COSC 4397
Parallel Computation

Dense Matrix Operations

Edgar Gabriel
Spring 2010

Terminology

- Dense Matrix: all elements of the matrix contain relevant values
 - Typically stored as 2-D array, (e.g. `double a[16][32]`);
- Sparse matrix: most elements of the matrix are zero
 - Optimized storage techniques
 - Band matrices: store only the relevant diagonales of the matrix
 - Highly irregular sparse matrices: store the coordinates of every non-zero element together with the content
 - Boeing-Harwell format: exploit certain regularities (e.g. nearly constant number of entries per row or column)
 - Jagged Diagonal storage format: see Boeing Harwell format
Replication vs. Communication

- Large data items typically distributed across multiple processes
 - What is large?
- Small data items can replicated on all processes or communicated whenever required
 - Costs for communication: ~ network latency
 - Costs for replication: ~ memory consumption + ~ repeated computation operations

Matrix operations: \(B = c \times A \)

- Multiplying a Matrix \(A \) with a constant \(c \)
- Constant \(c \) is definitely small and is thus replicated on all processes
 - E.g. compiled in the code
 - Read from a configuration file
- Operation does not require any communication to be performed
 - Trivially parallel
- Operation can be performed independent of the way the matrix has been distributed across the processes
Matrix Operations: \(B = A^T \)

- **Transpose a Matrix**
 - Often not necessary, since the operations (e.g. Matrix-vector multiply) can be (easily) reformulated for Matrix-Transpose-vector multiply operations and avoid the data transpose
 - Operations requiring the transpose: multi-dimensional FFT

- **Assumption:**
 - Matrices \(A, B \) are square
 - Element \(A[x][y] \) should be on the same process as element \(B[x][y] \)
 - Requires communication across the processes

\(B = A^T \): One element per process

- Initial data distribution: one element of the Matrix \(A \) per process

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

- Process with coordinates \((x,y)\) needs to send its data item to the process with the coordinates \((y,x)\) and receive its data item from \((y,x)\)
\(B = A^T \): One element per process

```c
// Assumes:
// newcomm has been created using MPI_Cart_create
double A, B are the element of the matrices
// owned by each process. A is already set.

int coords[2]; // my coordinates in the 2-D topology
int rem_coords[2]; // coordinates of my counterpart
MPI_Request req[2];
MPI_Status stats[2];

// Determine my own rank in newcomm
MPI_Comm_rank (newcomm, &rank);
// Determine my own coordinates in newcomm
MPI_Cart_coords (newcomm, rank, ndims, coords);

// Determine the coordinates of my counterpart
rem_coords[0] = coords[1];
rem_coords[1] = coords[0];
```

\(B = A^T \): One element per process

```c
// Determine the rank of my counterpart using his coordinates
MPI_Cart_rank (newcomm, rem_coords, &rem_rank);

// Initiate non-blocking communication to send A
MPI_Isend ( &A, 1, MPI_DOUBLE, rem_rank, 0, newcomm,&req[0]);
// Initiate non-blocking communication to receive B
MPI_Irecv ( &B, 1, MPI_DOUBLE, rem_rank, 0, newcomm,&req[1]);

// Wait on both non-blocking operations to finish
MPI_Waitall (2, req, stats);
```

- Notes:
 - using non-blocking communication avoids to have to
 'schedule' messages to avoid deadlock
 - processes on the main diagonal send a message to
 themselves
\(B = A^T \): Column-wise data distribution

- One column per process

\[
\begin{array}{ll}
\text{rank} = 0 & \text{rank} = 0 \\
1 & 1 \\
2 & 2 \\
3 & 3 \\
4 & 4 \\
5 & 5 \\
6 & 6 \\
7 & 7 \\
8 & 8 \\
\end{array}
\]

- Element \(A[i] \) needs to be sent to process \(i \)
- Element \(B[i] \) will be received from process \(i \)

\[
A \\
B
\]

\[
A \\
T
\]

\[
B \]
$B = A^T$: Column-wise data distribution

```
// Start now all non-blocking communication operations
for (i=0; i<size; i++) {
    MPI_Isend (&A[i], 1, MPI_DOUBLE, i, 0, comm, &reqs[2*i]);
    MPI_Irecv (&B[i], 1, MPI_DOUBLE, i, 0, comm, &reqs[2*i+1]);
}

// Wait for all non-blocking operations to finish
MPI_Waitall (2*size, reqs, stats);
```

- Notes:
 - identical approach and code for row-wise data distribution as long as the local portions of both A and B are stored as one-dimensional arrays
 - number of messages: $N^2 = np^2$

$B = A^T$: Block column-wise data distribution

- Each process holds N_{local} columns of each matrix with
 \[
 N = \sum_{r=0}^{np-1} N_{local}
 \]
 - assuming N can be divided evenly onto np processes

```
A
rank = 0, 1, 2
```

```
B
rank = 0, 1, 2
```
$B = A^T$: Block column-wise data distribution

- **Element** $A[i][j]$ has to become element $B[j][i]$
 - assuming i, j are global indexes
- **Variable declarations on each process:**

  ```
  double A[N][N];
  double B[N][N];
  ```
- $A[i][j]$
 - is located on the process with the rank $r = j/N_{local}$
 - has the local indexes $A[i_1][j_1]$ with

 $\begin{align*}
 i_1 &= i \\
 j_1 &= j \% N_{local}
 \end{align*}$
 - $B[j][i]$
 - is located on the process with the rank $s = i/N_{local}$
 - has the local indexes $B[j_2][i_2]$ with $j_2 = j$ and

 $\begin{align*}
 i_2 &= i \% N_{local}
 \end{align*}$
  ```

---

$B = A^T$: Block column-wise data distribution

```c

// code fragment for the communication
for (j1=0; j1<N_{local}; j1++) {
 for (i=0; i<N; i++) {
 dest = i / N_{local};
 MPI_Isend (&(A[i][j1], 1, MPI_DOUBLE, dest, 0, comm, &reqs[...]));
 }
}

for (j=0; j<N; j++) {
 for (i2=0; i2<N_{local}; i2++) {
 src = j / N_{local};
 MPI_Irecv (&(B[j][i2]), 1, MPI_DOUBLE, src, 0, comm, &reqs[...]);
 }
}
```

$B = A^T$: Block column-wise data distribution

- The algorithm on the previous slide is good because
  - it doesn’t require any additional temporary storage
- The algorithm on the previous slide is bad because
  - it sends $N^2$ messages, with $N >> np$
  - costs of each message is proportional to the network latency for short messages
  - Matrix $A$ has to be traversed in a non-contiguous manner
    - $C$ stores multi-dimensional arrays in row-major order
    - accessing $A[0][0]$ than $A[1][0]$ means that we jump in the main memory and have a large number of cache misses

Memory layout of multi-dimensional arrays

- E.g. 2-D matrix

- Memory layout in C

- Memory layout in Fortran
$B = A^T$: Block column-wise data distribution

- Alternative algorithm
  - each process sends in reality $N_{\text{local}} \times N_{\text{local}}$ elements to every other process
  - send an entire block of $N_{\text{local}} \times N_{\text{local}}$ elements
  - block has to be transposed either at the sender or at the receiver

```c
// Send the matrix block-by-block
for (i=0; i<N; i+=N_{\text{local}}) {
 MPI_Send (&(A[i][0]), N_{\text{local}} \times N_{\text{local}}, MPI_DOUBLE, i, 0, comm, &reqs[2*i]);
 MPI_Irecv(&(B[i][0]), N_{\text{local}} \times N_{\text{local}}, MPI_DOUBLE, i, 0, comm, &reqs[2*i+1]);
}
MPI_Waitall (2*size, reqs, stats);

// Now transpose each block
for (i=0; i<N; i+=N_{\text{local}}) {
 for (k=0; k<N_{\text{local}}; k++) {
 for (j=k; j<N_{\text{local}}; j++) {
 temp = B[i+k][j];
 B[i+k][j] = B[i+j][k];
 B[i+j][k] = temp;
 }
 }
}
```

$B = A^T$: Block column-wise data distribution
\[ B = A^T : \text{other 1-D data distributions} \]

- Block row-wise data distribution
  - algorithm very similar to block column-wise data distribution
- Cyclic column-wise data distribution
  - process with rank \( r \) gets the columns \( r, r+np, r+2np, \) etc...
  - advantage:
    - non for the Matrix transpose operations
    - for some other operations, this data distribution leads often to better load balance than block column-wise distribution
- Cyclic row-wise data distribution
- Block-cyclic column-wise data distribution
- Block-cyclic row-wise data distribution

\[ B = A^T : \text{2-D data distribution} \]

- Each process holds a block of \( N_{\text{local}} \times N_{\text{local}} \) elements
  - 2-D distribution avoids ‘skinny’ matrices
  - often easier to create load balance than with 1-D block column/row distribution
\[ B = A^T : 2-D \text{ data distribution} \]

- Assumption: using 2-D cartesian communicator
- Algorithm:
  - Determine your rank using \texttt{MPI\_Comm\_rank}
  - Determine your coordinates using \texttt{MPI\_Cart\_coords}
  - Determine the coordinates of your communication partner by reverting the x and y coordinates of your coordinates
  - Determine the rank of your communication partner using \texttt{MPI\_Cart\_rank}
  - Send a block of \( N_{\text{local}} \times N_{\text{local}} \) elements to comm. partner
  - Receive block of \( N_{\text{local}} \times N_{\text{local}} \) elements from comm. partner
  - Transpose the block that has been received
- Algorithm combines techniques from the ‘one element per process’ distribution and the ‘block column-wise’ distribution

\[ c = A \cdot b : \text{ block row-wise distribution} \]

- replicating the vector

```c
double A[nlocal][n], b[n];
double c[nlocal], cglobal[n];
int i, j;
...
for (i=0; i<nlocal; i++) {
 for (j=0; j<n; j++) {
 c[i] = c[i] + A(i, j)*b(j);
 }
}
MPI_Allgather(c, nlocal, MPI_DOUBLE, cglobal, nlocal, MPI_DOUBLE, MPI_COMM_WORLD);
```
Parallel Computation

$c = A \cdot b$: block row-wise distribution

- Why replicate the vector?
  - memory requirement is $O(N)$ with $N$ being the size of the vector
    - in contrary to Matrix $O(N^2)$ or other higher dimensional arrays
  - increases the performance of the Matrix-vector multiply operation
- Why do we need the Allgather at the end?
  - most applications require a uniform treatment of similar objects
    - e.g. one vector is replicated, all should be replicated
    - if the result vector $c$ is used in a subsequent operation, you would need different implementations in the code depending on whether the vector is distributed or replicated

```
int main(int argc, char **argv) {
 double A[n][nlocal], b[nlocal];
 double c[n], ct[n];
 int i,j;
 ...
 for (i=0; i<n; i++) {
 for (j=0; j<nlocal; j++) {
 ct[i] = ct[i] + A[i,j]*b(j);
 }
 }
 MPI_Allreduce (ct, c, n, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
```
\[ c = A \cdot b: \text{ block column-wise distribution} \]

- Why not replicate the vector \( b \) in this distribution
  - there is no benefit in doing that for this operation
  - there might be other operations in the code that mandate that
- But the result vector is replicated...
  - sure, the algorithm mandates that
  - you can still drop the elements that you don’t need afterwards