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Abstract—When deploying applications with dynamic and intensive
memory footprint to big data systems on public clouds, one important
yet challenging question to answer is how to select a specific instance
type whose memory capacity is large enough to prevent out-of-memory
errors while the cost is minimized without violating performance re-
quirements. The state-of-the-practice solution is trial and error, causing
both performance overhead and additional monetary cost. This paper
investigates two memory scaling mechanisms in public clouds: physical
memory (good performance and high cost) and virtual memory (de-
graded performance and no additional cost). In order to analyze the
trade-off between performance and cost of the two scaling options, a
performance-cost model is developed that is driven by a lightweight
analytic prediction approach through a compact representation of the
memory footprint. In addition, for those scenarios when the footprint is
unavailable, a meta-model-based prediction method is proposed using
just-in-time migration mechanisms. The proposed techniques have been
extensively evaluated with various benchmarks and real-world applica-
tions on Amazon Web Services: the performance-cost model is highly
accurate and the proposed just-in-time migration approach reduces the
monetary cost by up to 66%.

1 INTRODUCTION

While increasingly more modern applications are turning
from compute-centric to data-centric, many systems have
emerged to overcome the new challenges brought by the
so-called big data. Representative big data systems include
Hadoop [14], Spark [3], TensorFlow [38], Myria [31], and
SciDB [34], all of which share the same paradigm—data
parallelism, assuming the underlying infrastructure is a
shared-nothing cluster. Although these systems had greatly
lowered the technical barrier for parallel processing (com-
paring to, for instance, OpenMP [33], MPI [29]), our prior
work [28] showed that new challenges are emerging from
those big data systems such as application migration, mem-
ory management, among many others.
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As a concrete example, when deploying an astronom-
ical application, namely Large Synoptic Survey Telescope
(LSST [23]), to a big data management systems Myria [31]
on the Amazon Web Services (AWS) public cloud [2], the
converted code scales up to 8 visits of sky surveys but
then starts to experience out-of-memory (OOM) errors for
12 or more visits because the allocated data to each node
exceeds the physical memory capacity allocated popular
big data systems such as Spark and SciDB [28]. We had to
spend considerable time to completely rewrite the original
application using multi-query to avoid memory errors.

Data intensive applications usually consume lots of
memory, which can be quite expensive if not carefully
planned. More importantly, many big data applications
generate a highly dynamic amount of intermediate data that
needs to be persisted in memory for performance. The OOM
error in big data applications is often deemed as one of the
most frustrating errors as it usually implies that the devel-
opers would need to spend a lot of time in further split-
ting the already complex application with finer granularity,
reconfiguring the underlying big data system, redeploy-
ing the big data application, and recomputing many time-
consuming results. Despite all such efforts, the application
is not guaranteed to work without OOM errors—possibly
making all the time and resource investment worthless.
Part of the challenge comes from the unpredictability of
memory footprint when the input data size changes. An
intuitive solution would be to estimate the memory foot-
print based on different input sizes, which, unfortunately, is
also challenging because in the real world the relationship
between the two could be nonlinear in one of our more
recent works [20]. The number of streamlines represents
the input size for an Magnetic Resonance Imaging (MRI)
application detailed in [28].

One conventional way to scale memory is using op-
erating system’s virtual memory (e.g., swap in Unix-like
systems). Compared to scaling up physical memory (e.g.,
selecting a more powerful instance1), virtual memory usu-
ally yields degraded performance (thus potentially longer
running time and higher cost). Therefore, an effective way

1. For memory-intensive applications, memory is the bottleneck,
so a more powerful instance with better other resources (e.g., CPU,
networking) would not necessarily improve the runtime performance.
In the applications studied in this paper, we observed less than 100%
utilization in resources other than memory capacity, such as CPU cycles
and memory access bandwidth.
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Fig. 1: Checkpointing Overhead

to determine the performance and cost impact when using
different amount of virtual memory is highly desirable
for users to make decisions. To quantitatively study the
trade-off between performance and cost caused by virtual
memory, the first goal of this work aims at building a
performance-cost model that can accurately estimate the
performance and cost using virtual memory.

Public cloud vendors provide a rich selection of scaling
options (e.g., different instance types with various memory
capacities) and a flexible pay-as-you-go pricing scheme.
Unfortunately, preventing OOM errors in the real-world is
even more challenging because we need to consider the
monetary cost not applicable to conventional clusters. One
native approach is simply choosing the most powerful in-
stances, which usually incurs resource under-utilization and
unnecessary monetary cost. The current state-of-the-practice
approach in industry is trial and error using checkpoint:
we launch an instance with small memory and periodically
checkpoint runtime memory states; upon crash, we launch
a new instance with larger memory capacity to, hopefully,
meet the memory demands. Trial-and-error incurs signif-
icant performance overhead and monetary cost as saving
and restoring large amounts of memory states can be highly
expensive. As a concrete example, Figure 1 shows both the
normalized overhead2 in % and the actual running time
in seconds when different numbers of checkpointing are
applied to a real-world application used in [28] using a pop-
ular checkpointing tool CRIU [9]. We observe a fast-growing
trend of performance overhead incurred by checkpointing,
which motivates us to develop a just-in-time migration
mechanism that only performs checkpointing just before the
OOM occurs—the second objective of this work.

This paper aims to answer the following research ques-
tions: how could we prevent data-intensive applications from
experiencing OOM errors while retaining high resource utiliza-
tion and low monetary cost. To this end, we propose two
techniques, one building on virtual memory of the operating
system (OS) and the other inspired by statistical prediction
models aiming to eliminate the overhead of the conven-
tional checkpoint-based mechanism.

The proposed memory scaling methodology is based
on two scenarios: 1) when some information of memory

2. Assume the running time of two different number of checkpoints
are T1 and T2, the normalized overhead is defined as (T2−T1

T1
) · 100%.

footprints is known a priori; 2) when the memory footprints
is unknown in advance. Specifically, in the first scenario, we
assume the swap access patterns are well-studied. Here the
swap access pattern is defined as trend of the performance
slowdown versus swap portion, e.g., exponential trend
or uniform trend. This is true for many batch-processing
applications3, for example, in areas like high-performance
computing [19] and scientific applications [49]. Specifically,
we build models that predict applications’ performance
slowdown and monetary benefit (or, loss) according to
the proportion of virtual memory being used. Experiments
show that our models are highly accurate as they exhibit
only 1% – 4% error rates when testing with multiple real-
world applications in AWS.

In the second scenario, we do not impose any assump-
tions on the memory access patterns and propose a runtime
estimation method. We introduce meta-models that can
predict memory footprint with dynamic adjustment accord-
ing to the application’s own traits at runtime. The meta-
models are applied in a heuristic manner, meaning that
the application is deployed to instances in the increasing
order of their memory capacity and gets migrated to more
powerful (and more costly) instances only when the meta-
models determine an OOM is forthcoming. Experiments
show that this approach incurs significantly lower monetary
cost than both the checkpoint-based approach and the naive
pure-memory solution by up to 66%.

To summarize, this paper focuses on developing a prac-
tical system tool for preventing OOM error while balancing
the performance and cost trade-off for big data applications
in the public cloud rather than making theoretical con-
tributions. Specifically, we make the following three main
contributions.

(i) We develop analytic models to predict applications’ per-
formance and cost when various portions of virtual memory are
used in public clouds. As a result, users will know how,
and by how much, virtual memory will affect the overall
performance and cost of their applications before actually
executing them.

(ii) We propose multiple cost-effective approaches for prevent-
ing OOM error in public clouds. Instead of periodically check-
pointing memory states, the proposed elevation-migration
approaches incur only one batch of memory accesss when
encountering memory depletion.

(iii) We extensively evaluate the proposed techniques using
benchmarks and real-world applications. Experimental results
demonstrate high effectiveness of both techniques on AWS.

2 RELATED WORK

Based on the memory footprint patterns, big data applica-
tions can be categorized into two types. Type A: relatively
deterministic memory footprint and Type B: highly dynamic
memory footprint. Applications implemented in Spark [3]
and other similar systems belong to Type A as they are
usually READ intensive and only generate relatively small
or deterministic amount of intermediate data. For this type
of applications, their memory footprint can be proactively
measured through simple profiling. For instance, in Spark,

3. Streaming-data applications are beyond the scope of this paper
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one can create an RDD to put into cache, and then look at the
Storage page in the web UI to figure out how much memory
the RDD is occupying as the size of RDD is deterministic [4].
MRI [28] and Didi [11] belong to the Type B big data applica-
tions as their memory footprint is highly dynamic due to the
significant change of intermediate data that they produce in
run time. We focus on Type B big data applications in this
paper as their memory footprint is highly dynamic during
runtime and thus challenging to be proactively determined
and often result in OOM errors.

Memory management in cloud computing recently
draws plenty of research interests in the community. One
of the hot topics is predicting memory usage to prevent
application crashes or detect abnormality, and a common
method is using time series. In particular, Spinner et al. [36]
proposed to predict the memory usage of applications on
virtual machine in a proactive manner using time series
analysis (with a training period usually in terms of days).
Santosh Aditham et al. [1] applies LSTM recurrent neural
networks for prediction the memory usage as a part to
prevent data attacks. Also, Lingxue Zhu et al. [50] were mo-
tivated by recent Long Short Term Memory networks and
successfully apply it to large-scale time series anomaly de-
tection at Uber. In contrast to aforementioned related work,
this paper for the first time combines checkpointing with
time series. To reduce cost, a rich literature focuses on the
optimization of resource allocation and cost-effectiveness
for a cluster of cloud instances. In [22], authors proposed
to reconfigure the constituent instances serving the same
workload with lower cost. More recently, contracts-based
resource sharing model [44] was proposed to save the cost.
Some works [18, 43] focused on minimizing the cost of spot
instances; Furthermore, some works [26] showed that it is
even possible to achieve both the high reliability of on-
demand instances and the low cost of spot instances on AWS
using the proposed scheduling techniques. To the best of
our knowledge, this paper is the first work focusing on cost
reduction for memory-intensive applications using virtual
memory technology.

Besides, much work has been focused on the model-
ing and scheduling part in resource management. In [45],
an automatic resource allocation model for scaling virtual
machine was developed; a similar work [16] on automatic
leasing virtual machines was published in the same year.
In particular, in [46] authors proposed an autonomic and
elastic resource scheduling framework was proposed; a
scheduling algorithm based on Lyapunov optimization was
proposed in [35]. It should be noted that those techniques
for better resource allocation are also applicable to other
metrics in addition to cost, such as energy consumption
that is one of the most important research topics, such
as [6]. While the primary goal of this paper is to investigate
new approaches to reduce the monetary cost for memory-
intensive applications, the reduced cost also implies reduced
energy consumption as a co-product.

In more sophisticated scenarios such as both
Infrastructure-as-a-Service (IaaS) and Software-as-a-
Service (SaaS) being offered, a two-stage optimization
model was developed in [41]; for hybrid clouds (i.e.,
applications deployed to both an on-premises cluster and
a public cloud), various techniques [13, 24] were proposed

to minimize the overall cost; for cloud federation (i.e.,
inter-cloud), various techniques [5, 12, 25] were developed
to automate the resource selection and configuration.
Although in this paper we assume the underlying cloud
infrastructure comes from a single cloud vendor (i.e., AWS),
there is nothing technical to prevent users from applying
the proposed approach to multiple, heterogeneous clouds.

Many other domains (e.g., high-performance computing
(HPC) [7, 17, 27], databases [39, 40], networking [42, 47],
big data systems [20, 48]) are switching from conventional
cluster computing to cloud computing and minimizing the
cost is also actively researched. Of note, working set has
been actively studied in HPC (e.g., [8, 30]), which refers to
the overall size of the program along with the initial and
intermediate data to be held in (virtual) memory. The tech-
niques proposed by this paper, although mainly targeted on
and evaluated on public clouds, have the potential to be
extended to apply to other domains as well.

3 PRELIMINARIES

3.1 Swap space in Unix-like systems

The swap space in Unix-like systems is a portion of disk
space that is reserved to be used as an extended memory
that is addressable by the memory management module in
the operating system (OS) kernel. Swap is sometimes called
virtual memory, in the sense that it is not really manipulat-
ing data on the physical memory. The virtual memory in the
context of swap should be differentiated from the OS-level
virtual memory, which refers to the logically continuous
memory pages that are mapped to possibly disjoint pages
on the physical memory. In the remainder of this paper, we
will use swap and virtual memory interchangeably.

Because swap requires readdressing of the memory
space, one limitation of swap is tent to be longer running
time. It can be said the execution speed of the same process
is same, but never exceed. In fact, in our prior work [28],
we have showed that accurately predicting applications’
memory usage could be highly time consuming.

3.2 Checkpointing

Checkpointing is widely used in many computing
paradigms, namely, high-performance computing, cloud
computing, cluster computing, and so forth. In cloud com-
puting, checkpointing has been extensively studied [10, 21].
The key idea is to periodically dump the memory status
to persistent media, usually a local hard disk. One classical
problem in checkpointing is how frequently it should be ap-
plied (assuming the checkpointing is applied at equal time
intervals): if it is applied too frequently, the checkpointing
itself (causing many memory access operations) could be
unacceptable in terms of performance; if it is rarely applied,
say only once, then up to 50% of work would get lost if
the application or system crashed at the very last moment
before the checkpoint. Therefore, the optimal checkpointing
frequency usually lands in somewhere between the afore-
mentioned two extreme cases.

A rich literature (e.g., [10]) investigated on how to es-
timate the optimal checkpoint intervals. In this paper, we
will take the following approach to estimate the optimal
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checkpointing intervals (literature took a similar approach
with only some varieties on assumptions and corner cases).
Let T indicate the total runtime of the application, n indicate
the total number of checkpoints (with equal time intervals),
and t indicate the time that a single checkpoint takes, and m
indicate the total number of expected failures. Without loss
of generality, we assume the failures occur in the middle of
two adjacent checkpoints. It then follows that the total time
of lost work is T ·m

2n . The goal is to find n so to minimize the
end-to-end wall time comprised of the application’s own
execution time T , the summation of all checkpointing time
n · t, and the summation of all lost work T ·m

2n as they have
to be redone. That is, we need to find n such that

arg min
n

F (n) = T + n · t+
T ·m

2n
(1)

It follows that if we take the first-order derivative of F (n)
and solve the equation

F ′(n) =
d(F (n))

dn
= t− T ·m

2n2
= 0 (2)

then we have n =
√

T ·m
2t . Because the second-order deriva-

tive of F (n) is always positive, i.e.,

F ′′(n) =
d(F ′(n))

dn
=
T ·m
n3

> 0 (3)

we are guaranteed that n =
√

T ·m
2t is the solution to

the minimal value of F (n), and the optimal checkpointing
interval ∆t is

∆t =
T

n
=

√
2 · t · T
m

(4)

We will use the above equation to calculate the optimal
checkpoint interval as part of the baseline performance
and compare it against the performance of our proposed
mechanism in later sections.

4 COST-AWARE EXPLOITATION OF VIRTUAL MEM-
ORY

4.1 Overview
For applications whose memory footprint exceeds the avail-
able physical memory4, it is possible to extend the memory
usage to the swap space (i.e., virtual memory) with expected
performance slowdown due to the data swap between the
physical memory and the disk. In theory, the entire hard
disk drive can be used as virtual memory; in Unix-like
systems, this can be easily configured before the applica-
tions starts. Consequently, in theory, an application would
unlikely run into out-of-memory (OOM) errors as long as
we simply extended the virtual memory to the entire disk
assuming the application’s data can be accommodated by
the disk size; but this might not be always practical because
the performance overhead could be prohibitive in the real
world.

As a concrete example, we show that an MRI appli-
cation’s performance on two different (and extreme-case)

4. By “physical memory”, we do not exclude the memory allocation
in a virtual machine; it is used in this context only to differentiate the
“virtual memory” or “swap space” used in Unix-like systems.

Fig. 2: Huge Overhead Introduced by Improper Use of
Virtual Memory

setups of virtual memory in Figure 2. The application incurs
a peak memory usage of about 18 GB and completes in less
than 500 seconds (red line) when the machine is equipped
with enough memory (i.e., swap portion P , defined by the
occupied swap size divided by occupied swap size plus
occupied RAM size, is 0%). However, when we specify a
combination of 1 GB physical memory and a 18 GB swap
space on the machine (i.e., swap portion 18

19 > 94%), the
same application’s total runtime exceeds 20,000 seconds.
The red line is the real-time memory footprint when the
application runs on a 32GB-RAM machine; the orange and
blue lines record the swap and physical memory usages,
respectively (on the 1GB-RAM 18GB-swap machine). How-
ever, the overall cost on the 1GB-RAM 18GB-swap machine
might be lower than running the application on a 32GB-
RAM machine.

The key question is: if the users are willing to trade some
time off to complete their jobs on the current instances (with
enough swap space without OOM errors), what would the mon-
etary benefit and time overhead look like, quantitatively? That
is, users would know better about the distribution of cost-
time correlations in the parameter space between the two
extreme-cases presented in Figure 2.

4.2 Assumptions
We assume the swap space would be able to accommodate
the application’s memory usage at all times. This assump-
tion is easy to satisfy in the real world, as the capacity of
hard disk drives is usually orders of magnitudes larger than
physical memory. In addition, adding more hard disk drives
is usually one of the most economic upgrades if more swap
space is needed.

We also assume the swap portion is known in advance
(we address the swap portion unknown scenario in Sec-
tion 5). In many areas such high-performance computing
and Mapreduce-like workloads, swap access-patterns in-
cluding memory footprint are well studied (e.g., approaches
including profiling an sample run on a subset of input
data). Therefore, as long as the hardware specification of
the machines is determined, it is easy to calculate the swap
portion based on the physical memory capacity and the
application’s swap access patterns.
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Fig. 3: Overview of Cost-Aware Exploitation of Virtual
Memory Approach

The last assumption is that the pricing of different in-
stance types is fixed. Indeed, there are cases where instance
prices are versatile (e.g., AWS’s spot instances), but we do
not consider those scenarios in our models because they
are highly dependent on the non-technical contexts such
business models that are beyond the scope of this paper.

4.3 Methodology

We aim to develop models that characterize the interconnec-
tion between applications’ performance and instances’ swap
portion (i.e., “swapness”) under various instance types with
different memory capacities. The overview of cost-aware ex-
ploitation of virtual memory approach is shown in Figure 3.
The approach needs both application’s memory footprints
and the information of the instance as inputs, and outputs
Slowdown vs. Swapness. The models are crafted for specific
memory sizes for two reasons: First, they will achieve higher
accuracy than a single global model applied to all memory
capacities; Second, most cloud vendors offer a limited num-
ber of instance types regarding memory capacities.

To study the correlation between performance slow-
down and swap portion in normal running conditions,
we start with measuring the swap-introduced slowdown
in one of the most widely used matrix operations: matrix
initialization. We chose this application as the baseline
benchmark because of its representative, i.e., uniform, access
to the (virtual) memory. Specifically, a 17,000 × 17,000
two-dimensional matrix is initialized with random integer
values, which incurs about 18 GB peak memory usage.
The test bed is an AWS t2.medium instance with 4 GB
memory. The benchmark application is decomposed into
various phases according to their memory usages, while
the end-to-end execution times of each phases are recorded
with the corresponding swap portion. For data-intensive
applications, recording all the information on swap portions
at a fine granularity is both space- and time-consuming. To
address that, we apply cumulative density functions (CDF)
to compress the numbers and sizes of those records rather
than storing all data points in their raw format.

As shown in Figure 4, the benchmark exhibits a strong
exponential curve between the slowdown and the swap-
ness. Although this is the trend exhibited with 4GB physical
memory, similar trends are indeed observed with other

Fig. 4: Slowdown vs. Swapness with 4GB-RAM Physical
Memory

memory capacities (we will discuss more when evaluating
the system in Section 6). In theory, a higher proportion of
swap space should imply a super-linear increase in swap
access cost if the replacement policy is least-recently-used
(LRU) [49]. As a result, the skeleton of the model we chose
to fit is exponential in the following form:

S = α · eβ·x + θ, (5)

where S is the performance slowdown, e is Euler’s num-
ber, x is the swapness, and (α, β, θ) are coefficients to be
determined during the model fitting.

The following illustrates how we fit the model for perfor-
mance slowdown and swap portion. We segment the bench-
mark’s execution into pieces with different swap portions
at runtime. For each swap proportion (i.e., swapness), we
maintain a bucket to store the number of pieces falling into
the bucket to save space (i.e., a cumulative density function,
CDF). We applied binary searches on each of the coefficients
in the model and determine them when the overall error is
minimal. The resultant model is:

f(x) = (3.09E − 13) · e44.21x + 0.35 (6)

Because of the fluctuations exhibited by Figure 4, we also
provide confidence intervals (maximum and minimum) as
follows:

fmax(x) = (1.16E − 10) · e36.34x + 13.33 (7)

fmin(x) = (4.48E − 11) · e34.89x + 0.075 (8)

The fmax models a subset of the benchmark data points
landing on the top-left edge, while the fmin models the
subset of the benchmark data points landing on the bottom-
right edge. We will be using the above models to predict
more real-world applications and report its accuracy and
more importantly, the correlation between the overall mon-
etary cost and the performance, in Section 6.

5 JUST-IN-TIME APPLICATION MIGRATION

5.1 Overview
There are various reasons why users decide not to use
swap space for out-of-memory errors. For instance, the
applications might be highly memory access-intensive and
using swap, even by a very small portion, would slow
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the application down by orders of magnitude. As another
example, the application’s memory footprint and memory
access patterns are not well studied, then the techniques
proposed in Section 4 are not applicable.

The question now becomes: Without introducing swap,
how could we reduce the overall monetary cost in face of memory
depletion? Obviously, the risk of encountering memory er-
rors would become the lowest if users started with the most
powerful (and, expensive) instance to run the applications;
doing so implies, however, the highest chance of underuti-
lization of the memory resources and consequently incurs
unnecessary monetary cost. One heuristic approach would
be starting with the cheapest instances and then migrate the
application to a larger instance when memory is depleted,
which means additional performance overhead from peri-
odical checkpointing and relaunching virtual machines.

Recall the significant overhead of checkpointing as
shown in Figure 1. Ideally, the migration should occur when
only absolutely necessary as it may introduce performance
degradation such as starting and warm up the memory of
the new instance, transferring the data from old instance
to new instance, i.e., at the point just before the memory
errors out, what we called just-in-time application migration in
the following discussion. The terminology is inspired by the
well-known compiler technique “just-in-time compilation,”
meaning that the source code is only compiled at runtime
rather than prior to the execution—one of the unique fea-
tures in functional programming languages like Lisp. It is
worth to point out that here we focus on predicting “when”
to do migration instead of “how” to do migration, so any
live migration is compliment arty to our approach proposed
in this section.

5.2 Assumptions

We assume the application is migrated between different
instance types without physical data movements. This is
not true in conventional clusters but very common in
cloud vendors, for example in AWS the current instance
can be shut down with saved status (i.e., snapshot) and
then get restarted with larger memory capacity allocated
along with other possible upgrades. Microsoft Azure and
IBM BlueMix provide similar functionalities. Note that, in
conventional cluster computing, a failed node’s data are first
checkpointed from memory to disk and then transferred to
a healthy node, usually incurring a higher overhead.

Another assumption is that swap is completely ex-
cluded. That is, the swap portion in the remainder of this
section is 0%. Indeed, there is nothing preventing us to
combine the models in Section 4 and what we will discuss in
this section, meaning that swapness can be between 1% and
100% in the real world. In practice, both approaches work
with SWAP. It is also worth to note that our experimental
results show that even with SWAP on, OMM can happen if
the memory demand is much larger than the RAM capacity.
However, this section will focus on only the techniques of
just-in-time application migration, which is isolated from
others so we know how, and by how much, just-in-time
application migration can facilitate the cost reduction.

Fig. 5: Overview of Just-In-Time Application Migration Ap-
proach

Fig. 6: Memory Footprint of MRI

5.3 Methodology

Since we plan not to apply periodical checkpointing, the
key challenge is how to accurately predict when the mem-
ory will error out. Our approach considers both statistical
models and the hint extracted from the application. The
overview of the approach is shown in Figure 5. Specifically,
our approach takes multiple fitting models (e.g., polyno-
mial, exponential) and looks back different numbers of data
points (i.e., history depending on certain decay functions).
Conventional models simply look back a certain number of
data points, apply regression to achieve the least aggregate
errors, and calculate a future data point; In contrast, our
approach considers those fitting models as inputs and takes
the application’s own traits extracted from profiling a small
portion of execution as another input, both of which consti-
tute a higher-level of model that we call Meta-Model (MM).
That is, the meta-model we propose is not only fit by the
existing data but also correlated to the application’s sample
runs. Figure 6 shows the memory footprint of MRI over
time when running on a 32G memory instance. There are
5 similar shaped repeated patterns highlighted with boxes
and we call the repeated pattern as trait. As the the applica-
tion running, the trait becomes bigger in terms of memory
footprint and time span. Therefore, by modeling the size
of the traits, we can predict future traits’ memory footprint
and time span. Assume we use f1 and f2 representing the
scale of applications traits, f3 representing the position of
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the traits, we can derive a quadratic model as following:

MM(x) = f1 · x2 + f2 · x+ f3 (9)

where the vector ~F = [f1, f2, f3] represents the relation
between the coefficient and the adjusted impact to the
application. In the simplest form, ~F can be a linear trans-
formation according to the swap access patterns we can
observe from profiling a subset of sampled data points.
In other words, our model extends the conventional fitting
approaches by generalizing those constant coefficients into
additional function that characterizes the application’s own
information.

After calculating the prediction values of multiple meta-
models, we compute the probability of memory crash. The
checkpoint and migration is triggered when 90% of RAM
capacity is reached to offset the prediction error. If the proba-
bility falls below a threshold, the application will be paused
and ready to be migrated to another instance (with larger
memory capacity). Also, we adjust the aggressiveness of
prediction algorithm based on the immediate history RAM
usage and thus can avoid the accumulation of the errors.
Specifically, if the predicted memory value is smaller than
the measured value, we will make our prediction algorithm
more aggressive. An alternative approach is to run a vote
from all the participating meta-models and the majority
wins (either continue with the current instance or migrate
to a larger one).

If the system decides (or, predicts) that a memory crash
is to occur, the application will be migrated to the least
expensive instance type that has larger memory capacity
than the current running instance. The reasoning is that in
most public cloud vendors, the memory capacity roughly
follows an exponential pattern (i.e., 2 GB, 4 GB, 8 GB, and so
forth). Our protocol is conservative and hopes that doubling
the memory capacity could satisfy the application’s memory
requirement. A more aggressive protocol is possible, for
example instead of increasing 2× memory size we can
multiple 3, 4, or even larger factors. In practice, doing so
would imply missing some intermediate instance types.
This paper will only discuss the scenarios where all the in-
stances are strictly ordered by the memory capacity. Finding
out the optimal factor of multiplying memory capacity is an
interesting question and might be addressed in our future
work.

5.3.1 Regression Models
A time series is a sequence S of historic measurements
yt of an observable variable y at timestamp t. For time
series data, the current value is highly dependent on its
predecessor and even its grand predecessors in a recursive
fashion with possibly decay functions. A regression model
can be constructed to depict the pattern and hopefully
forecast the new values in the future. The easiest approach to
model this is, arguably, based on minimizing ordinary least
squares. Suppose that we have time series data available
on two variables, say y and x. Assuming the timestamp t
is indicated by t = 1, · · · , T where yt and xt are updated
simultaneously. We can set a regression model between y
and t as following:

yt = β0 + β1 · xt + ε (10)

where ε indicates a random noise term with zero mean and
normal distribution.

The conventional static model assumes that when a
change is made to x at time t, then y is immediately affected
as follows:

∆yt = β ·∆xt (11)

where ∆εt = 0. Thanks to this regression models, we
can estimate the correlation between y and x and then
predict the value difference at two adjacent timestamps.
In this paper we extend the conventional approach from
a single-step prediction to a multi-step prediction. In essence,
the proposed multi-step regression repeatedly applies the
single-step model by filling out the pseudo-real values with
predicted values in a sliding window of various sizes. In
the following discussion and experimental evaluation, we
apply both three and five steps to the multi-step regression
model. More specifically, in the case of predicting the future
memory footprint for the next 3 or 5 seconds, we first predict
the value at the first second, then this prediction is used as
an (pseudo-)observation input to predict the value at the
second second, and so on.

5.3.2 LSTM Models
In this chapter, we also apply Long-Short Term Memory
(LSTM) models for the prediction of memory footprints. The
key challenge is how to accurately forecast the footprint
in multiple steps. In essence, the challenge of one-step
prediction based on LSTM is further complicated by the
uncertainty incurred by these steps due to the accumulation
of errors.

We modify the conventional LSTM model [15] to predict
the future values by reapplying single-step LSTMs. Specifi-
cally, we first predict xt+1 using the previous m values such
as xt, xt−1, · · · , xt−m+1, and then predict xt+2 based on
its previous m values, which include the predicted value at
xt+1. The procedure is repeated until the last value xt+n, is
completed. Because it is sufficient to construct a single-step
model to make the prediction, we predict the value at each
step using a possibly different model. Given an initial data
set like {x1, x2,..., xm} as input, we first create h training
sets, each of which has the same input but different output.
The size of the prediction window h is case-dependent and
highly influenced by the nature of the application.

5.3.3 Full Elasticity
Inspired by the conventional swap space offered by many
Unix-like systems, we build a fully elastic strategy for run-
ning application on expanded or shrunk memory. The elas-
tic scaling strategy not only migrate the memory-intensive
applications to a larger instance when needed but also
downgrade the instance when some of the taken memory
is released, on the premise that an application can run
continuously without OOM errors. In doing so, we are
able to dump memory status to the disk (to avoid out of
memory problem) and to reduce the monetary cost when the
memory is no more needed. When building such models,
we set a threshold to decide whether to downgrade the
instance which is not a trivial task but an optimal problem
because checkpoint’s overhead has to be taken into account.
The rule of thumb is, though, if the cost on checkpointing
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memory states is more than the saved cost by switching to a
smaller instance, then the total monetary cost will be higher
than simply running on the existing large instance (we will
demonstrate this in the evaluation section).

5.4 Hybrid Approach

The just-in-time application migration approach proposed
in this section can be combined with the cost-ware exploita-
tion of virtual memory approach proposed in Section 4 to
form a hybrid approach. Specifically, when the memory
footprint of an application is unknown a priori, the appli-
cation can start with the just-in-time application migration
as it does not impose any assumption on memory footprint.
After running a while, if a repeating pattern is detected in
history memory footprints, it can switch to the cost-ware
exploitation of virtual memory approach for better cost-
effectiveness.

6 EVALUATION

6.1 Experimental Setup

All experiments are carried out on AWS [2]. The instances
for various memory capacities and prices are listed in Ta-
ble 1. We chose reserved instances for evaluation such that
little performance interference is expected. Nonetheless, we
do not impose assumptions for specific instance. If users
prefer spot instances, the proposed work can be integrated
with other spot instance management work, e.g., the SPO-
Ton [37]. That is, our work is complementary to existing
spot-instance framework.

We implement our models using Python and Shell
scripts. The system prototype can be directly deployed to
any Linux-like operating system and serves as a middleware
for upper-level frameworks, including but not limited to big
data systems such as Spark and Myria. The reason why we
isolate the memory-scaling subsystem from these big data
systems is that OOM errors are common across different big
data systems [28]; therefore, a loosely-couple middleware
would contribute to the largest possible spectrum of big
data systems. The source code of this work is available at the
project website:https://www.cse.unr.edu/hpdic/proj/cme.
We ran each experiment for 10 times and took the average
values for the reported monetary cost and execution time.

TABLE 1: AWS instances used for evaluation

Instance Name Memory Capacity (GB) Price (US$ per Hour)
t2.small 2 0.023
t2.medium 4 0.0464
t2.large 8 0.0928
t2.xlarge 16 0.1856
t2.2xlarge 32 0.3712

6.2 Cost-aware Exploitation of Virtual Memory

The goal of this section is two-fold: a) demonstrating the
accuracy of the proposed performance model with various
real-world applications; b) reporting quantitative monetary
benefit (and the compromise made on performance) when
different portions of swap space are taken into account. We
evaluated the model with three real-world applications: 1)

Fig. 7: Memory Needs of Applications

MRI application [28], a scientific image processing appli-
cation using image data to make inferences about the brain.
And the measurements of the app are used to estimate large-
scale brain connectivity. Since measurements are repeated
288 times on each person, OOM errors are so common in
MRI that we can easily use it as an particular example to
solve OOM errors; 2) Didi application [11], an open-source
data mining application on taxi’s location data collected by
Didi Inc (the collaborator of Uber in China). The research
focuses on the ability to identify stationary and moving
objects from a moving car using a range of data points and
attempts to advance the development of self-driving cars; 3)
an open-source implementation of adding multidimensional
matrices AddMatrix [32] from the popular Numpy library.
The memory needs of these three applications is shown as
Figure 7. All the experiments were carried out with 4GB-
RAM instances on AWS (i.e., t2.medium) unless otherwise
noted.

For this method, a repeating cycle of memory footprint
is needed to build the Slowdown vs. Swapness model (as
shown in Figure 4). Figure 9 shows the slowdown of the
MRI application when swap portion is between 0.1 and
0.8. We do see some fluctuations in the real slowdown,
which is expected as arbitrary (e.g., not LRU) memory-
access patterns occur in this application. However, the trend
still follows an exponential curve in the big picture. More
importantly, all data points fall into the ranges (i.e., the gray
shadow) of the model, indicating a high accuracy of the
proposed model. To quantify that, we apply the Pearson
correlation coefficient (PCC) defined as:

PCC =
Σni=1(xi − x)(yi − y)√

Σni=1(xi − x)2
√

Σni=1(yi − y)2
(12)

where n indicates the total number of data points, xi and
yi indicate the real data and modeled data, and x and y
indicate the mean of each data series. The correlation of the
real data points and our model is extremely strong, as the
PCC turns out to be 0.994.

Similarly, Figure 8 shows the slowdown of the data
mining application and the swap portion is between 0.175
and 0.8. The portion range is a little different from the
first application because this one is more memory-hungry
(or, more memory-intensive). And because of the memory-
hungry nature of this application, we observe even more
serious slowdown than the MRI application. But again, most
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Fig. 8: Swap model for Didi [11] Fig. 9: Swap model for MRI [28]
Fig. 10: Swap Model for AddMa-
trix [32]

Fig. 11: Monetary Cost Normalized to the 32G-RAM Ma-
chine

of the real data points fall into the prediction intervals (i.e.,
the gray shadow) and the PCC of this application is also
extremely high: 0.988.

Lastly, Figure 10 shows the slowdown of the matrix
adding application and the swap portion is between 0.1 and
0.8. This application exhibits a similar pattern as MRI; the
PCC coefficient is also extremely high: 0.991.

Figure 11 compares the cost predicted by the proposed
model and the real cost on the 4GB-RAM instance, both of
which normalized to the cost on the 32GB-RAM instance
that provides enough physical memory for both applica-
tions (the peak of real memory footprint is about 18 GB).
Since in all cases the application is not migrated between
instances, the cost is the same in terms of both execution
time and monetary cost. We can see that the cost predicted
by our model is highly accurate: The error rates are: Didi
4%, MRI 1%, and AddMatrix 3%. The figure also shows
that using swap does not guarantee reduced cost: the cost
of the Didi application using swap is increased by more
than 158%, for MRI the cost is reduced by 50%, and the
cost for AddMatrix is increased by 47%. The root cause of
these results is that the Didi application is highly memory-
intensive, meaning that introducing swap on a memory-
restrained instance will likely incur much more running
time outweighing the benefit of the cheaper per-hour price.
The findings, in fact, prove the effectiveness of our model:
our model can tell, in a very high accuracy, that whether
applying swap on a memory-constrained and inexpensive
instance would result in higher or lower total cost.

Fig. 12: Execution Time Normalized to the 32G-RAM Ma-
chine

Fig. 13: Monetary Cost on an 8G-RAM Instance (normalized
to the 32G-RAM machine)

We also report the execution time for all three appli-
cations in Figure 12. We observe an order of magnitude
higher time cost for both Didi and AddMatrix, which is
partially attributed to their swap access intensiveness be-
tween swap and physical memory and therefore cause the
overall monetary cost exceeding the baseline case. What is
more interesting, however, is the MRI application. The MRI
results make a strong case for trading off performance for
cost: by compromising 4X running time the overall cost
can be reduced to half. This is exactly the point of the
first contribution of this paper—allowing users to make
compromise between time and cost.
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Fig. 14: Execution Time on a 8G-RAM Instance (normalized
to the 32G-RAM machine)

Fig. 15: Monetary Cost on an 16G-RAM Instance (normal-
ized to the 32G-RAM machine)

Figure 13 compares the cost predicted by the proposed
model and the real cost on the 8GB-RAM instance (i.e.,
t2.large), both of which normalized to the cost on the
32GB-RAM instance that provides enough physical memory
for both applications (the peak of real memory footprint
is about 18 GB). We observe similarly high accuracy in
this experiment as in Figure 11. Specifically, the largest
error occurs for the Didi application but still under 10%
( 102−92102 = 9.8%).

Figure 14 compares the execution time predicted by the
proposed model and the ground-truth on the 8GB-RAM
instance, both of which normalized to the cost on the 32GB-
RAM instance that provides enough physical memory for
both applications (the peak of real memory footprint is
about 18 GB).

Figure 15 compares the cost predicted by the proposed
model and the real cost on the 16GB-RAM instance, both
of which normalized to the cost on the 32GB-RAM instance
that provides enough physical memory for both applica-
tions (the peak of real memory footprint is about 18 GB).
Again, we can see that the cost predicted by our model is
highly accurate: The error rates are: Didi 3.5%, MRI 3.5%,
and AddMatrix 0%. The figure shows that a lot of cost
can be saved when the instance provides almost the same
amount of memory as the application: the cost of the Didi
application using swap is reduced by more than 43%, for
MRI the cost is reduced by 44%, and the cost for AddMatrix

Fig. 16: Execution Time on a 16G-RAM Instance (normalized
to the 32G-RAM machine)

is reduced by 39%. Once again, the accuracy is high for all
applications.

Figure 16 compares the execution time predicted by the
proposed model and the ground-truth on the 16GB-RAM
instance, both of which normalized to the cost on the 32GB-
RAM instance that provides enough physical memory for
both applications (the peak of real memory footprint is
about 18 GB. We can find that when virtual memory is used
very little, the running time does not increase dramatically).

Note that the total monetary cost equals to the execution
time times the cost rate of the instance. Therefore, even
though higher memory capacity instance can speed up
the execution time by reducing the SWAP proportion, the
increased cost rate may not always overcome the increased
cost rate of the more expensive instance, thus the overall
cost can be higher, vice versa. E.g., in Figure 9, execute MRI
using 32G memory instance has higher cost compared to
instance with 4G memory.

To summarize, this section demonstrates that our models
can predict both time and monetary costs with extremely
high accuracy on multiple instance types. Such a low sen-
sitivity on instance types is high desired, as this property
would facilitate a wide spectrum of usability of the pro-
posed models.

6.3 Just-in-Time Application Migration
This section answers the following questions using real-
world applications: a) illustrating the real-time performance
for applications continuously deployed to a series of cloud
instances in an increasing order of memory capacities (appli-
cation migrates to another instance when the current one’s
memory is to be depleted); b) reporting the quantitative
monetary benefit when applying the proposed techniques
of predicting memory footprint and elevating memory ca-
pacity.

Figure 17 shows the MRI application’s memory foot-
print over its entire course using our prediction-elevation
approach. To facilitate the description, we define stage as
periods that are separated by checkpoints. Having 4 stages
means there are 3 checkpoints that separates the entire run-
ning duration into 4 periods. The lifespan of the application
comprises four stages on four instance types: 4GB-, 8GB-,
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(a) Stage 1 (4GB-RAM) (b) Stage 2 (8GB-RAM)

(c) Stage 3 (16GB-RAM) (d) Stage 4 (32GB-RAM)

Fig. 17: Memory Elevation after Migrating Applications,
MAPE = 2.97%

(a) Stage 1 (4GB-RAM) (b) Stage 2 (8GB-RAM)

(c) Stage 3 (16GB-RAM) (d) Stage 4 (32GB-RAM)

Fig. 18: Memory Footprint Predicted by Regression with
Step = 3, MAPE = 8.13%

16GB-, and 32GB-RAM instances, as shown in sub-figures.
For each stage, we plot the true values and the predicted
values using the approach we discussed in Section 5. As we
can see, our predicted values are highly accurate for most of
time 5, except that at around 50 seconds the predicted value
is noticeable lower than the true value. The reason for that is
because the application just completed a memory-intensive
iteration and the system is busy with memory recycling (i.e.,
garbage collection). We will further fine-tune our model by
considering such corner scenarios in our future work.

Figure 18 illustrates how the memory footprint is pre-
dicted using the regression model with step size = 3. We
observe slightly larger errors compared to the baseline pre-
dictor (Figure 17, particularly on smaller instances such as
Figure 18a and Figure 18b. Therefore, time series models are

5. It is worth to mention that the prediction results of Stage 1 looks
like have larger error than Stage 2-4 is mainly because the y-axis scale
is only from 0 to 4,000 MB, much smaller than Stage 2-4 (e.g., in Stage 4,
y-axis is from 0 to 20,000 MB), which makes the error more pronounced.

(a) Stage 1 (4GB-RAM) (b) Stage 2 (8GB-RAM)

(c) Stage 3 (16GB-RAM) (d) Stage 4 (32GB-RAM)

Fig. 19: Memory Footprint Predicted by Regression with
Step = 5, MAPE = 13.02%

(a) Stage 1 (4GB-RAM) (b) Stage 2 (8GB-RAM)

(c) Stage 3 (16GB-RAM) (d) Stage 4 (32GB-RAM)

Fig. 20: Memory Footprint Using LSTM with Step = 3, MAPE
= 11.52%

more sensitive on smaller instances.
Figure 19 illustrates how the memory footprint is pre-

dicted using the regression model with step size = 5. This
experiment reconfirms the conclusion drawn from the last,
Figure 18: time-series models are sensitive on (at least) two
factors: instance capacity and step size. As for instance
capacity, more noticeable prediction errors are found in
Figure 19a (4GB-RAM instance) and Figure 19b (8GB-RAM
instance) compared to Figure 19c (16GB-RAM instance) and
Figure 19d (32GB-RAM instance). As for step size, the gaps
in Figure 19a are more significant than those in Figure 18a,
and gaps in Figure 19b are more significant than those in
Figure 18b.

Figure 20 illustrates how the memory footprint is pre-
dicted using the LSTM model with step size = 3. It suffers
the same high sensitivity as regression models on smaller in-
stances, e.g., 4GB-RAM (Figure 20a), 8GB-RAM (Figure 20b).
One interesting observation is that the sensitivity of LSTM
models on prediction error now comes as an offset rather
than a vertical error in regression models. To see this, take
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(a) Stage 1 (4GB-RAM) (b) Stage 2 (8GB-RAM)

(c) Stage 3 (16GB-RAM) (d) Stage 4 (32GB-RAM)

Fig. 21: Memory Footprint Using LSTM with Step = 5, MAPE
= 18.17%

Figure 20a for example, both the prediction and true-value
plots are in the same pattern but with a small offset, whereas
the counterpart in Figure 18a exhibits the gaps in the vertical
direction. The root cause of this phenomena is that our
LSTM model “optimistically” takes the estimated values as
true values in future prediction, resulting in a lag (or, a time-
wise offset) in prediction.

Figure 21 illustrates how the memory footprint is pre-
dicted using the LSTM model with step size = 5. This model
is by far the most inaccurate model due to the large step
size. In particular, the predicted values at small instance of
4GB-RAM (Figure 21a are significantly off the true values.
In addition, even at larger instances (e.g., Figure 21c) there
are even noticeable errors, which are almost negligible in
other models.

For this method, the models need a warm up phase for
online adaptive prediction. The duration of warm up phase
is usually very short, for example, for using LSTM model
on MRI application, it needs about 17 seconds to warm up
(shown as Figure 20a and Figure 21a). It is worth to note
that based the above experimental evaluation, the regression
based model is slightly more accurate in prediction, but it
involves manual efforts of choosing the regression function.
LSTM based model on the other hand is slightly less ac-
curate but is fully data-driven and automatic, thus more
convenient. Also, regression is a simple model while LSTM
is a sophisticated model. Usually a regression model can be
trained well with little data, but the limitation is that it could
not capture very complex behaviors. LSTM has potential
to capture more complex behaviors but also needs more
training data and fine-tuning. Here LSTM performs worse
as the pattern is relatively simple and the training data is
relatively limited. The MAPE (Mean Absolute Percentage
Error) for both models is shown in Table 2. Our approach
supports both prediction models and users can choose the
more suitable one based on their needs.

Figure 22 illustrates the overall costs at various stages
normalized to the baseline cost (we did not show the 32GB-
RAM comparison since they all incur the same cost). Here,
we evaluate both the monetary cost and running time cost

TABLE 2: MAPE(%) of Two Proposed Algorithms

Algo.
Step 1 3 5 7 9 15

Regression 2.97 8.13 13.02 18.33 24.44 34.15
LSTM 4.13 11.52 18.17 25.46 34.22 42.31

Fig. 22: Cost Comparison (normalized to the 32GB-RAM
machine)

under four cases: 1) Full Elastic represents the case that the
application does not only migrate to a larger instance when
needed but also downgrade the instance when memory
usage decreases. It is worth noting that Full Elastic Method
is not always preferred such as the memory usages are
growing most of the time and durations of descent are
very short. But if the memory usage often keeps low for a
relatively long duration, the full elastic method will be more
cost-effective; 2) Monotonic Scale-up represents the case that
the application only migrates from smaller instance to larger
instance; 3) Opt-ckpt represents the case of using optimal
checkpointing method; and 4) 32G machine represents the
case that instance has large enough memory at the beign-
ning. We can see that for all types of instances, the proposed
techniques (either the Full Elastic or the Monotonic Scale-up
approach) incur the least cost—significantly cheaper than
both the checkpoint approach and the baseline with all
physical memory allocated. In Stage 1, Full Elastic costs
only 10% of the baseline approach at 4GB-RAM instances; In
Stage 2 and State 3, Monotonic Scale-up saves 33% and 60%
on 8GB-RAM and 16GB-RAM instances, respectively. The
optimal-checkpointing approach is also cheaper than the
baseline but more expensive than our proposed approaches:
14% (vs. 10% and 13%), 53% (vs. 42% and 33%), and 90% (vs.
74% and 61%) on the above instances. Overall, Full Elastic
scaling takes 42% of the baseline cost and 81% of the optimal
checkpointing, while Monotonic Scale-up takes only 35%
of the baseline cost and 66% of the optimal-checkpointing
approach.

Indeed, the saved cost does require more running time,
and Figure 23 reports the time overhead on each type of in-
stances normalized to the baseline running time. Again, we
did not report the 32GB-RAM case since the numbers would
look exactly the same. We can see that for each instance
type, the proposed Monotonic Scale-up does not incur as
significant overhead as the optimal-checkpoint does. For the
first three stages, the proposed approach takes 3%, 34%,
and 22% more time than the baseline while the optimal-
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Fig. 23: Time Comparison (normalized to the 32GB-RAM
machine)

checkpointing approach takes much more: 13%, 110%, and
80%. Taking all together, the time overhead of Monotonic
is only 22% but saves 65% cost comparing to the baseline.
The overhead introduced by Full Elastic scaling is, indeed,
higher than Monotonic Scale-up, on par with the optimal
checkpointing. This implies that Full Elastic is not a top pick
when the application is time-sensitive; and yet, Full Elastic
does provide the highest flexibility that might be a must-
have property for some specific workloads.

7 CONCLUSION AND FUTURE WORK

This paper presents two techniques to help deploy big data
applications with dynamic and intensive memory footprint
on cloud-based big data systems with low monetary cost.
The first approach assumes the users are well aware of the
application’s swap access patterns such as uniform access,
and the proposed performance-cost model can accurately
predict how, and by how much, virtual memory size would
slow down the application and consequently, impact the
overall monetary cost. The second approach removes the
assumption of a priori memory access patterns by proposing
a lightweight memory usage prediction methodology. The
key idea is to eliminate the periodical checkpointing and
migrate the application only when the predicted mem-
ory usage exceeds the physical allocation of the big data
systems based on dynamic meta-models adjusted by the
application’s own traits. Taking both techniques together,
this work covers a wide spectrum of big data applications
regarding the trade-off between performance and cost using
both virtual and physical memory scaling approaches.

The future direction of this work is how to further
improve the data-locality at the swap space. In this paper
we assume the replacement policy in swap is least-recently-
used (LRU), which is true in almost all operating systems
but may not well aligned with applications’ swap access
patterns. This is exactly why in experiments we did observe
some fluctuations when modeling the time-swapness cor-
relation (Fig. 4). We believe if we can hack into the swap
implementation, the performance of memory-intensive ap-
plications using the proposed techniques would be further
improved. One possible solution is to implement a user-
level swap and integrate it to the approaches proposed in
this work.
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