
Introduc)on	
 to	
 Computer	
 Networks	

	

COSC	
 4377	

	

Lecture	
 11	

Spring	
 2012	

February	
 22,	
 2012	

Announcements	

•  HW5	
 due	
 today	

•  Exam1	
 on	
 Monday	

– You	
 can	
 bring	
 one	
 page	
 of	
 notes	

Today’s	
 Topics	

•  HW5	
 discussions	

•  Transport	
 Protocol	

– TCP	
 Friendliness	

– GeQng	
 help	
 from	
 the	
 network	

Help	
 from	
 the	
 network	

•  What	
 if	
 routers	
 could	
 tell	
 TCP	
 that	
 conges)on	

is	
 happening?	

–  Conges)on	
 causes	
 queues	
 to	
 grow:	
 rate	

mismatch	

•  TCP	
 responds	
 to	
 drops	

•  Idea:	
 Random	
 Early	
 Drop	
 (RED)	

–  Rather	
 than	
 wait	
 for	
 queue	
 to	
 become	
 full,	
 drop	

packet	
 with	
 some	
 probability	
 that	
 increases	
 with	

queue	
 length	

–  TCP	
 will	
 react	
 by	
 reducing	
 cwnd	

–  Could	
 also	
 mark	
 instead	
 of	
 dropping:	
 ECN	

RED	
 Details	

•  Compute	
 average	
 queue	
 length	
 (EWMA)	

– Don’t	
 want	
 to	
 react	
 to	
 very	
 quick	
 fluctua)ons	
 AvgLen

Queue length

Instantaneous

Average

Time

• Smooths out AvgLen over time
- Don’t want to react to instantaneous fluctuations

RED	
 Drop	
 Probability	

•  Define	
 two	
 thresholds:	
 MinThresh,	
 MaxThresh	

•  Drop	
 probability:	

RED Details (cont)

• Computing probability P
- TempP = MaxP · (AvgLen�MinThreshold)/(MaxThreshold�

MinThreshold)

- P = TempP/(1� count · TempP)

• Drop Probability Curve:
P(drop)

1.0

MaxP

MinThresh MaxThresh

AvgLen

•  Improvements to spread drops

RED	
 Advantages	

•  Probability	
 of	
 dropping	
 a	
 packet	
 of	
 a	

par)cular	
 flow	
 is	
 roughly	
 propor)onal	
 to	
 the	

share	
 of	
 the	
 bandwidth	
 that	
 flow	
 is	
 currently	

geQng	

•  Higher	
 network	
 u)liza)on	
 with	
 low	
 delays	

•  Average	
 queue	
 length	
 small,	
 but	
 can	
 absorb	

bursts	

•  ECN	

–  Similar	
 to	
 RED,	
 but	
 router	
 sets	
 bit	
 in	
 the	
 packet	

– Must	
 be	
 supported	
 by	
 both	
 ends	

– Avoids	
 retransmissions	
 op)onally	
 dropped	

packets	

More	
 help	
 from	
 the	
 network	

•  Problem:	
 s)ll	
 vulnerable	
 to	
 malicious	
 flows!	

–  RED	
 will	
 drop	
 packets	
 from	
 large	
 flows	

preferen)ally,	
 but	
 they	
 don’t	
 have	
 to	
 respond	

appropriately	

•  Idea:	
 Mul)ple	
 Queues	
 (one	
 per	
 flow)	

–  Serve	
 queues	
 in	
 Round-­‐Robin	

– Nagle	
 (1987)	

– Good:	
 protects	
 against	
 misbehaving	
 flows	

– Disadvantage?	

–  Flows	
 with	
 larger	
 packets	
 get	
 higher	
 bandwidth	

Solu)on	

•  Bit-­‐by-­‐bit	
 round	
 robing	

•  Can	
 we	
 do	
 this?	

– No,	
 packets	
 cannot	
 be	
 preempted!	

•  We	
 can	
 only	
 approximate	
 it…	

Fair	
 Queueing	
 	

•  Define	
 a	
 fluid	
 flow	
 system	
 as	
 one	
 where	
 flows	

are	
 served	
 bit-­‐by-­‐bit	

•  Simulate	
 ff,	
 and	
 serve	
 packets	
 in	
 the	
 order	
 in	

which	
 they	
 would	
 finish	
 in	
 the	
 ff	
 system	

•  Each	
 flow	
 will	
 receive	
 exactly	
 its	
 fair	
 share	

Example	

1	
 2	
 3	
 4	
 5	

1	
 2	
 3	
 4	

1	
 2	

3	

1	
 2	

4	

3	
 4	

5	

5	
 6	

1	
 2	
 1	
 3	
 2	
 3	
 4	
 4	

5	
 6	

5	
 5	
 6	

Flow	
 1	

(arrival	
 traffic)	

Flow	
 2	

(arrival	
 traffic)	

Service	

in	
 fluid	
 flow	
 	

system	

Packet	

system	

)me	

)me	

)me	

)me	

Implemen)ng	
 FQ	

•  Suppose	
 clock	
)cks	
 with	
 each	
 bit	

transmiged	

–  (RR,	
 among	
 all	
 ac)ve	
 flows)	

•  Pi	
 is	
 the	
 length	
 of	
 the	
 packet	

•  Si	
 is	
 packet	
 i’s	
 start	
 of	
 transmission	
)me	

•  Fi	
 is	
 packet	
 i’s	
 end	
 of	
 transmission	
)me	

•  Fi	
 =	
 Si	
 +	
 Pi	

Fair	
 Queueing	

•  Across	
 all	
 flows	

–  Calculate	
 Fi	
 for	
 each	
 packet	
 that	
 arrives	
 on	
 each	
 flow	

– Next	
 packet	
 to	
 transmit	
 is	
 that	
 with	
 the	
 lowest	
 Fi	

–  Clock	
 rate	
 depends	
 on	
 the	
 number	
 of	
 flows	

•  Advantages	

– Achieves	
 max-­‐min	
 fairness,	
 independent	
 of	
 sources	

– Work	
 conserving	

•  Disadvantages	

–  Requires	
 non-­‐trivial	
 support	
 from	
 routers	

–  Requires	
 reliable	
 iden)fica)on	
 of	
 flows	

– Not	
 perfect:	
 can’t	
 preempt	
 packets	

Fair	
 Queueing	
 Example	

•  10Mbps	
 link,	
 1	
 10Mbps	
 UDP,	
 31	
 TCPs	

FQ

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

1 4 7 10 13 16 19 22 25 28 31
Flow Number

T
h

ro
u

g
h

p
u

t(
M

b
p

s)RED

0
1
2
3
4
5
6
7
8
9
10

1 4 7 10 13 16 19 22 25 28 31
Flow Number

T
h

ro
u

g
h

p
u

t(
M

b
p

s)

Big	
 Picture	

•  Fair	
 Queuing	
 doesn’t	
 eliminate	
 conges)on:	

just	
 manages	
 it	

•  You	
 need	
 both,	
 ideally:	

– End-­‐host	
 conges)on	
 control	
 to	
 adapt	

– Router	
 conges)on	
 control	
 to	
 provide	
 isola)on	

Chea)ng	
 TCP	

•  Three	
 possible	
 ways	
 to	
 cheat	

–  Increasing	
 cwnd	
 faster	

– Large	
 ini)al	
 cwnd	

– Opening	
 many	
 connec)ons	

– Ack	
 Division	
 Agack	

Increasing	
 cwnd	
 Faster	

Limit rates:
x = 2y

C

x

y

x increases by 2 per RTT
y increases by 1 per RTT

Figure	
 from	
 Walrand,	
 Berkeley	
 EECS	
 122,	
 2003	

Larger	
 Ini)al	
 Window	
 	

A B

x

D E y
x starts SS with cwnd = 4
y starts SS with cwnd = 1

Figure	
 from	
 Walrand,	
 Berkeley	
 EECS	
 122,	
 2003	

Open	
 Many	
 Connec)ons	

•  Assume:	

– A	
 opens	
 10	
 connec)ons	
 to	
 B	

– B	
 opens	
 1	
 connec)on	
 to	
 E	

•  TCP	
 is	
 fair	
 among	
 connec)ons	

– A	
 gets	
 10	
)mes	
 more	
 bandwidth	
 than	
 B	

A B
x

D E y

•  Web Browser: has to download k objects for a
page
–  Open many connections or download sequentially?

Figure	
 from	
 Walrand,	
 Berkeley	
 EECS	
 122,	
 2003	

Exploi)ng	
 Implicit	
 Assump)ons	

•  Savage,	
 et	
 al.,	
 CCR	
 1999:	
 	

– “
TCP	
 Conges)on	
 Control	
 with	
 a	
 Misbehaving	

Receiver”	

•  Exploits	
 ambiguity	
 in	
 meaning	
 of	
 ACK	

– ACKs	
 can	
 specify	
 any	
 byte	
 range	
 for	
 error	
 control	

– Conges)on	
 control	
 assumes	
 ACKs	
 cover	
 en)re	
 sent	

segments	

ACK	
 Division	
 Agack	

2.1 TCP review

While a detailed description of TCP's error and congestion con-
trol mechanisms is beyond the scope of this paper, we describe the
rudiments of their behavior below to allow those unfamiliar with
TCP to understand the vulnerabilities explained later. For simplic-
ity, we consider TCP without the Selective Acknowledgment op-
tion (SACK) [MMFR96], although the vulnerabilities we describe
also exist when SACK is used.

TCP is a connection-oriented, reliable, ordered, byte-stream
protocol with explicit flow control. A sending host divides the data
stream into individual segments, each of which is no longer than the
Sender Maximum Segment Size (SMSS) determined during con-
nection establishment. Each segment is labeled with explicit se-
quence numbers to guarantee ordering and reliability. When a host
receives an in-sequence segment it sends a cumulative acknowl-
edgment (ACK) in return, notifying the sender that all of the data
preceding that segment's sequence number has been received and
can be retired from the sender's retransmission buffers. If an out-
of-sequence segment is received, then the receiver acknowledges
the next contiguous sequence number that was expected. If out-
standing data is not acknowledged for a period of time, the sender
will timeout and retransmit the unacknowledged segments.

TCP uses several algorithms for congestion control, most no-
tably slow start and congestion avoidance [Jac88, Ste94, APS99].
Each of these algorithms controls the sending rate by manipulating
a congestion window (cwnd) that limits the number of outstanding
unacknowledged bytes that are allowed at any time. When a con-
nection starts, the slow start algorithm is used to quickly increase
cwnd to reach the bottleneck capacity. When the sender infers that
a segment has been lost it interprets this has an implicit signal of
network overload and decreases cwnd quickly. After roughly ap-
proximating the bottleneck capacity, TCP switches to the conges-
tion avoidance algorithm which increases the value of cwnd more
slowly to probe for additional bandwidth that may become avail-
able.

We now describe three attacks on this congestion control pro-
cedure that exploit a sender's vulnerability to non-conforming re-
ceiver behavior.

2.2 ACK division

TCP uses a byte granularity error control protocol and consequently
each TCP segment is described by sequence number and acknowl-
edgment fields that refer to byte offsets within a TCP data stream.
However, TCP's congestion control algorithm is implicitly defined
in terms of segments rather than bytes. For example, the most re-
cent specification of TCP's congestion control behavior, RFC 2581,
states:

During slow start, TCP increments cwnd by at most
SMSS bytes for each ACK received that acknowledges
new data.
...
During congestion avoidance, cwnd is incremented by 1
full-sized segment per round-trip time (RTT).
The incongruence between the byte granularity of error control

and the segment granularity (or more precisely, SMSS granularity)
of congestion control leads to the following vulnerability:

Attack 1:
Upon receiving a data segment containing N bytes, the
receiver divides the resulting acknowledgment into M,
where M N, separate acknowledgments – each cov-
ering one of M distinct pieces of the received data seg-
ment.

RTT

Sender Receiver

ACK 487

Data 4381:5841

Data 1461:2921Data 2921:4381

Data 5841:7301

ACK 973

ACK 1461

Data 1:1461

Figure 1: Sample time line for a ACK division attack. The sender be-
gins with cwnd=1, which is incremented for each of the three valid ACKs
received. After one round-trip time, cwnd=4, instead of the expected value
of cwnd=2.

This attack is demonstrated in Figure 1 with a time line. Here,
each message exchanged between sender and receiver is shown as
a labeled arrow, with time proceeding down the page. The labels
indicate the type of message, data or acknowledgment, and the se-
quence space consumed. In this example we can see that each ac-
knowledgment is valid, in that it covers data that was sent and pre-
viously unacknowledged. This leads the TCP sender to grow the
congestion window at a rate that is M times faster than usual. The
receiver can control this rate of growth by dividing the segment
at arbitrary points – up to one acknowledgment per byte received
(when M = N). At this limit, a sender with a 1460 byte SMSS could
theoretically be coerced into reaching a congestion window in ex-
cess of the normal TCP sequence space (4GB) in only four round-
trip times! 1 Moreover, while high rates of additional acknowledg-
ment traffic may increase congestion on the path to the sender, the
penalty to the receiver is negligible since the cumulative nature of
acknowledgments inherently tolerates any losses that may occur.

2.3 DupACK spoofing

TCP uses two algorithms, fast retransmit and fast recovery, to miti-
gate the effects of packet loss. The fast retransmit algorithm detects
loss by observing three duplicate acknowledgments and it immedi-
ately retransmits what appears to be the missing segment. How-
ever, the receipt of a duplicate ACK also suggests that segments
are leaving the network. The fast recovery algorithm employs this
information as follows (again quoted from RFC 2581):

Set cwnd to ssthresh plus 3*SMSS. This artificially “in-
flates” the congestion window by the number of seg-
ments (three) that have left the network and which the
receiver has buffered.
..
For each additional duplicate ACK received, increment
cwnd by SMSS. This artificially inflates the congestion
window in order to reflect the additional segment that
has left the network.

1Of course the practical transmission rate is ultimately limited by other factors such
as sender buffering, receiver buffering and network bandwidth.

•  Receiver:	
 “upon	
 receiving	
 a	

segment	
 with	
 N	
 bytes,	
 divide	
 the	

bytes	
 in	
 M	
 groups	
 and	

acknowledge	
 each	
 group	

separately”	

•  Sender	
 will	
 grow	
 window	
 M	

)mes	
 faster	

•  Could	
 cause	
 growth	
 to	
 4GB	
 in	
 4	

RTTs!	

– M	
 =	
 N	
 =	
 1460	

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Se
qu

en
ce

 n
um

be
r (

By
te

s)

Time (sec)

Data Segments
ACKs

Data Segments (normal)
ACKs (normal)

Figure 4: The TCP Daytona ACK division attack convinces the TCP
sender to send all but the first few segments of a document in a single burst.

3 Implementation experience

To exploit the vulnerabilities described above, we made three mod-
ifications to the TCP subsystem of Linux 2.2.10. This resulting
TCP implementation, which we refer to facetiously as “TCP Day-
tona”, provides extremely high performance at the expense of its
competitors. We demonstrate these abilities with time sequence
plots of packet traces for both normal and modified receiver TCP's.
Needless to say, our implementation is intentionally not “stable”,
and would likely lead to congestion collapse if it were widely de-
ployed.

3.1 ACK division

The TCP Daytona ACK division algorithm adds 24 lines of code
that divide each new outgoing ACK into many ACKs for smaller
extents of the sequence space. Half of the new code is dedicated
to ensuring that the number of outgoing ACKs is no more than
should be needed to coerce a sender in slow start to saturate our
test machine's 100Mbps Ethernet interface.

Figure 4 shows client-side TCP sequence number plots of our
test machine making an HTTP request for the index.html ob-
ject from cnn.com, with and without our ACK division attack en-
abled. This figure spans the entire transaction, beginning with the
TCP handshake that starts at 0ms and ends at around 70ms, when
the HTTP request is sent. The first HTTP data from the server ar-
rives at around 140ms.

This figure shows that, when this attack is enabled, the many
small ACKs sent around 140ms convince the Web server to un-
leash the entire remainder of the document in a single burst; this
data arrives exactly one round-trip time later. By contrast, with the
normal TCP implementation, the server spreads out the data over
the next four round-trip times. In general, as this figure suggests,
this attack can convince a TCP sender to send all of its data in a
single burst.

3.2 DupACK spoofing

The TCP Daytona DupACK spoofing attack is implemented by 11
lines of code that cause the receiver to send sufficient duplicate
ACKs such that the sender (re-)enters fast recovery and fills the
receiver's advertised flow control window each round-trip time.

Figure 5 shows another client-side plot of the same HTTP re-
quest, this time with the DupACK spoofing attack superimposed

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Se
qu

en
ce

 n
um

be
r (

By
te

s)

Time (sec)

Data Segments
ACKs

Data Segments (normal)
ACKs (normal)

Figure 5: The TCP Daytona DupACK spoofing attack, like the ACK divi-
sion attack, convinces the TCP sender to send all but the first few segments
of a document in a single burst.

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Se
qu

en
ce

 n
um

be
r (

By
te

s)

Time (sec)

Data Segments
ACKs

Data Segments (normal)
ACKs (normal)

Figure 6: The TCP Daytona optimistic ACK attack, by sending a stream
of early ACKs, convinces the TCP sender to send data much earlier than it
normally would.

on a normal transfer. The many duplicate ACKs that the receiver
sends at around 140ms cause the sender to enter fast recovery and
transmit the rest of the data, which arrives at around 210ms. Were
there more data, the flurry of duplicate ACKs sent at 210ms-230ms
would elicit another burst from the sender. Since there is no more
new data, the sender simply fills in the hole it perceives; this seg-
ment arrives at around 290ms. This figure illustrates how the Du-
pACK spoofing attack can achieve performance essentially equiva-
lent to the ACK division attack – namely, both attacks can convince
the sender to empty its entire send buffer in a single burst.

3.3 Optimistic ACKing

The TCP Daytona implementation of optimistic ACKing consists
of 45 lines of code. Because acknowledging data that has not ar-
rived is a fundamentally tricky business, we chose a very simple
implementation as a proof of concept. When a TCP connection
for an HTTP or FTP client receives its first data, we set a timer
to expire every 10ms. Any interval would do, but we chose 10ms
because it is the smallest interval that Linux 2.2.10 supports on the
Intel PC platform. Whenever this periodic timer expires, or a new
data segment arrives, our receiver sends a new optimistic ACK for
one MSS beyond the previous optimistic ACK.

[Savage	
 99]	

Defense	

•  Appropriate	
 Byte	
 Coun)ng	
 	

–  [RFC3465	
 (2003),	
 RFC	
 5681	
 (2009)]	

–  In	
 slow	
 start,	
 cwnd	
 +=	
 min	
 (N,	
 MSS)	

where	
 N	
 is	
 the	
 number	
 of	
 newly	
 acknowledged	

bytes	
 in	
 the	
 received	
 ACK	

DupACK	
 spoofing	

•  Receiver:	
 “Upon	
 receiving	
 a	

data	
 segment,	
 the	
 receiver	

sends	
 a	
 long	
 stream	
 of	

acknowledgments	
 for	
 the	

last	
 sequence	
 number	

received”	

•  Sender	
 sends	
 at	
 a	
 rate	

propor)onal	
 to	
 the	
 ack	

rate	

[Savage	
 99]	

Op)mis)c	
 ACKing	

•  Receiver:	
 “Upon	
 receiving	
 a	

data	
 segment,	
 the	
 receiver	

sends	
 a	
 stream	
 of	

acknowledgments	

anAcipaAng	
 data	
 that	
 will	
 be	

sent	
 by	
 the	
 sender”	

[Savage	
 99]	

Chea)ng	
 TCP	
 and	
 Game	
 Theory	

28

22, 22 10, 35

35, 10 15, 15

(x, y)
A

Increases by 1

Increases by 5

D à Increases by 1 Increases by 5

Individual incentives: cheating pays
Social incentives: better off without cheating

Too aggressive
à Losses
à Throughput falls

A B
x

D E y

Topics	
 for	
 Exam	
 1	

•  Characterizing	
 network	
 performance	

•  Applica)on-­‐layer	
 protocols	

– DNS,	
 HTTP	

•  Transport	
 protocols	

•  Miscellaneous	
 topics	

– FTP/HTTP,	
 webpagetest.org,	
 DHCP,	
 Dynamic	
 DNS,	

SPDY	

