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Announcements	
  

•  HW5	
  due	
  today	
  
•  Exam1	
  on	
  Monday	
  

– You	
  can	
  bring	
  one	
  page	
  of	
  notes	
  



Today’s	
  Topics	
  

•  HW5	
  discussions	
  
•  Transport	
  Protocol	
  

– TCP	
  Friendliness	
  
– GeQng	
  help	
  from	
  the	
  network	
  



Help	
  from	
  the	
  network	
  
•  What	
  if	
  routers	
  could	
  tell	
  TCP	
  that	
  conges)on	
  
is	
  happening?	
  
–  Conges)on	
  causes	
  queues	
  to	
  grow:	
  rate	
  
mismatch	
  

•  TCP	
  responds	
  to	
  drops	
  
•  Idea:	
  Random	
  Early	
  Drop	
  (RED)	
  

–  Rather	
  than	
  wait	
  for	
  queue	
  to	
  become	
  full,	
  drop	
  
packet	
  with	
  some	
  probability	
  that	
  increases	
  with	
  
queue	
  length	
  

–  TCP	
  will	
  react	
  by	
  reducing	
  cwnd	
  
–  Could	
  also	
  mark	
  instead	
  of	
  dropping:	
  ECN	
  



RED	
  Details	
  
•  Compute	
  average	
  queue	
  length	
  (EWMA)	
  

– Don’t	
  want	
  to	
  react	
  to	
  very	
  quick	
  fluctua)ons	
  AvgLen

Queue length

Instantaneous

Average

Time

• Smooths out AvgLen over time
- Don’t want to react to instantaneous fluctuations



RED	
  Drop	
  Probability	
  
•  Define	
  two	
  thresholds:	
  MinThresh,	
  MaxThresh	
  
•  Drop	
  probability:	
  

RED Details (cont)

• Computing probability P
- TempP = MaxP · (AvgLen�MinThreshold)/(MaxThreshold�

MinThreshold)

- P = TempP/(1� count · TempP)

• Drop Probability Curve:
P(drop)

1.0

MaxP

MinThresh MaxThresh

AvgLen

•  Improvements to spread drops 



RED	
  Advantages	
  
•  Probability	
  of	
  dropping	
  a	
  packet	
  of	
  a	
  
par)cular	
  flow	
  is	
  roughly	
  propor)onal	
  to	
  the	
  
share	
  of	
  the	
  bandwidth	
  that	
  flow	
  is	
  currently	
  
geQng	
  

•  Higher	
  network	
  u)liza)on	
  with	
  low	
  delays	
  
•  Average	
  queue	
  length	
  small,	
  but	
  can	
  absorb	
  
bursts	
  

•  ECN	
  
–  Similar	
  to	
  RED,	
  but	
  router	
  sets	
  bit	
  in	
  the	
  packet	
  
– Must	
  be	
  supported	
  by	
  both	
  ends	
  
– Avoids	
  retransmissions	
  op)onally	
  dropped	
  
packets	
  



More	
  help	
  from	
  the	
  network	
  
•  Problem:	
  s)ll	
  vulnerable	
  to	
  malicious	
  flows!	
  

–  RED	
  will	
  drop	
  packets	
  from	
  large	
  flows	
  
preferen)ally,	
  but	
  they	
  don’t	
  have	
  to	
  respond	
  
appropriately	
  

•  Idea:	
  Mul)ple	
  Queues	
  (one	
  per	
  flow)	
  
–  Serve	
  queues	
  in	
  Round-­‐Robin	
  
– Nagle	
  (1987)	
  
– Good:	
  protects	
  against	
  misbehaving	
  flows	
  
– Disadvantage?	
  
–  Flows	
  with	
  larger	
  packets	
  get	
  higher	
  bandwidth	
  



Solu)on	
  

•  Bit-­‐by-­‐bit	
  round	
  robing	
  
•  Can	
  we	
  do	
  this?	
  

– No,	
  packets	
  cannot	
  be	
  preempted!	
  

•  We	
  can	
  only	
  approximate	
  it…	
  



Fair	
  Queueing	
  	
  

•  Define	
  a	
  fluid	
  flow	
  system	
  as	
  one	
  where	
  flows	
  
are	
  served	
  bit-­‐by-­‐bit	
  

•  Simulate	
  ff,	
  and	
  serve	
  packets	
  in	
  the	
  order	
  in	
  
which	
  they	
  would	
  finish	
  in	
  the	
  ff	
  system	
  

•  Each	
  flow	
  will	
  receive	
  exactly	
  its	
  fair	
  share	
  



Example	
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Implemen)ng	
  FQ	
  
•  Suppose	
  clock	
  )cks	
  with	
  each	
  bit	
  
transmiged	
  
–  (RR,	
  among	
  all	
  ac)ve	
  flows)	
  

•  Pi	
  is	
  the	
  length	
  of	
  the	
  packet	
  
•  Si	
  is	
  packet	
  i’s	
  start	
  of	
  transmission	
  )me	
  
•  Fi	
  is	
  packet	
  i’s	
  end	
  of	
  transmission	
  )me	
  
•  Fi	
  =	
  Si	
  +	
  Pi	
  



Fair	
  Queueing	
  
•  Across	
  all	
  flows	
  

–  Calculate	
  Fi	
  for	
  each	
  packet	
  that	
  arrives	
  on	
  each	
  flow	
  
– Next	
  packet	
  to	
  transmit	
  is	
  that	
  with	
  the	
  lowest	
  Fi	
  
–  Clock	
  rate	
  depends	
  on	
  the	
  number	
  of	
  flows	
  

•  Advantages	
  
– Achieves	
  max-­‐min	
  fairness,	
  independent	
  of	
  sources	
  
– Work	
  conserving	
  

•  Disadvantages	
  
–  Requires	
  non-­‐trivial	
  support	
  from	
  routers	
  
–  Requires	
  reliable	
  iden)fica)on	
  of	
  flows	
  
– Not	
  perfect:	
  can’t	
  preempt	
  packets	
  



Fair	
  Queueing	
  Example	
  
•  10Mbps	
  link,	
  1	
  10Mbps	
  UDP,	
  31	
  TCPs	
  

FQ

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

1 4 7 10 13 16 19 22 25 28 31
Flow Number

T
h

ro
u

g
h

p
u

t(
M

b
p

s)RED

0
1
2
3
4
5
6
7
8
9
10

1 4 7 10 13 16 19 22 25 28 31
Flow Number

T
h

ro
u

g
h

p
u

t(
M

b
p

s)



Big	
  Picture	
  

•  Fair	
  Queuing	
  doesn’t	
  eliminate	
  conges)on:	
  
just	
  manages	
  it	
  

•  You	
  need	
  both,	
  ideally:	
  
– End-­‐host	
  conges)on	
  control	
  to	
  adapt	
  
– Router	
  conges)on	
  control	
  to	
  provide	
  isola)on	
  



Chea)ng	
  TCP	
  

•  Three	
  possible	
  ways	
  to	
  cheat	
  
–  Increasing	
  cwnd	
  faster	
  
– Large	
  ini)al	
  cwnd	
  
– Opening	
  many	
  connec)ons	
  
– Ack	
  Division	
  Agack	
  



Increasing	
  cwnd	
  Faster	
  

Limit rates: 
x = 2y 

C 

x 

y 

x increases by 2 per RTT 
y increases by 1 per RTT 

Figure	
  from	
  Walrand,	
  Berkeley	
  EECS	
  122,	
  2003	
  



Larger	
  Ini)al	
  Window	
  	
  
A B 

x 

D E y 
x starts SS with cwnd = 4 
y starts SS with cwnd = 1 

Figure	
  from	
  Walrand,	
  Berkeley	
  EECS	
  122,	
  2003	
  



Open	
  Many	
  Connec)ons	
  

•  Assume:	
  
– A	
  opens	
  10	
  connec)ons	
  to	
  B	
  
– B	
  opens	
  1	
  connec)on	
  to	
  E	
  

•  TCP	
  is	
  fair	
  among	
  connec)ons	
  
– A	
  gets	
  10	
  )mes	
  more	
  bandwidth	
  than	
  B	
  

A B 
x 

D E y 

•  Web Browser: has to download k objects for a 
page 
–  Open many connections or download sequentially? 

Figure	
  from	
  Walrand,	
  Berkeley	
  EECS	
  122,	
  2003	
  



Exploi)ng	
  Implicit	
  Assump)ons	
  

•  Savage,	
  et	
  al.,	
  CCR	
  1999:	
  	
  
– “
TCP	
  Conges)on	
  Control	
  with	
  a	
  Misbehaving	
  
Receiver”	
  

•  Exploits	
  ambiguity	
  in	
  meaning	
  of	
  ACK	
  
– ACKs	
  can	
  specify	
  any	
  byte	
  range	
  for	
  error	
  control	
  
– Conges)on	
  control	
  assumes	
  ACKs	
  cover	
  en)re	
  sent	
  
segments	
  



ACK	
  Division	
  Agack	
  

2.1 TCP review

While a detailed description of TCP's error and congestion con-
trol mechanisms is beyond the scope of this paper, we describe the
rudiments of their behavior below to allow those unfamiliar with
TCP to understand the vulnerabilities explained later. For simplic-
ity, we consider TCP without the Selective Acknowledgment op-
tion (SACK) [MMFR96], although the vulnerabilities we describe
also exist when SACK is used.

TCP is a connection-oriented, reliable, ordered, byte-stream
protocol with explicit flow control. A sending host divides the data
stream into individual segments, each of which is no longer than the
Sender Maximum Segment Size (SMSS) determined during con-
nection establishment. Each segment is labeled with explicit se-
quence numbers to guarantee ordering and reliability. When a host
receives an in-sequence segment it sends a cumulative acknowl-
edgment (ACK) in return, notifying the sender that all of the data
preceding that segment's sequence number has been received and
can be retired from the sender's retransmission buffers. If an out-
of-sequence segment is received, then the receiver acknowledges
the next contiguous sequence number that was expected. If out-
standing data is not acknowledged for a period of time, the sender
will timeout and retransmit the unacknowledged segments.

TCP uses several algorithms for congestion control, most no-
tably slow start and congestion avoidance [Jac88, Ste94, APS99].
Each of these algorithms controls the sending rate by manipulating
a congestion window (cwnd) that limits the number of outstanding
unacknowledged bytes that are allowed at any time. When a con-
nection starts, the slow start algorithm is used to quickly increase
cwnd to reach the bottleneck capacity. When the sender infers that
a segment has been lost it interprets this has an implicit signal of
network overload and decreases cwnd quickly. After roughly ap-
proximating the bottleneck capacity, TCP switches to the conges-
tion avoidance algorithm which increases the value of cwnd more
slowly to probe for additional bandwidth that may become avail-
able.

We now describe three attacks on this congestion control pro-
cedure that exploit a sender's vulnerability to non-conforming re-
ceiver behavior.

2.2 ACK division

TCP uses a byte granularity error control protocol and consequently
each TCP segment is described by sequence number and acknowl-
edgment fields that refer to byte offsets within a TCP data stream.
However, TCP's congestion control algorithm is implicitly defined
in terms of segments rather than bytes. For example, the most re-
cent specification of TCP's congestion control behavior, RFC 2581,
states:

During slow start, TCP increments cwnd by at most
SMSS bytes for each ACK received that acknowledges
new data.
...
During congestion avoidance, cwnd is incremented by 1
full-sized segment per round-trip time (RTT).
The incongruence between the byte granularity of error control

and the segment granularity (or more precisely, SMSS granularity)
of congestion control leads to the following vulnerability:

Attack 1:
Upon receiving a data segment containing N bytes, the
receiver divides the resulting acknowledgment into M,
where M N, separate acknowledgments – each cov-
ering one of M distinct pieces of the received data seg-
ment.

RTT

Sender Receiver

ACK 487

Data 4381:5841

Data 1461:2921Data 2921:4381

Data 5841:7301

ACK 973

ACK 1461

Data 1:1461

Figure 1: Sample time line for a ACK division attack. The sender be-
gins with cwnd=1, which is incremented for each of the three valid ACKs
received. After one round-trip time, cwnd=4, instead of the expected value
of cwnd=2.

This attack is demonstrated in Figure 1 with a time line. Here,
each message exchanged between sender and receiver is shown as
a labeled arrow, with time proceeding down the page. The labels
indicate the type of message, data or acknowledgment, and the se-
quence space consumed. In this example we can see that each ac-
knowledgment is valid, in that it covers data that was sent and pre-
viously unacknowledged. This leads the TCP sender to grow the
congestion window at a rate that is M times faster than usual. The
receiver can control this rate of growth by dividing the segment
at arbitrary points – up to one acknowledgment per byte received
(when M = N). At this limit, a sender with a 1460 byte SMSS could
theoretically be coerced into reaching a congestion window in ex-
cess of the normal TCP sequence space (4GB) in only four round-
trip times! 1 Moreover, while high rates of additional acknowledg-
ment traffic may increase congestion on the path to the sender, the
penalty to the receiver is negligible since the cumulative nature of
acknowledgments inherently tolerates any losses that may occur.

2.3 DupACK spoofing

TCP uses two algorithms, fast retransmit and fast recovery, to miti-
gate the effects of packet loss. The fast retransmit algorithm detects
loss by observing three duplicate acknowledgments and it immedi-
ately retransmits what appears to be the missing segment. How-
ever, the receipt of a duplicate ACK also suggests that segments
are leaving the network. The fast recovery algorithm employs this
information as follows (again quoted from RFC 2581):

Set cwnd to ssthresh plus 3*SMSS. This artificially “in-
flates” the congestion window by the number of seg-
ments (three) that have left the network and which the
receiver has buffered.
..
For each additional duplicate ACK received, increment
cwnd by SMSS. This artificially inflates the congestion
window in order to reflect the additional segment that
has left the network.

1Of course the practical transmission rate is ultimately limited by other factors such
as sender buffering, receiver buffering and network bandwidth.

•  Receiver:	
  “upon	
  receiving	
  a	
  
segment	
  with	
  N	
  bytes,	
  divide	
  the	
  
bytes	
  in	
  M	
  groups	
  and	
  
acknowledge	
  each	
  group	
  
separately”	
  

•  Sender	
  will	
  grow	
  window	
  M	
  
)mes	
  faster	
  

•  Could	
  cause	
  growth	
  to	
  4GB	
  in	
  4	
  
RTTs!	
  
– M	
  =	
  N	
  =	
  1460	
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Figure 4: The TCP Daytona ACK division attack convinces the TCP
sender to send all but the first few segments of a document in a single burst.

3 Implementation experience

To exploit the vulnerabilities described above, we made three mod-
ifications to the TCP subsystem of Linux 2.2.10. This resulting
TCP implementation, which we refer to facetiously as “TCP Day-
tona”, provides extremely high performance at the expense of its
competitors. We demonstrate these abilities with time sequence
plots of packet traces for both normal and modified receiver TCP's.
Needless to say, our implementation is intentionally not “stable”,
and would likely lead to congestion collapse if it were widely de-
ployed.

3.1 ACK division

The TCP Daytona ACK division algorithm adds 24 lines of code
that divide each new outgoing ACK into many ACKs for smaller
extents of the sequence space. Half of the new code is dedicated
to ensuring that the number of outgoing ACKs is no more than
should be needed to coerce a sender in slow start to saturate our
test machine's 100Mbps Ethernet interface.

Figure 4 shows client-side TCP sequence number plots of our
test machine making an HTTP request for the index.html ob-
ject from cnn.com, with and without our ACK division attack en-
abled. This figure spans the entire transaction, beginning with the
TCP handshake that starts at 0ms and ends at around 70ms, when
the HTTP request is sent. The first HTTP data from the server ar-
rives at around 140ms.

This figure shows that, when this attack is enabled, the many
small ACKs sent around 140ms convince the Web server to un-
leash the entire remainder of the document in a single burst; this
data arrives exactly one round-trip time later. By contrast, with the
normal TCP implementation, the server spreads out the data over
the next four round-trip times. In general, as this figure suggests,
this attack can convince a TCP sender to send all of its data in a
single burst.

3.2 DupACK spoofing

The TCP Daytona DupACK spoofing attack is implemented by 11
lines of code that cause the receiver to send sufficient duplicate
ACKs such that the sender (re-)enters fast recovery and fills the
receiver's advertised flow control window each round-trip time.

Figure 5 shows another client-side plot of the same HTTP re-
quest, this time with the DupACK spoofing attack superimposed
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Figure 5: The TCP Daytona DupACK spoofing attack, like the ACK divi-
sion attack, convinces the TCP sender to send all but the first few segments
of a document in a single burst.
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Figure 6: The TCP Daytona optimistic ACK attack, by sending a stream
of early ACKs, convinces the TCP sender to send data much earlier than it
normally would.

on a normal transfer. The many duplicate ACKs that the receiver
sends at around 140ms cause the sender to enter fast recovery and
transmit the rest of the data, which arrives at around 210ms. Were
there more data, the flurry of duplicate ACKs sent at 210ms-230ms
would elicit another burst from the sender. Since there is no more
new data, the sender simply fills in the hole it perceives; this seg-
ment arrives at around 290ms. This figure illustrates how the Du-
pACK spoofing attack can achieve performance essentially equiva-
lent to the ACK division attack – namely, both attacks can convince
the sender to empty its entire send buffer in a single burst.

3.3 Optimistic ACKing

The TCP Daytona implementation of optimistic ACKing consists
of 45 lines of code. Because acknowledging data that has not ar-
rived is a fundamentally tricky business, we chose a very simple
implementation as a proof of concept. When a TCP connection
for an HTTP or FTP client receives its first data, we set a timer
to expire every 10ms. Any interval would do, but we chose 10ms
because it is the smallest interval that Linux 2.2.10 supports on the
Intel PC platform. Whenever this periodic timer expires, or a new
data segment arrives, our receiver sends a new optimistic ACK for
one MSS beyond the previous optimistic ACK.

[Savage	
  99]	
  



Defense	
  

•  Appropriate	
  Byte	
  Coun)ng	
  	
  
–  [RFC3465	
  (2003),	
  RFC	
  5681	
  (2009)]	
  
–  In	
  slow	
  start,	
  cwnd	
  +=	
  min	
  (N,	
  MSS)	
  
where	
  N	
  is	
  the	
  number	
  of	
  newly	
  acknowledged	
  
bytes	
  in	
  the	
  received	
  ACK	
  



DupACK	
  spoofing	
  

•  Receiver:	
  “Upon	
  receiving	
  a	
  
data	
  segment,	
  the	
  receiver	
  
sends	
  a	
  long	
  stream	
  of	
  
acknowledgments	
  for	
  the	
  
last	
  sequence	
  number	
  
received”	
  

•  Sender	
  sends	
  at	
  a	
  rate	
  
propor)onal	
  to	
  the	
  ack	
  
rate	
  



[Savage	
  99]	
  



Op)mis)c	
  ACKing	
  

•  Receiver:	
  “Upon	
  receiving	
  a	
  
data	
  segment,	
  the	
  receiver	
  
sends	
  a	
  stream	
  of	
  
acknowledgments	
  
anAcipaAng	
  data	
  that	
  will	
  be	
  
sent	
  by	
  the	
  sender”	
  



[Savage	
  99]	
  



Chea)ng	
  TCP	
  and	
  Game	
  Theory	
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D à Increases by 1    Increases by 5 

Individual incentives:  cheating pays 
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Too aggressive 
à Losses 
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Topics	
  for	
  Exam	
  1	
  

•  Characterizing	
  network	
  performance	
  
•  Applica)on-­‐layer	
  protocols	
  

– DNS,	
  HTTP	
  
•  Transport	
  protocols	
  

•  Miscellaneous	
  topics	
  
– FTP/HTTP,	
  webpagetest.org,	
  DHCP,	
  Dynamic	
  DNS,	
  
SPDY	
  


