
Performance Implications of Failures on
MapReduce Applications

Mohammad Tanvir Rahman, Edgar Gabriel and Jaspal Subhlok

Department of Computer Science,
University of Houston, Houston, TX, USA,

email: {mtrahman3,egabriel, jaspal}@uh.edu

Abstract— Due to the growing size of compute clusters, large
scale parallel applications increasingly have to deal with hard-
ware malfunctions and other failure scenarios during execution.
The overall goal of this research is to get good performance
of MapReduce applications despite failures. The paper focuses
on evaluation of the performance of two representative Hadoop
MapReduce applications, ‘WordCount’ and ‘Stack Exchange’,
with different execution parameters and under different failure
scenarios. The paper also presents different options to inject fail-
ures into MapReduce applications to simulate real world failures.
Some of the preliminary observations are that slowdown due to
failure is higher with relatively larger input split sizes, slowdown
peaks near the optimal split size, and that the performance and
slowdown are sensitive to key MapReduce execution parameters.

I. INTRODUCTION

As the size of clusters employed for parallel and distributed
computing increases, hardware malfunctions and other failures
are increasingly common during execution of long running ap-
plications. For certain classes of applications (e.g. applications
with safety implications), it is crucial to deal dynamically with
failures, since a down-time of the application is often not an
option. But even for mainstream applications, the ability to
deal elegantly with software and hardware failures can improve
performance significantly, e.g., by having to re-execute only a
small subset of the application instead of re-running the entire
application, in case of a node failure.

Analyzing the behavior of applications in failure scenarios
is however a challenging topic. In real life, failures are
unpredictable, and in most instances, not frequent enough to
allow for a systematic evaluation of application behavior under
worst case conditions. Hence, for failure analysis, one needs
the ability to introduce failures at much higher rates than their
occurrence in real life, and in a reproducible manner. Failure
injection is a technique to trigger failures in applications or
systems, and has been long used in computer design to test and
evaluate error correction and failure management schemes [5].
Literature distinguishes between different types of failures,
such as soft vs. hard failures or temporary vs. permanent
failures.

Failure injection in parallel applications was the topic of
multiple research projects [4]. Recent work introduced soft-
ware and methodology that allows injection of various types of
failures at runtime at specific locations in the source code [3],

and in communication operations [2].
Many researchers have studied failure statistics in High

performance computing. Schroeder et al. [?] studied 9 years of
data including 23000 failures records on more than 20 different
systems. The data identified the root cause of failures, the
mean time to failures, and the mean time to repair, in order to
understand failure statistics. Yuan et al. [?] studied job failures
on High performance computing systems and showed that a
failed job often consumes more computational resources than
a successful job.

Parallel programming models and execution environments
offer various degrees of support for surviving failures. MPI [6],
the de-facto standard programming framework for High per-
formance computing, does not have the ability to deal with
process failures: if one of the compute nodes used by an MPI
application crashes, the entire MPI application is terminated.
Although there are efforts by the MPI Forum to integrate
failure management based on ULFM [1], users mostly rely
on checkpoint-restart [8] for failure mitigation, i.e., the ap-
plications has to regularly write out the content of its (most
important) variables. In case of a node failure, the application
is restarted from the most recent checkpoint. Other HPC
programing models such as CHARM++ offer better support
for handling failures, the ultimate challenge being on how
to balance support for handling failures and scalability of
applications on high-end systems [7].

In Big data analytics, the Hadoop environment incorporates
resilience to failures on multiple levels. The Hadoop File
System (HDFS) replicates file system blocks in order to sur-
vive node and/or hard drive failures. The execution model of
MapReduce applications allow Hadoop to keep track of work
(or part of the work) that has already finished successfully,
and re-execute missing work (splits) if a compute node is
marked as lost. However, to the best of our knowledge, no
research project has systematically evaluated the impact of
various types of process and node failures on the performance
of MapReduce applications.

The goal of this paper is to evaluate and quantify the
performance of Hadoop MapReduce applications in failure
scenarios. Within the scope of this work we are interested
in failures that will trigger the error handling protocols in
Hadoop to deal with lost work. We are ignoring problems such
as bit-flips in the user data, which would lead to erroneous

application results, but would not necessarily be recognized
by Hadoop. We discuss various approaches to inject failures
into a MapReduce applications, and evaluate the performance
penalty depending on the type of failure injection, the function
being affected by the failure, and various system and applica-
tion parameters.

The remainder of the paper is organized as follows: sec-
tion II describes our methodology to inject process and node
failures into Hadoop. Section III provides a description of the
application scenarios and the actual test cases performed as
part of this work. Finally, section IV summarizes our findings
and presents the future work.

II. BACKGROUND

This section provides a brief overview of the structure and
execution of Hadoop MapReduce applications, and explains
the techniques used in this project for estimating the number
of failures and injecting failures.

A. Brief Anatomy of MapReduce Applications

The scope of this work is to analyze the performance and
behavior of Hadoop MapReduce applications in failure scenar-
ios. We describe the most important aspects of the execution
of a MapReduce application; for a more detailed description
see [10]. Starting from Hadoop version 2, a MapReduce
application first launches an Application Master, which is
responsible for managing the execution of the application.
The Application Master requests resources from the Resource
Manager (e.g. YARN) and launches and monitors the map and
reduce tasks. For a given input problem size, the data is split
into equal chunks of, the so-called, split size. Depending on
the number of compute nodes available for the execution of
the map and reduce tasks, the Application Master assigns a
certain number of splits to each map instance for execution.
If a map task fails, the work is re-assigned to another map
task. The reduce tasks are launched after the completion of
all map tasks, although there can be overlap between these
two phases since the shuffling of intermediate key-value pairs
between map tasks and reduce tasks is started as soon as a
designated amount of data is available.

From the programing perspective, the user typically has to
implement, at the minimum, a mapper and a reducer class.
The mapper class consists of three methods: (i) the setup
method of the mapper class is called to execute operations
that only have to be executed once, e.g., reading a file from
the distributed cache of Hadoop to access a set of global
constants; (ii) the map method is called once for every split
assigned to that map instance; (iii) the cleanup method, which
is called upon completion of all splits assigned to a map
instance. The reducer class contains similar three methods that
are implemented by the application developer.

B. Logistics of failure execution

We discuss various options for injecting failures in a
MapReduce application.

1) Task Failures injected at Source Code Level: The first
approach to introduce failures is based on terminating a map or
reduce instance by introducing a system.exit() statement
in the software. For simplicity, we are calling these types
of failure as ‘Task failure’. Task failure is considered as
nondeterministic software failure in real life. Examples for
these type of failures are a non-recoverable ECC errors in
a main memory address of the application; or external (and
erroneous) interference of a device driver. Re-executing the
same application with same data set will typically finish
without any failures. We focus on mappers and reducers,
but ignore for the sake of simplicity, other components of
execution, such as combiners or the shuffle operation occurring
between the map and reduce tasks.

The goal within the scope of this work is to terminate a
subset of the map or reduce tasks, without making the entire
application fail. To achieve this goal we introduce a control
mechanism such that a randomly selected subset of tasks is
terminated. A random number is generated in the range of
< 1, upper bound > for each task, and if the value is below a
given threshold, the task is terminated. Thus, the combination
of the upper bound and threshold value control the granularity
and the percentage of tasks to be terminated.

One challenge when using this approach is how to derive
the upper bound and the threshold value used to determine
whether to terminate a task. Assuming that failures are not
correlated and follow a Poisson distribution, the parameters
needed for this estimate for the Map phase are the time
required to process a single split (TTimePerMap), the number
of nodes used for the Map phase, and the assumed Mean-Time-
To-Failure (MTTF) of a single node. Using these parameters,
the probability of a node facing a failure while executing the
splits assigned to it can be estimated, and the values for the
random number generated adjusted accordingly.
Example: Assume a problem that leads to 1024 splits, process-
ing a split takes 2 minutes, and the cluster has 32 nodes. Each
map instance will thus have to process 32 splits, which takes
64 minutes total. Assuming an (unrealistically low) MTTF
value of 2 hours (or 120 minutes), the success probability of
a map instance is

p = e−λt

= e−
1

MTTF ·TTimePerMap·NSplitsPerMapper

= e−
1
64 ·2·32

= 0.5866

The failure probability is then 1-0.5866 = 0.4134. One ap-
proach to map this failure probability to a range of values
used in combination with a random number generator is to
define the range of random number to be < 1, 100 > and the
threshold value to 41: any random number less or equal to 41
would lead to the task being terminated.

From the implementation perspective, the code terminating
a map or reduce instance could be inserted in the setup method,
the map or reduce method, or the cleanup method. If the
termination code is inserted in the setup method, the task

would terminate before any split could be processed, and
thus no work would be lost by this approach. Any overhead
observed would be purely from restarting the JVM that runs
the map or reduce instance. Inserting the termination code into
the map or reduce method allows for the most fine grained
control on a per-split basis for mappers, or per-intermediate
key basis for reducers. Depending on the data volumes (i.e.
split size as well as some other parameters of Hadoop), all
intermediate results up to the point when the termination is
triggered could be lost. If a certain Hadoop internal threshold
is reached, intermediate key-value pairs start to spill to disk,
such that some work could be retained and might not have
to be re-executed. Based on the Hadoop protocols however, it
is not entirely clear to us whether that actually does happen,
since the Hadoop daemons and Application Master would have
to be sure that all intermediate key-value pairs generated by
processing a particular split have actually been spilled to disk,
or not.

The final option is to insert the termination code into the
cleanup method. This option ensures, that all splits have been
processed before terminating the map task. Similar to the
previous discussion, some data might have already been saved
to disk by Hadoop, and the shuffle operation might have been
started already. In case the application uses a Combiner, we are
however confident that the shuffle operation should not have
started yet, and thus we will maximize the damage caused by
terminating the mappers in the cleanup method. Similarly for
the reduce class, terminating a reduce instance in the cleanup
method ensures maximum damage in our opinion, with some
results potentially already written to disk, but probably not
everything yet. Thus, Hadoop might have to re-execute the
entire reduce instance.

2) Node Failure injected with Administrative action: An
alternative approach to terminate map and/or reduce tasks is
by shutting down selectively Hadoop NodeManagers that are
executing the job. For our discussion, we label this type of
failures as ‘Node failure’, since it emulates a hardware level
failure which leads to all operations running on the node to
be terminated. This approach does not require modifications
to the source code, but it requires administrative privileges.
Shutting down a NodeManager could impact more than one
map or reduce instance, since a node with multiple cores
and sufficient memory might very well host multiple Hadoop
JVMs. Furthermore, the impact of node failure might be very
different whether that nodes executes the Application Master
or ‘just’ regular map and reduce instances. Note that in our
approach the Hadoop File System (HDFS) is not affected by
the NodeManager shut down.

III. EVALUATION

A. Application scenarios

We used two different applications in our experiments, the
well known ‘WordCount’ and ‘Stack Exchange’ codes.

WordCount is a simple application that counts the number
of occurrences of each word in a given input file. Although it
is known as a benchmark, WordCount is at the core of many

real applications in Big data analytics and other domains. The
data used in this analysis is a system generated log file of
size 36 GB. A combiner was used in our WordCount source
code. We applied different split sizes ranging from 16 MB to
1 GB. Different number of reducers (1,4,8,16,32) were also
used in our experiments. The split/node ratio for WordCount
application was in the range < 0.84, 53.19 >.

The Stack Exchange application is based on the following
scenario: given a data set containing many questions asked on
www.stackexchange.com, the sets of corresponding answers
with a label of accepted or not-accepted by the questioner,
and a set of user rating scores for each answer, the goal is
to compute and compare the average score of accepted and
not-accepted answers. The input files are stripped down XML
files where XML headers have been removed. The application
parses files as regular string/text. The code consists of two
chained MapReduce jobs. In the first MapReduce job (stage
1) , the input XML file is used to calculate the average
score for each answer and store the result in an intermediate
file in HDFS. In the second MapReduce job (stage 2), the
intermediate file is used as input and processed to calculate
the average score for accepted and not accepted answers.
The stage 2 MapReduce job starts after finishing the stage
1 MapReduce job. This application was chosen to understand
the impact of failure in chained MapReduce jobs. The input
file size was 28.5 GB. The Stack Exchange source code had
10 reducers in stage 1 and two reducers in stage 2. The
split/node ratio for Stack Exchange application was in the
range < 0.67, 42.47 >.

For both applications, we injected different types of failures
and checked the overall completion time of the application.
Failures were injected during different phases (Map vs. Re-
duce) for the WordCount application, and on both stages of the
Stack Exchange jobs. Each experiment was executed 3 times
and the average value was used for the evaluation. The relative
standard deviation observed across the various test cases was
on most instances very low (between 1% and 10%) since
we used a dedicated cluster with no interference from other
users or jobs. Nevertheless, some experiments lead to higher
standard deviations of around 30%. We will comment on those
experiments and the conclusions drawn when discussing the
individual tests. The failure rates used for the task failure
experiments were 11% and 25%. The entire MTTF range for
those experiments is < 0.0001, 0.5107 >. As discussed earlier,
while these MTTF values are unrealistically low, it is often
necessary to use such values to analyze the error protocols in
a distribute software environments.

B. Cluster description

Tests were executed on the ‘Whale’ cluster located at Uni-
versity of Houston. The cluster consists of 42 compute nodes
in total. Each node has two 2.2 GHz quad-core AMD Opteron
processor (8 cores total) and 16 GB main memory. The nodes
are interconnected by Gigabit Ethernet. The operating system
is Linux using kernel 3.12.62-55. Hadoop version 2.7.2 is
used on the cluster. The cluster has a 7 TB HDFS file system

Fig. 1. Performance impact of map task failures on WordCount application
with different split sizes and failure rates

Fig. 2. Performance impact of map task failures on WordCount application
as percentage slowdown

(using triple replication) with a default block size of 128 MB.
Most YARN parameters used on the cluster were based on the
default values used by the distribution.

C. Impact of Task Failures

As discussed in section II-B.1, task failures were injected
by calling system.exit() in the cleanup() method of
the application code. No hardware failure occurred during
these failures. During a task failure, the corresponding node’s
JVM is shutdown; However the node is still available and can
be assigned for performing other tasks.

1) Mapper failures: Fig 1 shows job completion time
for different split sizes when injecting task failures in the
mapper class of the WordCount application for the failure
rates mentioned previously(11% and 25%). The X-axis shows
different split sizes in MB and the Y-axis shows job completion
time in seconds. The percentage increase in execution time
with different failure rates and split sizes is plotted in Fig 2.

The results indicate that the job completion time is modestly

Fig. 3. Performance impact of reduce task failures on WordCount application
with different failure rates and number of reducers

higher with failures, with an expected higher increase for the
higher failure rate. The lowest job completion time with and
without failures is achieved for a split size of 128 MB, which
is due to the fact that each split corresponds to exactly one
HDFS block in this scenario. There is a sharp increase in
completion time when going from 128 MB to 256 MB split
size. This is due to the fact that split sizes larger than the
HDFS block size necessitate a mapper to access data that is
usually located on two or more physical nodes, thus reducing
the locality of the operations and causing higher I/O cost and
higher completion time.

Furthermore, we notice that the job completion time does
not increase much for split sizes below 128 MB and com-
pletion time increases at a modestly higher rate for larger
split sizes. This can be seen clearly from Fig 2. This can be
explained by the fact that the same percentage of map failures
causes a greater loss for larger split sizes, since more work
has to be re-done in this scenario. In addition, there is a lower
number of splits with larger split sizes and even fewer number
of failed tasks to re-execute. As a result, a few nodes are re-
executing failed tasks, while many nodes in the system remain
idle.

2) Reducer failures: Fig 3 shows job completion time for
different number of reducers when injecting task failures in
the reducer class of the WordCount application. The X axis
shows the number of reducers and the Y axis shows the job
completion time in seconds. The split size in these experiments
is fixed at 128 MB, since the split size does not have an impact
on reduce tasks. Tests have been executed with 4, 8, 16, and 32
reducers. Due to the relatively low number of reducers used,
the application showed in many instances no failures at all for
11% failure rate. We focus therefore on a 25% failure rate in
the subsequent analysis.

As observed from the graph, job completion time is lowest
with 16 reducers with and without failures. We notice that
with 4 and 8 reducers, job completion time is comparatively
higher for 25% reducer failures. This can be verified from Fig

Fig. 4. Performance impact of reduce task failures on WordCount application
as percentage slowdown

4 which shows %slowdown for the same scenario as Fig 3.
The graph clearly depicts that slowdown is larger for smaller
number of reducers. The reason is that, with fewer reducers,
the same percentage of reducer failure causes a greater loss
and more work has to be re-done since the work per reducer
is now larger. Please note that for this scenario, the work is
not evenly distributed among all the nodes of the cluster. We
had a maximum of 32 reduce tasks (no failure scenario) to
finish with 42 nodes.

3) Chained MapReduce jobs: As explained previously, the
Stack Exchange application consists of two separate MapRe-
duce jobs executed in chained sequence. Fig 5 shows job com-
pletion time for different split sizes for task failures injected
in the mapper class at both stages. Fig 6 shows the slowdown
for the same scenario. The fundamental result of Fig 5 is very
similar to the observations made in the previous subsection
(see e.g. Fig 1), namely: i) the execution time is minimized
for a split size equal to the HDFS block size, however, the
job completion time does not increase significantly for split
size below 128 MB; ii) completion time increases at a higher
rate for larger split sizes; and iii) there is a sharp increase in
completion time for split sizes from 128 MB to 256 MB.

Furthermore, we also note that a job with 25% map failure
in stage 1 takes more time to finish than for a 25% map failure
in stage 2. This is due to the fact that stage 2 of the application
takes much less time to finish than stage 1. Furthermore, for
larger split sizes, the map tasks operate on bigger splits and the
re-execution takes more time. This is the reason for a relatively
large gap for execution time between no failure, 25% stage 1
map failure and 25% stage 2 map failure lines when split size
is bigger.

From Fig 6, we observe that slowdown is highest for optimal
split size (128 MB). For the split size of 256 MB, the results
seem to indicate that the failure-free execution is slower than
injecting some failures. This data point is clearly obscured by
the variability of the measurements across the three runs –
also shown in the somewhat larger standard deviation of just

Fig. 5. Performance impact of map task failures on Stack Exchange
application with different split sizes and for failures in mapper stage 1 and
stage 2

Fig. 6. Performance impact of map task failures on Stack Exchange
application as percentage slowdown

over 10% – and might require further tests to achieve a lower
standard deviation and higher reliability of the data points.

D. Impact of node failures

In the second set of experiments we injected node fail-
ures by shutting down the NodeManager service during our
MapReduce job. As a result, the corresponding node becomes
unavailable for computation and cannot be used for performing
other tasks until the end of the current job. Note that the data
node service in that node is not affected by this operation and
hence data located on the node is still available. We used two
types of node failures in our experiment: i) shutting down a
non-application-master NodeManager aka normal node failure
and ii) shutting down the NodeManager of an application
master aka application-master node failure. After starting the
application we checked which node is executing the Appli-
cation Master in the cluster web interface and which other
nodes are running non-application-master containers. Once

that information is available, we either kill another container
running NodeManager (normal node failure) or shut down
the application master NodeManager (application-master node
failure). The terminated NodeManager is restarted again after
the job has finished, ensuring that the same number of nodes
is used through the entire analysis.

1) Normal Node failures: Fig 7 and 9 show job completion
times for different split sizes (Fig 7) and number of reducers
(Fig 9) when shutting down a non-master NodeManager
during mapper and reducer phase of WordCount application
respectively (normal node failure). For Fig 7, the number of
reducers is 1 and for Fig 9, split size is set to 128 MB. Fig 8
and 10 shows %slowdown for the corresponding scenarios.

The main result of this analysis is that injecting a normal
node failure leads to significant increases in the job completion
times for the WordCount application. As shown in Fig. 7, the
observed penalty exceeds 600 seconds, even though the re-
execution of the failed task is relatively quick. The reason for
this enormous penalty is the node failure detection timeout.
Normally, the YARN Resource Manager monitors NodeMan-
agers based on a heartbeat signal. If the heartbeat is missing for
some time, the resource manager does not immediately declare
the node to be ‘dead’. Instead, it waits for a certain amount
of time defined by yarn.nm.liveness-monitor.expiry-interval-
ms (default value 600000ms) before removing the node from
the pool of available resources.

In contrast to that, the Hadoop NodeManagers were not
affected by the task failures in the experiments conducted in
the previous subsection. Thus, they were able to immediately
detect the exiting JVM, and report the work as ‘lost’. On
average, the observed slowdown increases by 80% for a
normal node failure whereas using 25% task failure (in map
phase) leads to a slowdown of 24% . For reducer phase, on
average the slowdown increases by 150% for normal node
failures whereas 25% task failures in reduce phase lead to
a slowdown of 34%. The penalty is higher in reducer phase
because of larger work loss.

We note using Fig 7 that the split size of 128 MB leads
to the lowest execution time without failures. However, in
case of node failure, the optimal split size moves reliably to
32 MB, both for the average execution time as well as all
three individual runs. This result is especially relevant, since
it shows that some of the parameters of Hadoop are in fact very
sensitive to the type of failures experienced by an application,
and very different values can lead to the optimal execution
time under different failure conditions.

While a detailed explanation for the change in the optimal
split size with and without failures is still work in progress,
there is clearly a trade-off between having a more fine-grained
execution using smaller splits (and therefore less work being
lost in the case of a failure) and the overhead generated
by having to manage more splits. The split size minimizing
the application execution time will depend on the number of
failures as well as the penalty incurred by a failure. One of
our future goals is to derive analytic approximation of the
execution time for MapReduce application that would allow

Fig. 7. Performance impact of node failure during mapper phase on
WordCount application with different split sizes

us to determine the optimal split size for different failure
scenarios.

In Fig 9 we notice that the lines are almost flat, which means
the number of reducers has little impact on the completion
time. Even with a low impact factor, Fig 10 tells us that
slowdown is larger for optimal number of reducers (Reducer
number = 8 and 16). In Fig 9, there is a significant delay
between no failure and node failure plots. We believe, the
delay is due to NodeManager failure detection and recovery
of partial lost work. We observe that there is no ‘actual’ failed
reducer task even after shutting down the NodeManager in
reducer phase. The failure simulation procedure is explained
as follows.

To simulate node failure in the reducer phase, a NodeMan-
ager is shutdown as soon as there are r + 1 nodes running
the jobs, where r = number of reducers; 1 node is for
the application master. According to our observations, each
reducer is launched in a container in a separate node. We
could not shutdown the NodeManager before this step to
avoid shutting down a node with map container or a reducer
container.

For example, consider a job running with 16 reducers
(r = 16). Initially the job starts with just one node containing
the application master. Soon it allocates more nodes and
assigns map tasks in different containers on these nodes. As
time passes and 100% map tasks are finished, all the nodes
with mapper containers are released and we are left with
17 allocated nodes running 16 reducer containers and the
application master. We observe the Hadoop web interface of
the cluster and wait until we have 17 nodes left in that job.
Then we kill one NodeManager to make sure we are killing
a reducer container. Though shutting down the NodeManager
at that stage does not cause any ‘actual’ reducer failure, it
takes a significant amount of time to detect the node failure,
overcome the loss and finish the job.

Fig 11 shows job completion time for different split sizes
when we injected normal node failures by shutting down a

Fig. 8. Performance impact of node failure during mapper phase on
WordCount application as percentage slowdown

Fig. 9. Performance impact of node failure during reducer phase on
WordCount application with different number of reducers

Fig. 10. Performance impact of node failure during reducer phase on
WordCount application as percentage slowdown

Fig. 11. Performance impact of node failure during stage 1 mapper phase
on Stack Exchange application with different split sizes

Fig. 12. Performance impact of node failure during stage 1 mapper phase
on Stack Exchange application as percentage slowdown

non-master NodeManager during the mapper phase of Stack
Exchange application. Here, we use 10 reducers in stage 1 and
two reducers in stage 2. Similar to the WordCount application,
injecting normal node failures increases job completion time
significantly, and completion time increases at a higher rate
for larger split sizes.

The optimal split size is 128 MB for the failure free
execution, but 256 MB with a node failure. While this change
in the optimal split size is observed for both, the average and
minimum execution time, it would require some additional
tests since the overall standard deviation for this test series is
relatively high in the range of 30%.

Fig 12 shows the slowdown for the corresponding scenarios.
Slowdown is much higher for split sizes less than 256 MB and
slowdown is very high near optimal split size (with no failure).

2) Application-master node failures: Fig 13 shows job
completion time while injecting application-master node fail-
ure by shutting down NodeManager of Application Master

Fig. 13. Performance impact of Application-master node failure on Word-
Count application

in WordCount application. The ‘Application Master’ is termi-
nated at different times and the time required to automatically
restart the Application Master and finish the job is measured.
Here, the split size is set to 128 MB, and the number of
reducers is 16.

As seen from Fig 13, the completion time of WordCount
application without failure is 240 seconds and killing the
NodeManager of Application Master before 120 seconds is
worse than killing after 150 seconds. In fact killing the
NodeManager at 180 seconds has almost no impact on job
completion time. The likely explanation is that after around
180 seconds most of the map tasks have finished executing
with a few speculative map tasks running. At that point killing
the NodeManager probably does not cause any map failure.
The reduce job is also not hampered much because they were
at the beginning stage and hence the overall job execution time
is close to execution time without failure.

Finally, during both type of node failures, there was sig-
nificant variation in job execution time while injecting node
failures, especially for larger split sizes. The reason behind
this variation is the speculative task execution adopted by
Hadoop. Speculation is an option in Hadoop to launch backup
tasks if slow tasks are detected on some cluster nodes. The
backup tasks will be preferentially scheduled on the faster
nodes. Whichever of the duplicate tasks finishes first becomes
the one that is used in further operations. Hadoop starts
speculative tasks towards the end of map phases. If the killed
NodeManager was a slower node and Hadoop started backup
speculative task in another faster node, then killing the slower
NodeManager will not have a big impact on the overall job
execution time. The speculative task running on the other node
will finish within a short time and its output will be used
instead of the dead node.

IV. CONCLUSIONS

The paper focuses on evaluation of the performance of two
representative Hadoop MapReduce applications, with different

execution parameters and under different failure scenarios.
An important observation is that slowdowns are modest even
with relatively high rate of task failures. This shows that
the basic MapReduce model provides reasonable resistance
to failure. The slowdown due to task failure is higher with
relatively larger input split sizes, and peaks near the optimal
split size. The latter is not surprising as efficient execution
implies that there is little slack in execution that can be
exploited for failure resistance. Another key observation is
that complete node failure has a much more dramatic impact
on performance than task failures; in case of node failure
the default value of yarn.nm.liveness-monitor.expiry-interval-
ms has a major impact on job completion time.

The paper also presents techniques to inject failures into
MapReduce applications to simulate real world failures. We
believe this is an important contribution towards future exper-
imental research in resilient MapReduce computing. Finally,
this paper can be considered early work towards accurate
performance models for MapReduce applications considering
node and process failures.

REFERENCES

[1] Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey,
George Bosilca, and Jack J Dongarra. An Evaluation of User-level
Failure Mitigation Support in MPI. In European MPI Users’ Group
Meeting, pages 193–203. Springer, 2012.

[2] Douglas M Blough and Peng Liu. FIMD-MPI: a tool for injecting faults
into MPI application. In 14th International Parallel and Distributed
Processing Symposium. IPDPS, pages 241–247. IEEE, 2000.

[3] Qiang Guan, Nathan BeBardeleben, Panruo Wu, Stephan Eidenbenz,
Sean Blanchard, Laura Monroe, Elisabeth Baseman, and Li Tan. Design,
Use and Evaluation of P-FSEFI: A Parallel Soft Error Fault Injection
Framework for Emulating Soft Errors in Parallel Applications. In
Proceedings of the 9th EAI International Conference on Simulation Tools
and Techniques, pages 9–17. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2016.

[4] Thomas Herault, Mathieu Jan, Thomas Largillier, Sylvain Peyronnet,
Benjamin Quétier, and Franck Cappello. Emulation platform for high
accuracy failure injection in grids. In High Performance Computing
Workshop, pages 127–140, 2008.

[5] Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K Iyer. Fault
injection techniques and tools. Computer, 30(4):75–82, 1997.

[6] Message Passing Interface Forum. MPI-2.2: Extensions to the Message
Passing Interface, September 2009. http://www.mpi-forum.org.

[7] Dmitry Mogilevsky, Gregory A Koenig, and William Yurcik. Byzantine
anomaly testing for Charm++: Providing fault tolerance and survivability
for Charm++ empowered clusters. In Proceedings of the 6th IEEE
International Symposium on Cluster Computing and the Grid Workshops
(CCGRIDW’06), volume 2, pages 30–37. IEEE Computer Society, May
2006.

[8] M. T. Rahman, H. Nguyen, J. Subhlok, and G. Pandurangan. Check-
pointing to minimize completion time for inter-dependent parallel pro-
cesses on volunteer grids. In 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), pages 331–335, May
2016.

[9] Bianca Schroeder and Garth Gibson. A large-scale study of failures in
high-performance computing systems. IEEE Transactions on Depend-
able and Secure Computing, 7(4):337–350, October 2010.

[10] Tom White. Hadoop: The Definitive Guide . O’ReillyMedia, Inc.,
second edition, October 2010.

[11] Yulai Yuan, Yongwei Wu, Qiuping Wang, Guangwen Yang, and Weimin
Zheng. Job failures in high performance computing systems: A large-
scale empirical study. Computers & Mathematics with Applications,
63(2):365–377, January 2012.

