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ABSTRACT
As the need for scaled-out systems increases, it is paramount
to architect them as large distributed systems consisting of
off-the-shelf basic computing components known as compute
or data nodes. These nodes are expected to handle their
work independently, and often utilize off-the-shelf manage-
ment tools, like those offered by Linux, to differentiate pri-
orities of tasks. While prioritization of background tasks in
server nodes takes center stage in scaled-out systems, with
many tasks associated with salient features such as even-
tual consistency, data analytics, and garbage collection, the
standard Linux tools such as nice and ionice fail to adapt
to the dynamic behavior of high priority tasks in order to
achieve the best trade-off between protecting the perfor-
mance of high priority workload and completing as much
low priority work as possible. In this paper, we provide
a solution by proposing a priority scheduling middleware
that employs different policies to schedule background tasks
based on the instantaneous resource requirements of the high
priority applications running on the server node. The selec-
tion of policies is based on off-line and on-line learning of
the high priority workload characteristics and the imposed
performance impact due to low priority work. In effect, this
middleware uses a hybrid approach to scheduling rather than
a monolithic policy. We prototype and evaluate it via mea-
surements on a test-bed and show that this scheduling mid-
dleware is robust as it effectively and autonomically changes
the relative priorities between high and low priority tasks,
consistently meeting their competing performance targets.
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1. INTRODUCTION
Scaling of web services is mostly achieved by deploying

distributed systems in large data centers or even across them.
Traditional computer systems, particularly those supporting
enterprise applications, do not scale well, especially with re-
gard to cost. To mitigate cost at a large scale, the industry
is increasingly turning to commodity hardware and open-
source software to accomplish large-scale services and com-
putation. In order to scale-out and still operate effectively,
the building blocks are off-the-shelf server nodes that oper-
ate mostly independently, while exchanging messages with
other participating nodes [20]. This goal, exemplified by the
Open Compute [2] initiative which has been widely adopted
by the broader tech community, is to keep down the cost of
systems that host big data and provide large scale analytics
and other important web services.

One of the salient characteristics of the large distributed
systems hosting a wide range of web services is support-
ing a wide range of features, including eventual consistency
of data, data replication, garbage collection, and log data
analysis, that run asynchronously in the background, at the
level of the individual server node. The goal is to serve user
workload as fast as possible and handle most of the man-
agement tasks only when system resources are moderately
utilized. To illustrate the existence of opportunities for ef-
fective scheduling of background tasks in real systems, we
illustrate in Figure 1 the arrival intensity of requests to store
new data or read existing ones in one of the nodes of a large
scale web service over a three day period. The strong daily



pattern in the arrival intensity allows the system to schedule
other important but less time sensitive tasks, e.g., garbage
collection, during periods of low user activity, ensuring that
these tasks do not affect the user quality of experience.
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Figure 1: Overtime plot of arrival intensity for a
large scale web service .

Here, we develop scheduling middleware that builds upon
standard scheduling prioritization tools that are available
in any Linux distribution, which often is the operating sys-
tem of choice in the individual nodes of scaled-out systems.
Standard distributions provide monolithic tools for prior-
ity scheduling but these are usually not reactive to chang-
ing workload conditions as those depicted in Figure 1. The
scheduling middleware that we propose is based on effec-
tively launching nice and ionice, the most common pri-
oritization tools, with the appropriate priority levels that
best match the existing system conditions. Furthermore,
these priority levels are continuously adjusted throughout
the lifetime of the system to control relative priorities be-
tween the user (or foreground) traffic and the background
system features in order to guarantee quality of service tar-
gets for foreground work while maximizing completion levels
of background features.
While prioritization features have been proposed at the

kernel level [26, 18] or at the application level [19, 17, 15],
our focus is to provide middleware that is built upon stan-
dard tools that are available in any Linux distribution and
most importantly operate in user-space. By utilizing nice

and ionice as building blocks, we ensure that at fine time
scales (i.e., microseconds) there is correct differentiation of
the processes based on their priorities. At coarse time scales
(i.e., minutes), we control and manage these priorities (i.e.,
via renice and other utilities) to ensure that foreground per-
formance is protected and background work is completed
as efficiently as possible. The middleware that we pro-
pose is based on several standard monolithic scheduling poli-
cies (e.g., nice and ionice) but also on smart, a new (but
still monolithic) mechanism that suspends background work
briefly when foreground load spikes [23]. During the life-
time of the execution of the background work, the proposed
middleware switches among the various basic policies as con-
sidered best fit.
Using the web-driven TPC-W benchmark [1, 5] as a rep-

resentative foreground application, we experiment with a
range of background tasks, as defined by controllable micro
benchmarks. Our extensive set of experiments shows that we
can effectively utilize system resources by scheduling back-
ground jobs with the best monolithic policy depending on
resource availability, maintaining an overall uniform utiliza-
tion of the system. We stress that the selection of the best

policy is left to the middleware and this can change during
the course of the execution.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide results from characterizing the behavior
of nice under several scenarios. Section 3 develops our new
prioritization scheme which determines the priority of the
background tasks. The new framework is evaluated via ex-
tended experiments in Section 4. We discuss related work
in Section 5. We conclude the paper and summarize future
work in Section 6.

2. PRELIMINARIES
In this section, we first present an overview of the available

off-the-shelf scheduling tools for priority scheduling and con-
tinue with an overview of resource demands across time for
a typical workload to illustrate how background scheduling
can become truly opportunistic. Finally, we show with evi-
dence that a single background scheduling policy cannot be
effective under all circumstances, which further corroborates
the need for agile middleware that continuously adjusts pri-
ority scheduling parameters in a transparent and autonomic
way.

2.1 Prioritizing Background Work
Proprietary systems often have their own priority schedul-

ing algorithms that allow them to maintain performance of
user workload while other lower priority jobs are running in
the background. For systems built of off-the-shelf Unix com-
ponents, the readily available tools for priority scheduling
are nice, which prioritizes access to the CPU resource, and
ionice, which prioritizes access to the disk resource. While
different distributions of Unix have different implementa-
tions of nice and ionice, they operate similarly: when en-
abled, they allow users to adjust the execution priority of
processes.

A process that is invoked via nice can have a schedul-
ing priority between -20 (the highest priority) and 19 (the
lowest priority). A process invoked with nice 0 or without
nice command runs with the default (i.e., normal) prior-
ity. nice determines the chunk of CPU time for a specific
process, i.e., the higher the priority the larger the chunk of
CPU time the process gets. The exact relation between the
nice parameter and the amount of CPU time dedicated to
a process is implementation dependent and varies between
Unix/Linux distributions. The mechanism is generally sim-
ple to use and depends on fine-grained CPU consumption.
A user can change the priority of a process via Eunice.

Similarly, ionice allows ranking the priority of a process
from 0 to 3, where 3 is meant to designate a process that
should be given IO resources only when the IO system is
idle. Adding ionice can help boost nice’s performance in
cases of memory-intensive background tasks.

A user may select to invoke both nice and ionice to-
gether. Combining nice 19 with ionice 3 gives the lowest
priority setting for both resources. We label this combina-
tion as allnice and it represents the most straightforward
way for the background work to minimally effect the perfor-
mance of foreground work using commodity utilities.

In [23], a scheduling policy named smart is developed
that focuses on adapting background job scheduling to fore-
ground work with demands that are variable across time.
The basic premise is to observe and effectively predict peri-
ods of low and high utilization of the foreground work and



launch or suspend background work based on monitoring
system utilization levels. Suspending and resuming utilizes
system resources by scheduling background work only when
resources are lightly to moderately utilized by high prior-
ity processes. Additionally, it better isolates the foreground
performance than nice or allnice, as well as doing so more
consistently than either of the off-the-shelf options.
In this paper, we develop a middleware that utilizes smart

in [23] as well as the Linux priority scheduling tools nice

and ionice and further enhances their capabilities by defin-
ing a set of policies which are automatically invoked within
the same application run. The policies that are automati-
cally selected by the middleware are the following:

• nice 0: the background work and the foreground ap-
plication are running at the same priority for both
CPU and IO resources.

• allnice: the background work runs at the lowest prior-
ity but it is never suspended, i.e., it is executed using
nice 19 with ionice 3.

• smart+: the background work is suspended briefly if
load spikes using smart [23]. Once load returns back
to its previous level, allnice is used here, unlike to the
policy in [23].

• FGonly: the background work is suspended completely
if high load for an extended period (i.e., at the hour-
level granularity) is detected.

Additional policies can be added according to the specific
system and application scenarios. In general, more schedul-
ing policies give finer control, but may also result in more
overhead. Intermediate policies with different nice param-
eters can be used, as well as more policies between the two
extremes of nice 0 and FGonly. For ease of presentation
and with no loss of generality, we focus here on the four
policies outlined above. More details are given in Section 3.

2.2 Scheduling Background Work: Perils and
Opportunities

To illustrate the ample opportunities and perils of back-
ground scheduling, we show in Figure 2 the CPU utilization
and response time as a function of elapsed time for TPC-
W [1], a classic multi-tiered benchmark1 that has significant
variability across time in its CPU and memory demands [22].
The figure illustrates three scenarios: one with only 10 em-
ulated browsers (EBs) (top graph), one with 40 emulated
browsers (middle graph), and one with 70 emulated browsers
(bottom graph). The figure clearly shows many opportuni-
ties to schedule background jobs when there are only 10 emu-
lated browsers: the CPU utilization is consistently low, with
the exception of a few short time periods. Similarly, average
response times are low across the entire experiment. The
middle graph shows a different situation: with 40 EBs sev-
eral bursts of short but high CPU activity that are usually
clustered together, interspersed with periods of low CPU us-
age. The average user response time follows closely the CPU
usage patterns. The bottom graph, where there are 70 EBs,
shows longer periods of high utilization intermixed with pe-
riods of low utilization. The figure illustrates that there are

1For the exact description of the experimental and measure-
ment setting see Section 4.

plenty of opportunities to schedule background tasks when
there are only 10 EBs, but higher load situations require
more care, lest background work is scheduled during periods
of high utilization and TPC-W performance is compromised.

2.3 Monolithic Background Scheduling
Figure 3 illustrates a first proof-of-concept of the relative

advantages and disadvantages of scheduling background jobs
using nice 0, allnice, smart+, and FGonly. The last
policy gives the norm of the ideal response time. The back-
ground work that we launch here is explained in detail in
Section 4. The figure illustrates the cumulative distribution
histogram (CDH) of response times for TPC-W (first row)
and the throughput of background jobs (second row), pre-
sented as the number of completed iterations. The CDH fig-
ures clearly illustrate that the ranking of the various policies
with respect to foreground performance are consistent for
10, 40, and 70 EBs and reflect how conservatively the back-
ground work is scheduled, ditto for the respective amount of
completed background work. Yet, if there is a certain ser-
vice level objective, e.g., if the 80th percentile of response
time needs to be less than 600 ms, then background schedul-
ing can be tuned to be more or less aggressive, such that it
takes into account the load in the system as expressed by
the number of EBs is able to guarantee better background
throughput. If the system operates with 10 EBs, then nice 0
is sufficient for performance and maximizes the completed it-
erations but if the system operates with 40 EBs then allnice
can offer performance guarantees while keeping iterations at
a maximum. When EBs rise to 70, then any background
scheduling must be stopped. The figure clearly shows that
effective background scheduling needs to be agile and hybrid,
i.e., continuously change its priority parameters (e.g., switch
from nice 0 to allnice to smart+ to FGonly) depending
on the system operating conditions. In the following section
we define how to develop and launch such middleware.

3. METHODOLOGY
The basic premise of the proposed middleware is that if

load from the high priority (or foreground) application is
light, then running background tasks with the same prior-
ity should not violate the foreground performance target.
As load from the foreground application increases, the pri-
ority of background work should decrease. If the system
foreground load is high then the background should be sus-
pended until the high load period passes. We aim to con-
sistently meet the system’s foreground performance target
while serving as much background work as possible. To
achieve this goal, we learn the corresponding performance
for different foreground load levels and monitor the latter
to decide at what priority (if at all) to schedule background
tasks.

3.1 Foreground Load Levels Relative to the
Target

Load levels are defined relative to the foreground perfor-
mance target, which, without loss of generality, we define as
the percentile of requests whose response time is less than a
target value (e.g., 80% of foreground requests are served in
less than 600 ms). The system then is said to be under high
load if it closely meets the target. If the target is violated,
then the system is in overload. If the load results in better
performance than the target, then we consider the load to
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Figure 2: Overtime comparison of CPU utilization and average response times for 10, 40, and 70 emulated
browsers. The duration of of this experiment is one hour.
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Figure 3: Performance results for TPC-W (CDH of response times) and background work completed (mea-
sured in number of iterations).



be light to moderate and background work can be sched-
uled without violating the target. The lighter the load, the
higher the priority of the background work.
In Figure 4, we plot the cumulative distribution histogram

(CDH) of TPC-W response times when load varies from light
to heavy. In TPC-W the load is measured by the number of
emulated browsers - EBs - (which corresponds to the num-
ber of network connections). In general, the load of a web
service (which is the application type of interest given our
focus on the individual nodes of a scaled-out system) can be
measured similarly, although other metrics of load can be
trivially defined and applied to our methodology.
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For a given target, we define the “high load” level based
on the measurements captured in Figure 4. For example,
the target of 80th percentile being at most 600 ms would
result in “high-load” being 80 EBs, because it is the highest
load level meeting this target. If the foreground performance
target for the 80th percentile is to be at most 300 ms, then 70
EBs would be the “high load” in the system, while a load of
80 EBs would put the system into overload. For a target of
300 ms the system should serve background work alongside
foreground only if the foreground load is less than 70 EBs.
The measurement data present in Figure 4 can be col-

lected off-line in a test environment or it can be collected
in the system as it comes on-line and kept up-to-date over
time. Collecting such data should be possible with minimal
effort, since the systems we are focusing on are provided by
the general Linux distribution with an array of monitoring
and logging tools.

3.2 Priority Policy Decision
The proposed middleware requires identifying the relation

between current load and performance target for the fore-
ground application (as described in Subsection 3.1), in or-
der to identify the availability of resources to execute back-
ground tasks and set correctly the relative priority of the
background tasks. As a result, similarly to the learning
described in Subsection 3.1, we learn the foreground per-
formance with a single representative background task (see
more details in Section 4) treated with one of the four prior-
ity policies defined in Subsection 2.1. We again generate the
distribution of foreground response times. For example, for

each of the evaluated TPC-W loads and nice 0, we generate
the same set of response time distributions as captured in
Figure 4.

We learn foreground performance behavior through a num-
ber of representative cases. The background tasks that we
use for training run concurrently with TPC-W are described
in Section 4 and can be tuned to demand more or less CPU
and memory resources. Specifically, during learning, we
measure the system under the foreground application plus
heavy background load, i.e., demanding more than 100%
CPU utilization and memory, so that the impact on fore-
ground performance would hold for any background task
that may be served in the system. Because of these choices
during the learning period, we consider the measurements
conducted as a baseline that can be used reliably to guide
our decision on the priority policy for a given foreground
load (and its performance target) and any background task.
Results shown in Section 4 support these choices. Our re-
liance on fine-grained priority scheduling done by nice and
ionice adds to the robustness of our decisions.

To help visualize the data we collect during our learn-
ing process, as well as to clarify our decision-making pro-
cess with regard to dynamically changing background pri-
orities, we plot the collected data, i.e., the distribution of
response times for different load levels and priority policies,
as stacked bars, see Figure 5. The x-axis of Figure 5 con-
sists of all possible (system load, priority policy) pairs. The
y-axis in Figure 5 represents the response time percentiles
of the foreground requests, measured in milliseconds. The
different colors used in each bar mark a specific, i.e., 50, 70,
80, and 90th, percentile of the response time distribution for
a specific pair.

The data structure visualized in Figure 5 is paired with
the foreground performance target which we illustrate with a
horizontal line which represents the expected response time
percentile. In this figure we have marked performance tar-
gets for the 80th percentile of response times to be equal
to or less than 600ms. In this case, more than 70 EBs is
considered “high load”, since the target is met under the
FG-only policy only. As the foreground load decreases, the
80th percentile of foreground response times is met also by
several priority policies that serve background work. For
example, for 50 EBs, the 80th percentile of foreground re-
sponse time is less than 600ms under the smart+ policy,
while for 40 EBs the target is still met if we schedule back-
ground work via allnice. At 30 EBs or less that background
work can be scheduled with the same priority as foreground
work via nice-0 without violating the target. The benefit
of increasing the priority of background work (from FG-
only to nice-0) as foreground load reduces is to serve more
background work while ensuring that the foreground per-
formance target is met. The map in Figure 5 is used by
the scheduling middleware that we propose here as the de-
cision making engine to automatically adjust priorities as
foreground load conditions change over time.

A schematic view of information interchange in our pri-
ority scheduling hybrid middleware is provided in Figure 6.
We reiterate that the learning is done in such a way that it
can either be complete off-line or on-line as the system comes
up and can be updated overtime with more observations. As
we provide more details on our prototype in Section 4, we
also highlight the standard Linux utilities that we use.
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Figure 6: Schematic view of the middleware scheme.

4. EXPERIMENTAL EVALUATION
All experiments presented here are conducted on a Dell

PrecisionWorkStation with Intel Pentium Dual Core 2.4GHz
processor, 1GB memory, Seagate 7.2K SATA hard drives,
running openSUSE 11.4 (64 bit). As foreground workload,
we use a Java implementation of the TPC-W benchmark.
For background work we use our own micro benchmark in
order to do control the experiments and ensure representa-
tive data with regard to learning.
We consider TPC-W to be a challenging workload, be-

cause it is characterized by variability in its resource de-

mands across time [5], as also shown in Figure 2. TPC-W is
a web server and database performance benchmark [1] and
in our prototype we use to drive the system the java distri-
bution in [4]. We use tomcat as the application server and
mysql as the database server. TPC-W provides a large num-
ber of parameters. We use the browsing mix on a 100000
items in the database.

We develop our own micro benchmark to use as back-
ground work, which is built upon the Isolation Benchmark
Suite [13]. The micro-benchmark performs multiplications
in a tight loop which is embedded in a larger one containing
array initializations and file writes. The micro benchmark
allows to experiment with a broader range of CPU, memory,
and IO background demands. In the results reported in this
section, we have used three different variations of the micro
benchmark. In each of the three scenarios, four instances of
the micro-benchmark are run concurrently, each consuming
approximately 20% of memory capacity and some IO traffic.
The micro benchmarks parameters are scaled to change the
CPU demand across as shown below:

• micro1: consumes approximately 100% of the system’s
total CPU resource.

• micro2: consumes approximately 45% of the system’s
total CPU resource.

• micro3: consumes approximately 160% of the system’s
total CPU resource (i.e., uses almost both cores).

In order to provide a simple and easily portable imple-
mentation, our monitoring and scheduling algorithms are
implemented entirely in user space, making use of readily
available Linux commands (e.g., pidstat and kill). For



monitoring, we launch a shell script to call pidstat every
10 seconds and extract the CPU utilization for all running
processes, classifying the results into three main categories:
foreground (TPC-W related) processes, background (micro
benchmark related) processes, and other system processes.
The coarse granularity of these intervals differs from the
fine-grained handling generally used in real-time scheduling
algorithms in the literature, but we emphasize that we del-
egate the fine-grained decisions to nice and ionice.
To control the execution of background work, we use the

STOP and CONT signals and pass them to process by the
kill command to “pause” and “resume” the background
tasks. The process is suspended by being starved of re-
sources, but because it is not actually killed, it can be im-
mediately resumed from where it is paused. We stress all
these native system tools make our method easy to deploy
and with low overhead.

4.1 Results
Initially, we evaluate our hybrid scheduling middleware by

running the TPC-W as the foreground task and four micros
for a total of 100% additional CPU utilization (i.e., variant
micro1 above) as background tasks for different foreground
performance targets. We choose two scenarios to present
here. Scenario 1’s performance target is the 80th percentile
to be equal or smaller than 600 ms and Scenario 2’s perfor-
mance target is the 90th percentile to be equal or smaller
than 650 ms. Based on the decision map of Figure 5 the
scheduling strategy is devised and summarized in Table 1.
The policy transition parameters in Table 1 are obtained
from our off-line learning. As robustness of this learning
approach is key to our evaluation, we run all our tests for
14 hours, during which the foreground load varies from 0 to
80 EBs, including load levels that were not used in learn-
ing. For those cases, the decision is done based on the next
higher load tested.
We evaluate our hybrid priority scheduling middleware

by comparing it with the monolithic scheduling methods for
the same scenario. Our experiments are run 14 hours long
to ensure enough instances of foreground workload changes
occur to demonstrate the robustness of our hybrid middle-
ware. We plot the results for Scenario 1 and Scenario 2 in
Figures 7 and 8, respectively. In each figure, we plot the
system load measured by both CPU utilization and number
of EBs (see top plot). As load varies over time, so do the
opportunities to schedule background work. For each hour,
we report in the top plot of Figures 7 and 8 along the x-axis,
the decision of our hybrid middleware based on the param-
eters devised in Table 1 and monitoring of foreground load
levels. Figures 7 and 8 also plot the CDH and CCDF of the
response times for the different monolithic policies and our
hybrid middleware (see the second row).
As expected, the FG-only and nice-0 achieve the best

and worst foreground performance, respectively, because FG-
only suspends background work while nice-0 treats fore-
ground and background work the same. The other two
policies, allnice and smart+ maintain better foreground
performance at the cost of background throughput (bottom
right plot in Figures 7 and 8). The bottom left plot in
Figures 7 and 8 shows how hybrid meets the foreground
performance target (see vertical line) while achieving high-
est background throughout among all policies that do meet
the performance target (FG-only, smart+, and hybrid

for Scenario 1 and FG-only and hybrid for Scenario 2).
(see right plot in the bottom row).

We also evaluate the resiliency of our hybrid middleware
to the learning methodology. Recall that learning was done
with background tasks adding up to 100% CPU utilization.
We run the same 14 hours test for Scenario 1 and Scenario
2, but now the background work follows the variant micro2
(45% total CPU demand) and micro3 (total 160% CPU de-
mand). For micro2 background workload, we show the re-
spective results for Scenario 1 and Scenario 2 in Figures 9
and 10. For micro3 background workload, we show respec-
tive results for Scenario 1 and Scenario 2 in Figure 11 and
Figure 12. The decisions on policy transitions are done ac-
cording to Table 1 for both cases.

These experiments confirm that the hybrid middleware
meets the foreground performance target under all these dif-
ferent combinations of foreground performance targets and
background workload and that the learning approach is ef-
fective. The reason behind this is that the low priority work-
load is only scheduled during low system load periods, where
the foreground impact is well controlled. In addition, we are
always conservative by approximating the untrained fore-
ground intensity to the higher nearest intensity entry in the
decision map. Another critical aspect that contributes to
the resiliency of our hybrid middleware is the fact that the
scheduling policies used in our scheme are based on nice and
ionice, which control priorities at very fine granularities.

5. RELATED WORK
There has been a large volume of related work, that can

be roughly classified as scheduling that requires kernel mod-
ification, application modification, real time scheduling, or
scheduling for quality of service. Yet, to the best of our
knowledge, there is no mechanism that is available at the
user space as the one proposed here, that relies on automatic
usage of pause/resume of background execution as well as
automatic usage of the various nice and ionice options, or
renice thereof.

Traditional work on real-time scheduling relies on strictly
or semi-strictly predictable periodic tasks, such as media
players, and requires kernel modification, changes to appli-
cation code in order to take advantage of the scheduling,
and keeping track of specific deadline information for every
task [19, 17, 15]. Cucinotta et. al. focus on meeting accept-
able throughput for “soft real-time”applications, specifically
media streaming [7]. To do this, they take a signal process-
ing approach to characterize the activity periodicity behav-
ior of the blackbox legacy applications they are attempting
to control, and use the results to budget resources for each
application. Their implementation requires kernel modifi-
cation and does not explicitly stop low priority background
tasks in order to better protect foreground tasks, as ours
does. Meehean et. al. propose a very flexible system which
requires kernel modification and demonstrate a scenario sim-
ilar to ours [14]. Our work does know rely on periodicity or
any modifications to kernel or application code.

Scheduling that provides quality is service to individual
customers has been developed in [26], which look to provide
kernel support for differentiating quality of service for indi-
vidual customers. We are focused on preventing background
tasks on the server from interfering with any response-time-
sensitive tasks without again requiring any kernel modifica-
tion. Indeed, the proposed mechanism to background task



Table 1: Scheduling Computed from Decision Map for different Scenarios.
Scenario 1: Target: Prt(80%) <= 600ms Scenario 2: Target: Prt(90%) <= 650ms
System Load EB Range Policy Selection System Load EB Range Policy Selection

low 0-30 nice0 low 0-10 nice0
medium 31-40 allnice medium 11-19 allnice
high 41-60 smart+ high 20-40 smart+

extreme 61-80 FGonly extreme 40-80 FGonly
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Figure 7: Scenario 1 - BG: CPU total demand: 100% .

management could be combined with QoS differentiation
schemes by using different thresholds to protect higher QoS
processes.
Recent scheduling research has often focused on the par-

ticular problems of scheduling jobs on multicore machines
and computing clusters [10, 25]. When priority schedulers
are considered, it is generally with the intention of improv-
ing their fairness or maintaining fairness when adapting a
scheduler to more complex circumstances [25, 11]. The indi-
vidual characteristics of particular tasks are often taken into
account for scheduling purposes, for instance to save energy
during periods of low utilization [21] or to spread out inten-
sive tasks to prevent thermal damage to a machine [6]. In
some cases the non-linear interaction of different co-located

jobs is taken into account [12]. In this work, we look to use as
much of the spare capacity as possible for time-insensitive
background tasks, as in the case of a server handling the
continuous and bursty workload of foreground user traffic
while also intending to perform replication, integrity check-
ing, data analysis, or other work [16, 24].

Virtual machines (VMs) can also be used to isolate high
priority tasks [18]. VM management is not straightforward
either and requires significant overhead to manage, monitor,
and adjust resource allocation. In contract to traditional
VM managing solutions our approach is simpler to use as
it does not require the deployment of any additional soft-
ware. We provide a more precise sharing of resources since
it adjusts based on percentage of total CPU usage and may
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Figure 8: Scenario 2 - BG: CPU total demand: 100% .

allow the high and low priority processes to share cores,
whereas the virtual machine approach generally assigns a
whole number of cores to each virtual machine, although
the exact number may change dynamically [18].
Other researchers have focused on the progress rate of

applications to determine appropriate resource sharing be-
tween them [8, 9]. Ferguson et. al. describe a weighted
fair-sharing system that uses the progress rate to effectively
balance between jobs with specific deadlines of varying im-
portance [9]. Douceur and Bolosky share our goal more
clearly, identifying very low priority tasks that should not
be allowed to impact the foreground task [8]. To determine
whether the background task should be run or temporarily
stopped, they monitor the progress rate of the background
applications, assuming that when the progress rate falls be-
low a particular threshold, it must be because of foreground
process contention for shared resources. The background
tasks are then stopped for a window of time, then tried
again. Inspired by the TCP congestion control mechanism,
the sleep window increases exponentially as resource con-
tention is repeatedly observed. These approaches work well,
but require a way to monitor the progress rate of background
applications by the foreground application themselves.

Closely related to our work, Abe et. al. consider dis-
tributed computing projects like SETI@home, which allow
individuals to donate computing time to scientific calcula-
tions when their computer is otherwise idle [3]. Similar to
our work, Abe et. al. find built-in priority scheduling in-
sufficient to protect foreground performance and choose to
turn off background processing when the system detects re-
source contention with foreground processes. They monitor
the background process to detect this contention and apply
an exponential back off to reduce the impact on the fore-
ground. Instead of attempting to measure the progress of
the background tasks, however, they monitor the share of re-
sources given to the background process. If the share drops,
they assume that the foreground processes are now demand-
ing more resources and could benefit from the background
dropping altogether. In contrast, we focus on the behavior
of the foreground task, looking for the best periods in which
to perform background work.

To sum up, the proposed middleware for background schedul-
ing differs from all the above work in that it does not re-
quire changing the kernel or depend on complex software.
It does not require making changes to the foreground ap-
plication or its processes, it can be even deployed without
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Figure 9: Scenario 1 - BG: CPU total demand: 45% .
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Figure 10: Scenario 2 - BG: CPU total demand: 45% .

interrupting the current services. To deploy it, a learning
phase is required to characterize the statistical distribution
of the foreground traffic’s busy periods to determine the op-
timal periods to suspend the background job execution, and
based on this information it launches different background
job scheduling policies that can best fit the current system
conditions. Therefore, it is lightweight, portable, and flexi-

ble as it manages to take advantage of the benefits of several
monolithic background scheduling policies while minimizing
their respective shortcomings.

6. CONCLUSIONS
In this paper, we proposed a middleware scheme that

remedies the shortcomings of monolithic background schedul-
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Figure 11: Scenario 1 - BG: CPU total demand: 160% .
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Figure 12: Scenario 2 - BG: CPU total demand: 160% .

ing and provides strong performance guarantees on fore-
ground work. Our middleware scheme learns the foreground
resource requirements and stores such information in a com-
pact way, in the form of a cumulative data histogram. This
learning allows the scheme to determine the appropriate
scheduling policy based on pre-specified performance tar-
gets and current system load levels. The scheduling middle-

ware is built above standard system tools, ensuring that is
portable, with low overhead, and that can be deployed easily
at a node level within large scaled-out systems. Detailed ex-
perimental results verified its effectiveness and robustness.
In the future, we plan to add more policies and experiment
with a wider array of different applications. We also plan to
explore the case of meeting background work targets (e.g.,



close to a deadline) but still with minimum foreground per-
formance impact.

7. ACKNOWLEDGMENTS
This work is supported by NSF grant CCF-0937925. The

authors thank EMC for providing the enterprise data used
for this work.

8. REFERENCES
[1] TPC-W. http://www.tpc.org/tpcw/.

[2] The open compute project.
http://www.opencompute.org/, 2011.

[3] Y. Abe, H. Yamada, and K. Kono. Enforcing
appropriate process execution for exploiting idle
resources from outside operating systems. In EuroSys,
pages 27–40, 2008.

[4] T. Bezenek, T. Cain, R. Dickson, T. Heil, M. Martin,
C. McCurdy, R. Rajwar, E. Weglarz, C. Zilles, and
M. Lipasti. Java tpc-w implementation distribution.
http://pharm/ece.wisc.edu/tpcw.shtml, 2011.

[5] E. Cecchet, A. Ch, S. Elnikety, J. Marguerite, and
W. Zwaenepoel. A comparison of software
architectures for e-business applications. Technical
report, In Proc. of 4th Middleware Conference, Rio de,
2002.

[6] A. K. Coskun, R. D. Strong, D. M. Tullsen, T. S.
Rosing, and T. S. Rosing. Evaluating the impact of
job scheduling and power management on processor
lifetime for chip multiprocessors. In
SIGMETRICS/Performance, pages 169–180, 2009.

[7] T. Cucinotta, F. Checconi, L. Abeni, L. Palopoli, and
L. Palopoli. Self-tuning schedulers for legacy real-time
applications. In EuroSys, pages 55–68, 2010.

[8] J. R. Douceur, W. J. Bolosky, and W. J. Bolosky.
Progress-based regulation of low-importance processes.
In SOSP, pages 247–260, 1999.

[9] A. D. Ferguson, P. Bodak, S. Kandula, E. Boutin,
R. Fonseca, and R. Fonseca. Jockey: guaranteed job
latency in data parallel clusters. In EuroSys, pages
99–112, 2012.

[10] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, A. Goldberg, and A. Goldberg. Quincy:
fair scheduling for distributed computing clusters. In
SOSP, pages 261–276, 2009.

[11] C. Krasic, M. Saubhasik, A. Sinha, and A. Goel. Fair
and timely scheduling via cooperative polling. In
EuroSys, pages 103–116, 2009.

[12] S.-H. Lim, J.-S. Huh, Y. Kim, G. M. Shipman, C. R.
Das, and C. R. Das. D-factor: a quantitative model of
application slow-down in multi-resource shared
systems. In SIGMETRICS, pages 271–282, 2012.

[13] J. N. Matthews, W. Hu, M. Hapuarachchi,
T. Deshane, D. Dimatos, G. Hamilton, M. McCabe,
and J. Owens. Quantifying the performance isolation
properties of virtualization systems. In Experimental
Computer Science, page 6, 2007.

[14] J. Meehean, A. Arpaci-Dusseau, R. Arpaci-Dusseau,
and M. Livny. CPU Futures: Scheduler support for
application management of cpu contention. Technical
Report at:
http://research.cs.wisc.edu/techreports/2010/TR1684.pdf,
2011.

[15] C. W. Mercer, S. Savage, and H. Tokuda. Processor
capacity reserves: Operating system support for
multimedia applications. In ICMCS, pages 90–99,
1994.

[16] N. Mi, A. Riska, X. Li, E. Smirni, and E. Riedel.
Restrained utilization of idleness for transparent
scheduling of background tasks. In Proceedings of the
Eleventh International Joint Conference on
Measurement and Modeling of Computer Systems,
SIGMETRICS/Performance, pages 205–216, 2009.

[17] J. Nieh and M. S. Lam. A smart scheduler for
multimedia applications. pages 117–163, 2003.

[18] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal,
Z. Wang, S. Singhal, and A. Merchant. Automated
control of multiple virtualized resources. In EuroSys,
pages 13–26, 2009.

[19] L. Sha, T. F. Abdelzaher, K.-E. ÃĚrzÃl’n, A. Cervin,
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