Vector Processors

• Chapter F of the 4th edition (Chapter G of the 3rd edition)
 - Available in CD attached to the book
 - Anybody having problems to find it should contact me
• Vector processors big in ‘70 and ‘80
• Still used today
 - Vector machines: Earth Simulator, NEC SX9, Cray X1
 - Graphics cards
 - MMX, SSE, SSE2, SSE3 are to some extent ‘vector units’
Main concepts

• Vector processors abstract operations on vectors, e.g. replace the following loop

```c
for (i=0; i<n; i++) {
    a[i] = b[i] + c[i];
}
```

by

```
a = b + c; \rightarrow \text{ADDV.D V10, V8, V6}
```

• Some languages offer high-level support for these operations (e.g. Fortran90 or newer)

Main concepts (II)

• Advantages of vector instructions
 - A single instruction specifies a great deal of work
 - Since each loop iteration must not contain data dependence to other loop iterations
 - No need to check for data hazards between loop iterations
 - Only one check required between two vector instructions
 - Loop branches eliminated
Basic vector architecture

- A modern vector processor contains
 - Regular, pipelined scalar units
 - Regular scalar registers
 - Vector units - (inventors of pipelining!)
 - Vector register: can hold a fixed number of entries (e.g. 64)
 - Vector load-store units

Comparison MIPS code vs. vector code

Example: \(Y = aX + Y \) for 64 elements

```assembly
L.D     F0, a            /* load scalar a*/
DADDIU  R4, Rx, #512    /* last address */
L: L.D     F2, 0(Rx)    /* load X(i) */
MUL.D     F2, F2, F0    /* calc. a times X(i)*/
L.D     F4, 0(Ry)        /* load Y(i) */
ADD.D     F4, F4, F2    /* aX(I) + Y(i) */
S.D     F4, 0(Ry)        /* store Y(i) */
DADDIU    Rx, Rx, #8     /* increment X*/
DADDIU    Ry, Ry, #8     /* increment Y */
DSUBU    R20, R4, Rx    /* compute bound */
BNEZ     R20, L
```
Comparison MIPS code vs. vector code (II)

Example: $Y = aX + Y$ for 64 elements

```plaintext
L.D F0, a /* load scalar a*/
LV V1, 0(Rx) /* load vector X */
MULVS.D V2, V1, F0 /* vector scalar mult*/
LV V3, 0(Ry) /* load vector Y */
ADDV.D V4, V2, V3 /* vector add */
SV V4, 0(Ry) /* store vector Y */
```

Vector execution time

- **Convoy**: set of vector instructions that could potentially begin execution in one clock cycle
 - A convoy must not contain structural or data hazards
 - Similar to VLIW
 - Initial assumption: a convoy must complete before another convoy can start execution
- **Chime**: time unit to execute a convoy
 - Independent of the vector length
 - A sequence consisting of m convoys executes in m chimes
 - A sequence consisting of m convoys and vector length n takes approximately mxn clock cycles
Example

```plaintext
LV  V1, 0(Rx)  /* load vector X */
MULVS.D V2, V1, F0  /* vector scalar mult*/
LV  V3, 0(Ry)  /* load vector Y */
ADDV.D V4, V2, V3  /* vector add */
SV  V4, 0(Ry)  /* store vector Y */
```

- Convoys of the above code sequence:
 1. LV
 2. MULVS.D LV
 3. ADDV.D
 4. SV

Overhead

- Start-up overhead of a pipeline: how many cycles does it take to fill the pipeline before the first result is available?

<table>
<thead>
<tr>
<th>Unit</th>
<th>Start-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load/store</td>
<td>12</td>
</tr>
<tr>
<td>Multiply</td>
<td>7</td>
</tr>
<tr>
<td>Add</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Convoy</th>
<th>Starting time</th>
<th>First result</th>
<th>Last result</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV</td>
<td>0</td>
<td>12</td>
<td>11+n</td>
</tr>
<tr>
<td>MULVS LV</td>
<td>12+n</td>
<td>12+n+12</td>
<td>23+2n</td>
</tr>
<tr>
<td>ADDV</td>
<td>24+2n</td>
<td>24+2n+6</td>
<td>29+3n</td>
</tr>
<tr>
<td>SV</td>
<td>30+3n</td>
<td>30+3n+12</td>
<td>41+4n</td>
</tr>
</tbody>
</table>
Pipelining - Metrics (I)

- T_c: Clocktime, time to finish one segment/sub-operation
- m: number of stages of the pipeline
- n: length of the vector
- S: Startup time in clocks, time after which the first result is available, $S = m$
- $N_{1/2}$: length of the loop to achieve half of the maximum speed

Assuming a simple loop such as:

```c
for (i=0; i<n; i++) {
    a[i] = b[i] + c[i];
}
```

Pipelining - Metrics (II)

- op: Number of operations per loop iteration
- op_{total}: total number of operations for the loop, with $op_{\text{total}} = op \times n$

Speed of the loop is

$$F = \frac{op_{\text{total}}}{\text{time}} = \frac{op \times n}{T_c(m+(n-1))} = \frac{op}{T_c\left(\frac{m-1}{n}+1\right)}$$

For $n \to \infty$, we get

$$F_{\text{max}} = \frac{op}{T_c}$$
Pipelining - Metrics (III)

Because of the Definition of $N_{\frac{1}{2}}$ we now have

$$\frac{op}{T_c \left(\frac{m-1}{N_{\frac{1}{2}}} + 1 \right)} = \frac{1}{2} \frac{F_{\text{max}}}{F_{\text{op}}} = \frac{1}{2} \frac{op}{T_c}$$

or

$$\frac{m-1}{N_{\frac{1}{2}}} + 1 = 2$$

and

$$N_{\frac{1}{2}} = m - 1$$

length of the loop required to achieve half of the theoretical peak performance of a pipeline is equal to the number of segments (stages) of the pipeline.

Pipelining - Metrics (IV)

More general: N_{α} is defined through

$$\frac{op}{T_c \left(\frac{m-1}{N_{\alpha}} + 1 \right)} = \alpha \frac{op}{T_c}$$

and leads to

$$N_{\alpha} = \frac{m - 1}{1 - \frac{1}{\alpha}}$$

E.g. for $\alpha = \frac{3}{4}$ you get $N_{\frac{3}{4}} = 3(m - 1) \approx 3m$

the closer you would like to get to the maximum performance of your pipeline, the larger the iteration counter of your loop has to be.
Vector length control

- What happens if the length is not matching the length of the vector registers?
- A vector-length register (VLR) contains the number of elements used within a vector register
- *Strip mining*: split a large loop into loops less or equal the maximum vector length (MVL)

```c
low = 0;
VL = (n mod MVL);
for (j=0; j < n/MVL; j++) {
    for (i=low; i < VL; i++) {
        Y(i) = a * X(i) + Y(i);
    }
    low += VL;
    VL = MVL;
}
```
Vector stride

- Memory on vector machines typically organized in multiple banks
 - Allow for independent management of different memory addresses
 - Memory bank time an order of magnitude larger than CPU clock cycle
- Example: assume 8 memory banks and 6 cycles of memory bank time to deliver a data item
 - Overlapping of multiple data requests by the hardware

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Bank 1</th>
<th>Bank 2</th>
<th>Bank 3</th>
<th>Bank 4</th>
<th>Bank 5</th>
<th>Bank 6</th>
<th>Bank 7</th>
<th>Bank 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Busy</td>
<td>X(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Busy</td>
<td>Busy</td>
<td>X(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
<td>X(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
<td>X(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
<td>X(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
<td>X(6)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
<td>X(7)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>X(8)</td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
<td>X(8)</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>Busy</td>
<td>X(9)</td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Busy</td>
<td>X(10)</td>
<td>Busy</td>
<td>Busy</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Busy</td>
<td>Busy</td>
<td>X(11)</td>
<td>Busy</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Busy</td>
<td>Busy</td>
<td>Busy</td>
<td>X(12)</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Busy</td>
<td>X(13)</td>
<td>Busy</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Busy</td>
<td>X(14)</td>
</tr>
</tbody>
</table>
Vector stride (II)

• What happens if the code does not access subsequent elements of the vector

```c
for (i=0; i<n; i+=2) {
    a[i] = b[i] + c[i];
}
```

- Vector load ‘compacts’ the data items in the vector register (gather)
 • No affect on the execution of the loop
 • You might however use only a subset of the memory banks -> longer load time
 • Worst case: stride is a multiple of the number of memory banks

Summary 1: Vector processors

• Support for operations on vectors using ‘special’ instructions
 - Each iteration has to be data independent from other iterations
 - Multiple vector instructions are organized in convoy’s in the absence of data and structural hazards
 - Each convoy can be executed in one chime
 - So far: assume that a convoy has to finish before another convoy can start
 • Start-up cost of a pipeline
 • Strip-mining costs in case loop iteration count does not match the length of the vector registers
Enhancing Vector Performance

- Five techniques to further improve the performance
 - Chaining
 - Conditional Execution
 - Support for sparse matrices
 - Multiple lanes
 - Reducing start-up costs by pipelining

Chaining

- Example:
 - MULV.D V1, V2, V3
 - ADDV.D V4, V1, V5

- Second instruction has a data dependence on the first instruction: two convoys required
- Once the element V1(i) is has been calculated, the second instruction could calculate V4(i)
 - no need to wait until all elements of V1 are available
 - could work similarly as forwarding in pipelining
 - Technique is called chaining
Chaining (II)

- Recent implementations use *flexible chaining*
 - Vector register file has to be accessible by multiple vector units simultaneously
- Chaining allows operations to proceed in parallel on separate elements of vectors
 - Operations can be scheduled in the same convoy
 - Reduces the number of chimes
 - Does not reduce the startup-overhead

Chaining (III)

- Example: chained and unchained version of the *ADDV.D* and *MULV.D* shown previously for 64 elements
 - Start-up latency for the FP MUL vector unit: 7 cycles
 - Start-up latency for FP ADD vector unit: 6 cycles
 - NOTE: different results than in book in fig. G.10

- Unchained version:
 \[7 + 63 + 6 + 63 = 139 \text{ cycles} \]

- Chained version:
 \[7 + 6 + 63 = 76 \text{ cycles} \]
Conditional execution

- Consider the following loop

  ```
  for (i=0; i< N; i++ ) {
    if ( A(i) != 0 ) {
      A(i) = A(i) - B(i);
    }
  }
  ```

- Loop can usually not been vectorized because of the conditional statement
- Vector-mask control: boolean vector of length MLV to control whether an instruction is executed or not
 - Per element of the vector

Conditional execution (II)

- **LV** V1, Ra /* load vector A into V1 */
- **LV** V2, Rb /* load vector B into V2 */
- **L.D** F0, #0 /* set F0 to zero */
- **SNEVS.D** V1, F0 /* set VM(i)=1 if V1(i)!=F0 */
- **SUBV.D** V1, V1, V2 /* sub using vector mask*/
- **CVM** /* clear vector mask to 1 */
- **SV** V1, Ra /* store V1 */
Support for sparse matrices

- Access of non-zero elements in a sparse matrix often described by
 \[A(K(i)) = A(K(i)) + C(M(i)) \]
 - \(K(i) \) and \(M(i) \) describe which elements of \(A \) and \(C \) are non-zero
 - Number of non-zero elements have to match, location not necessarily

- Gather-operation: take an index vector and fetch the according elements using a base-address
 - Mapping from a non-contiguous to a contiguous representation

- Scatter-operation: inverse of the gather operation

Support for sparse matrices (II)

```
LV    Vk, Rk           /* load index vector K into V1 */
LVI   Va, (Ra+Vk)      /* Load vector indexed A(K(i)) */
LV    Vm, Rm           /* load index vector M into V2 */
LVI   Vc, (Rc+Vm)      /* Load vector indexed C(M(i)) */
ADDV.D Va, Va, Vc     /* set VM(i)=1 if V1(i)!=F0 */
SVI   Va, (Ra+Vk)      /* store vector indexed A(K(i)) */
```

- Note:
 - Compiler needs the explicit hint, that each element of \(K \) is pointing to a distinct element of \(A \)
 - Hardware alternative: a hash table keeping track of the address acquired
 - Start of a new vector iteration (convoy) as soon as an address appears the second time
Multiple Lanes

- Further performance improvements if multiple functional units can be used for the same vector operation

\[
\begin{array}{c|c}
\end{array}
\]

\[
\begin{array}{c|c}
\end{array}
\]

Pipelined instruction startup

- Start of one vector instruction can overlap with another vector instruction
 - Theoretically: instruction of new vector operation could start in the next cycle after the last instruction of the previous operation
 - Practically: *dead time* between two instructions, in order to simplify the logic of the pipeline
 - E.g. 4 cycles before the next vector instruction can start
Effectiveness of Compiler Vectorization

<table>
<thead>
<tr>
<th>Benchmark name</th>
<th>Operations executed in vector mode, compiler-optimized</th>
<th>Operations executed in vector mode, hand-optimized</th>
<th>Speedup from hand optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDNA</td>
<td>96.1%</td>
<td>97.2%</td>
<td>1.52</td>
</tr>
<tr>
<td>MG3D</td>
<td>95.1%</td>
<td>94.5%</td>
<td>1.00</td>
</tr>
<tr>
<td>FLO52</td>
<td>91.5%</td>
<td>88.7%</td>
<td>N/A</td>
</tr>
<tr>
<td>ARC3D</td>
<td>91.1%</td>
<td>92.0%</td>
<td>1.01</td>
</tr>
<tr>
<td>SPEC77</td>
<td>90.3%</td>
<td>90.4%</td>
<td>1.07</td>
</tr>
<tr>
<td>MDG</td>
<td>87.7%</td>
<td>94.2%</td>
<td>1.49</td>
</tr>
<tr>
<td>TRFD</td>
<td>69.8%</td>
<td>73.7%</td>
<td>1.67</td>
</tr>
<tr>
<td>DYFESM</td>
<td>68.8%</td>
<td>65.6%</td>
<td>N/A</td>
</tr>
<tr>
<td>ADM</td>
<td>42.9%</td>
<td>59.6%</td>
<td>3.60</td>
</tr>
<tr>
<td>OCEAN</td>
<td>42.8%</td>
<td>91.2%</td>
<td>3.92</td>
</tr>
<tr>
<td>TRACK</td>
<td>14.4%</td>
<td>54.6%</td>
<td>2.52</td>
</tr>
<tr>
<td>SPICE</td>
<td>11.5%</td>
<td>79.9%</td>
<td>4.06</td>
</tr>
<tr>
<td>QCD</td>
<td>4.2%</td>
<td>75.1%</td>
<td>2.15</td>
</tr>
</tbody>
</table>