasks are allocated neces-
sary resources, these jobs cannot take advantage of the extra
slots available in the system. For small jobs, the fast slots
(scale-up approach) are the effective way to achieve a better
performance.

For batch jobs, as expected, the scale-out approach shows
its advantage because batch jobs have a large number of map
tasks. For example,Homogeneous-slowconfiguration consis-
tently outperformsHomogeneous-fast, and can be almost twice
faster when cluster size is small (e.g., 25 nodes). The interest-
ing result is that theHeterogeneousconfiguration is almost
neck-to-neck with theHomogeneous-slowconfiguration for
batch jobs. Moreover, as the Hadoop cluster size increases,the
performance ofHeterogeneousconfiguration becomes more
close to theHomogeneous-slowconfiguration (note, that the
batch jobs can effectively utilize the additionally available fast
slots in the vShared resource pool).

By comparing these results, it is apparent that the hetero-
geneous multi-core processors with both fast and slow cores
become an interesting design point for supporting different
performance objectives of MapReduce jobs. For time-sensitive
interactive jobs, it may significantly improve the job comple-
tion time (at the same power budget). The large batch jobs
are benefiting from the larger number of the slower cores that
improve throughput of these jobs. Moreover, the batch jobs
are capable of taking advantage and effectively utilizing the
additionally available fast slots in the vShared resource pool
supported by the DyScale framework.

IV. CONCLUSIONS

We proposed a new Hadoop scheduling framework, called
DyScale, which aims at taking the advantage of heterogeneous
multi-core processors’ capabilities for achieving a variety of
performance objectives. Our experimental evaluation shows
with proper scheduling strategy, heterogeneous multi-core
processors configuration outperforms traditional homogeneous
processors under the same power budget. In the future work,
we plan to exploit the possible migration features, compareour

scheduler to more state-of-the-art schedulers, and under more
challenge scenarios.
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