Agenda

Paper review – continued
Conference
Hypothesis/Metrics
HW5
Conferences are gatherings of scientists...

Why do we need them?
Activities in a Conference

Keynote
Paper presentations
Panels
Poster and demo
Competitions
Open mic sessions
Conference Organization

Different roles

- General Chair
- Finance Chair
- Arrangement Chair
- Technology Chair
- Program Chair
- Publication Chair
- Technical Program Committee
- Many other roles

Schedule for activities
Technical Program Committee

Review papers
Types of discussions and meetings
We formed the organization and technical program committee for the conference. We also decided tentative schedule for the conference.
Hypothesis

“A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with the available scientific theories. Even though the words 'hypothesis' and 'theory' are often used synonymously, a scientific hypothesis is not the same as a scientific theory. A working hypothesis is a provisionally accepted hypothesis proposed for further research, in a process beginning with an educated guess or thought.”

-- wikipedia
Hypothesis in Engineering

The hypothesis-model is good for research where you want to understand how something works, but I think it is ill-suited for capturing the full scope of engineering research. After all, in engineering, you're primary goal is not to learn something about how the world works, but rather to change how the world works! So, instead of a hypothesis on how something works, I'd put up existing gaps in the ability to do something as a working basis. That will then put a focus on your research result as an extension of technical capabilities. In order to evaluate your research results, you would then have to show that your results actually close the existing gap.

Of course, also engineering research needs to understand something about how existing things work in order to be able to create something new. Hypotheses are suitable in engineering to clarify these preliminary things. In your case, you state that "the existing 'role-based access control' of MS-Windows does not solve some problems" - that sounds like a perfect hypothesis to test for. But verifying this hypothesis is certainly not the key step in your research, and maybe it has already been done previously. That's why I'd recommend not to focus on a hypothesis as the basis for engineering research (though one might use them to clarify preliminaries), but focus on identified gaps in current technical abilities.

-- silvado, Aug 26, 2013 on stackexchange
https://academia.stackexchange.com/questions/12156/hypothesis-for-an-engineering-oriented-research-thesis
Hypothesis in Engineering

Effectively, what you are doing is development of existing research, rather than designing something de novo. The notion of a research hypothesis is therefore somewhat inappropriate to such work, and you wouldn't write a paper describing this work specifying a definitive "hypothesis."

Instead, you'd write the paper emphasizing that your model does something "better," "faster," "more securely," or specifying whatever other accomplishments advance your work from the previous state of affairs. Your thesis should then show how that is accomplished, and give some evidence thereof.

-- aeismail, Aug 25, 2013
https://academia.stackexchange.com/questions/12156/hypothesis-for-an-engineering-oriented-research-thesis
Hypothesis and Engineering Thesis

Because engineers invent rather than discover, does an engineering thesis need a hypothesis?... because invention is a more tightly directed activity than discovery; and the two are not mutually exclusive anyway... suppose your project involves using Artificial Neural Networks (ANNs), in conjunction with appropriate hardware, to sort good apples from bad. The hypothesis for this project may be, ‘It is possible to sort good apples from bad using ANNs and suitable hardware’.... Suppose that on completing your project, you discovered that the system you had devised works well with green apples, but not with red ones. You would have discovered new knowledge and would be able to suggest a revised hypothesis as the starting point for further investigation. Your own project would have demonstrated the correctness of a hypothesis like ‘It is possible to sort good green apples from bad green apples, with an accuracy of better than 90%, using ANNs and suitable hardware’.

http://thesishub.org/does-an-engineering-thesis-need-a-hypothesis/
“We build new XYZ” – not sufficient.

We can call it a hypothesis or not. We need to know what questions we are trying to answer.
Sample Hypothesis

Only an extraordinarily skilled attacker can break into our firewall. [?]

The firewall accepts all well-formed packets and sessions, and handles malformed packets and sessions as documented in the firewall’s manual.

From Sean Peisert and Matt Bishop
Most of the time our questions are related to what improves some system and the nature of those improvements.

We need to make measurements.
Metric

Why do we want to measure?

What to measure?
Eigenfaces for Recognition

[Turk ’91]

“We have developed a near-real-time computer system that can locate and track a subject’s head, and then recognize the person by comparing the characteristics of the face to those of known individuals.”
Scenarios and metrics from [Turk ‘91]

Figure 9. Results of experiments measuring recognition performance using eigenfaces. Each graph shows averaged performance as the lighting conditions, head size, and head orientation vary—the y-axis depicts number of correct classifications (out of 16). The peak (16/16 correct) in each graph results from recognizing the particular training set perfectly. The other two graph points reveal the decline in performance as the following parameters are varied: (a) lighting, (b) head size (scale), (c) orientation, (d) orientation and lighting, (e) orientation and size (#1), (f) orientation and size (#2), (g) size and lighting, (h) size and lighting (#2).
What hypothesis, scenarios, and metrics should we expect to see in this paper?
5 Results and Performance

The most important measure of a search engine is the quality of its search results. While a complete user evaluation is beyond the scope of this paper, our own experience with Google has shown it to produce better results than the major commercial search engines for most searches. As an example which illustrates the use of PageRank, anchor text, and proximity, Figure 4 shows Google's results for a search on "bill clinton". These results demonstrate some of Google's features. The results are clustered by server. This helps considerably when sifting through result sets. A number of results are from the whitehouse.gov domain which is what one may reasonably expect from such a search. Currently, most major commercial search engines do not return any results from whitehouse.gov, much less the right ones. Notice that there is no title for the first result. This is because it was not crawled. Instead, Google relied on anchor text to determine this was a good answer to the query. Similarly, the fifth result is an email address which, of course, is not crawlable. It is also a result of anchor text.

All of the results are reasonably high quality pages and, at last check, none were broken links. This is largely because they all have high PageRank. The PageRanks are the percentages in red along with bar graphs. Finally, there are no results about a Bill other than Clinton or about a Clinton other than Bill. This is because we place heavy importance on the proximity of word occurrences. Of course a true test of the quality of a search engine would involve an extensive user study or results analysis which we do not have room for here. Instead, we invite the reader to try Google for themselves at http://google.stanford.edu.

[Brin and Page ’98]
Why did the authors decide to report these measurements?

Storage Statistics

<table>
<thead>
<tr>
<th>Storage Type</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Size of Fetched Pages</td>
<td>147.8 GB</td>
</tr>
<tr>
<td>Compressed Repository</td>
<td>53.5 GB</td>
</tr>
<tr>
<td>Short Inverted Index</td>
<td>4.1 GB</td>
</tr>
<tr>
<td>Full Inverted Index</td>
<td>37.2 GB</td>
</tr>
<tr>
<td>Lexicon</td>
<td>293 MB</td>
</tr>
<tr>
<td>Temporary Anchor Data (not in total)</td>
<td>6.6 GB</td>
</tr>
<tr>
<td>Document Index Incl. Variable Width Data</td>
<td>9.7 GB</td>
</tr>
<tr>
<td>Links Database</td>
<td>3.9 GB</td>
</tr>
<tr>
<td>Total Without Repository</td>
<td>55.2 GB</td>
</tr>
<tr>
<td>Total With Repository</td>
<td>108.7 GB</td>
</tr>
</tbody>
</table>

Web Page Statistics

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Web Pages Fetched</td>
<td>24 million</td>
</tr>
<tr>
<td>Number ofUrls Seen</td>
<td>76.5 million</td>
</tr>
<tr>
<td>Number of Email Addresses</td>
<td>1.7 million</td>
</tr>
<tr>
<td>Number of 404’s</td>
<td>1.6 million</td>
</tr>
</tbody>
</table>

Table 1. Statistics

[Brin and Page ’98]
Metrics/Experiments?

Accurately Initializing Real Time Clocks to Provide Synchronized Time in Sensor Networks

CTP: An Efficient, Robust, and Reliable Collection Tree Protocol for Wireless Sensor Networks

On the Effectiveness of Energy Metering on Every Node

Surviving Sensor Network Software Faults
Metrics from Classification Research

Classification Accuracy
Logarithmic Loss
Area Under ROC Curve
Confusion Matrix
Classification Report
Precision
Recall
F1-Score

Partly from https://machinelearningmastery.com/metrics-evaluate-machine-learning-algorithms-python/
Metrics from Regression Research

Mean Absolute Error
Mean Squared Error
R^2

Partly from https://machinelearningmastery.com/metrics-evaluate-machine-learning-algorithms-python/
Metrics from Systems Research

Reliability
Latency
Coverage
Energy
HW5 – Metrics

List of metrics from the related papers.

Define the metrics.

Observations about common and uncommon metrics.