Go g|€ Cloud B|Og (Contact sales)

Security & Identity

How it works: The novel
HTTP/2 ‘Rapid Reset’ DDoS

attack

October 10, 2023

Daniele lamartino

Juho Snellman

K B8 €

https://twitter.com/intent/tweet?text=How%20it%20works:%20The%20novel%20HTTP/2%20%E2%80%98Rapid%20Reset%E2%80%99%20DDoS%20attack%20@googlecloud&url=https://cloud.google.com/blog/products/identity-security/how-it-works-the-novel-http2-rapid-reset-ddos-attack
https://www.linkedin.com/shareArticle?mini=true&url=https://cloud.google.com/blog/products/identity-security/how-it-works-the-novel-http2-rapid-reset-ddos-attack&title=How%20it%20works:%20The%20novel%20HTTP/2%20%E2%80%98Rapid%20Reset%E2%80%99%20DDoS%20attack
https://www.facebook.com/sharer/sharer.php?caption=How%20it%20works:%20The%20novel%20HTTP/2%20%E2%80%98Rapid%20Reset%E2%80%99%20DDoS%20attack&u=https://cloud.google.com/blog/products/identity-security/how-it-works-the-novel-http2-rapid-reset-ddos-attack
mailto:?subject=How%20it%20works:%20The%20novel%20HTTP/2%20%E2%80%98Rapid%20Reset%E2%80%99%20DDoS%20attack&body=Check%20out%20this%20article%20on%20the%20Cloud%20Blog:%0A%0AHow%20it%20works:%20The%20novel%20HTTP/2%20%E2%80%98Rapid%20Reset%E2%80%99%20DDoS%20attack%0A%0ALearn%20how%20the%20new%20DDoS%20attack%20technique%20Rapid%20Reset%20works,%20and%20how%20to%20mitigate%20it%0A%0Ahttps://cloud.google.com/blog/products/identity-security/how-it-works-the-novel-http2-rapid-reset-ddos-attack
https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

GO gle Cloud B|Og (Contact saIes) Get started for free

A number of Google services and Cloud customers
have been targeted with a novel HTTP/2-based
DDoS attack which peaked in August. These attacks
were significantly larger than any previously-
reported Layer 7 attacks, with the largest attack
surpassing_398 million requests per second.

The attacks were largely stopped at the edge of our
network by Google's global load balancing
infrastructure and did not lead to any outages.
While the impact was minimal, Google's DDoS
Response Team reviewed the attacks and added
additional protections to further mitigate similar
attacks. In addition to Google's internal response,
we helped lead a coordinated disclosure process
with industry partners to address the new HTTP/2
vector across the ecosystem.

Cybersecurity
Action Team

Hear monthly from our Cloud CISO in your
inbox

https://cloud.google.com/blog/products/identity-security/how-google-cloud-blocked-largest-layer-7-ddos-attack-at-46-million-rps
https://cloud.google.com/blog/products/identity-security/how-google-cloud-blocked-largest-layer-7-ddos-attack-at-46-million-rps
https://cloud.google.com/blog/products/identity-security/google-cloud-mitigated-largest-ddos-attack-peaking-above-398-million-rps
https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

GO gle Cloud B|Og (Contact sales) Get started for free

Subscribe today

Below, we explain the predominant methodology for
Layer 7 attacks over the last few years, what
changed in these new attacks to make them so
much larger, and the mitigation strategies we
believe are effective against this attack type. This
article is written from the perspective of a reverse
proxy architecture, where the HTTP request is
terminated by a reverse proxy that forwards
requests to other services. The same concepts
apply to HTTP servers that are integrated into the
application server, but with slightly different
considerations which potentially lead to different
mitigation strategies.

A primer on HTTP/2 for
DDoS

Since late 2021, the majority of Layer 7 DDoS
attacks we've observed across Google first-party
services and Google Cloud projects protected by
Cloud Armor have been based on HTTP/2, both by
number of attacks and by peak request rates.

https://go.chronicle.security/cloudciso-newsletter-signup?utm_source=cgc-blog&utm_medium=blog&utm_campaign=FY23-Cloud-CISO-Perspectives-newsletter-blog-embed-CTA&utm_content=-&utm_term=-
https://cloud.google.com/armor
https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

GO gle Cloud B|Og (Contact saIes) Get started for free

EHICIENL 101 1egiurmdatle CIlErnLs cdil diso be used Lo

make DDoS attacks more efficient.

Stream multiplexing

HTTP/2 uses "streams”, bidirectional abstractions
used to transmit various messages, or "frames",
between the endpoints. “Stream multiplexing” is the
core HTTP/2 feature which allows higher utilization
of each TCP connection. Streams are multiplexed in
a way that can be tracked by both sides of the
connection while only using one Layer 4 connection.
Stream multiplexing enables clients to have multiple
in-flight requests without managing multiple
individual connections.

One of the main constraints when mounting a Layer
7 DoS attack is the number of concurrent transport
connections. Each connection carries a cost,
including operating system memory for socket
records and buffers, CPU time for the TLS
handshake, as well as each connection needing a
unique four-tuple, the IP address and port pair for
each side of the connection, constraining the
number of concurrent connections between two IP
addresses.

In HTTP/1.1, each request is processed serially. The
server will read a request, process it, write a
response, and only then read and process the next
request. In practice, this means that the rate of

https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

GO gle Cloud B|Og (Contact sales) Get started for free

INCIuyes uie NnewworKk 1dLercy, proxy processing urme
and backend request processing time. While
HTTP/1.1 pipelining is available in some clients and
servers to increase a connection's throughput, it is
not prevalent amongst legitimate clients.

With HTTP/2, the client can open multiple
concurrent streams on a single TCP connection,
each stream corresponding to one HTTP request.
The maximum number of concurrent open streams
is, in theory, controllable by the server, but in
practice clients may open 100 streams per request
and the servers process these requests in parallel.
It's important to note that server limits can not be
unilaterally adjusted.

For example, the client can open 100 streams and
send a request on each of them in a single round
trip; the proxy will read and process each stream
serially, but the requests to the backend servers
can again be parallelized. The client can then open
new streams as it receives responses to the
previous ones. This gives an effective throughput for
a single connection of 100 requests per round trip,
with similar round trip timing constants to HTTF/1.1
requests. This will typically lead to almost 100 times
higher utilization of each connection.

The HTTP/2 Rapid Reset
attack

https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

GO gle Cloud B|Og (Contact saIes) Get started for free

SENUINY d KO I_OS I REAIVIE ITdITIE. 11T1€ Prolocol aoes
not require the client and server to coordinate the
cancellation in any way, the client may do it
unilaterally. The client may also assume that the
cancellation will take effect immediately when the
server receives the RST_STREAM frame, before any
other data from that TCP connection is processed.

This attack is called Rapid Reset because it relies on
the ability for an endpoint to send a RST STREAM
frame immediately after sending a request frame,
which makes the other endpoint start working and
then rapidly resets the request. The request is
canceled, but leaves the HTTP/2 connection open.

HTTP/1.1 attack Standard HTTP/2 attack HTTP/2 Rapid Reset attack

2 ? 2
7 7 3
g g g
g g g
H & &
a a a
5 & &
% 8 %

g g

g g

- 2

g g

HTTP/1.1and HTTP/2 request and response pattern

The HTTP/2 Rapid Reset attack built on this
capability is simple: The client opens a large number
of streams at once as in the standard HTTP/2 attack,
but rather than waiting for a response to each
request stream from the server or proxy, the client
cancels each request immediately.

https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

GO gle Cloud B|Og (Contact sales) Get started for free

I ygrit. oy explicCity cdaricelrig uie requests, Uie

attacker never exceeds the limit on the number of
concurrent open streams. The number of in-flight
requests is no longer dependent on the round-trip
time (RTT), but only on the available network
bandwidth.

In a typical HTTP/2 server implementation, the
server will still have to do significant amounts of
work for canceled requests, such as allocating new
stream data structures, parsing the query and doing
header decompression, and mapping the URL to a
resource. For reverse proxy implementations, the
request may be proxied to the backend server
before the RST STREAM frame is processed. The
client on the other hand paid almost no costs for
sending the requests. This creates an exploitable
cost asymmetry between the server and the client.

Another advantage the attacker gains is that the
explicit cancellation of requests immediately after
creation means that a reverse proxy server won't
send a response to any of the requests. Canceling
the requests before a response is written reduces
downlink (server/proxy to attacker) bandwidth.

HTTP/2 Rapid Reset attack
variants

In the weeks after the initial DDoS attacks, we have
seen some Rapid Reset attack variants. These

https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

GO gle Cloud B|Og (Contact saIes) Get started for free

sidliiadid il 174 DDOOS dLLdCKS.

The first variant does not immediately cancel the
streams, but instead opens a batch of streams at
once, waits for some time, and then cancels those
streams and then immediately opens another large
batch of new streams. This attack may bypass
mitigations that are based on just the rate of
inbound RST_STREAM frames (such as allow at most
100 RST_STREAMSs per second on a connection
before closing it).

These attacks lose the main advantage of the
canceling attacks by not maximizing connection
utilization, but still have some implementation
efficiencies over standard HTTP/2 DDoS attacks. But
this variant does mean that any mitigation based on
rate-limiting stream cancellations should set fairly
strict limits to be effective.

The second variant does away with canceling
streams entirely, and instead optimistically tries to
open more concurrent streams than the server
advertised. The benefit of this approach over the
standard HTTP/2 DDoS attack is that the client can
keep the request pipeline full at all times, and
eliminate client-proxy RTT as a bottleneck. It can
also eliminate the proxy-server RTT as a bottleneck
if the request is to a resource that the HTTP/2
server responds to immediately.

REC 9113, the current HTTP/2 RFC, suggests that an
attempt to open too many streams should invalidate

https://www.rfc-editor.org/rfc/rfc9113.html
https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

GO g|€ Cloud B|Og (Contact sales) Get started for free

SEIVErs WII 1NOL Process Uiose suedlrtis, dra Iis wridL
enables the non-cancelling attack variant by almost
immediately accepting and processing a new
stream after responding to a previous stream.

A multifaceted approach to
mitigations

We don't expect that simply blocking individual
requests is a viable mitigation against this class of
attacks — instead the entire TCP connection needs
to be closed when abuse is detected. HTTP/2
provides built-in support for closing connections,
using the GOAWAY frame type. The RFC defines a
process for gracefully closing a connection that
involves first sending an informational GOAWAY that
does not set a limit on opening new streams, and
one round trip later sending another that forbids
opening additional streams.

However, this graceful GOAWAY process is usually
not implemented in a way which is robust against
malicious clients. This form of mitigation leaves the
connection vulnerable to Rapid Reset attacks for too
long, and should not be used for building mitigations
as it does not stop the inbound requests. Instead,
the GOAWAY should be set up to limit stream
creation immediately.

This leaves the question of deciding which
connections are abusive. The client canceling

https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

GO gle Cloud B|Og (Contact sales) Get started for free

request processirng. rypicdi situatorlls are wrieri d
browser no longer needs a resource it had
requested due to the user navigating away from the
page, or applications using a long_polling approach
with a client-side timeout.

Mitigations for this attack vector can take multiple
forms, but mostly center around tracking
connection statistics and using various signals and
business logic to determine how useful each
connection is. For example, if a connection has
more than 100 requests with more than 50% of the
given requests canceled, it could be a candidate for
a mitigation response. The magnitude and type of
response depends on the risk to each platform, but
responses can range from forceful GOAWAY frames
as discussed before to closing the TCP connection
immediately.

To mitigate against the non-cancelling variant of
this attack, we recommend that HTTP/2 servers
should close connections that exceed the
concurrent stream limit. This can be either
immediately or after some small number of repeat
offenses.

Applicability to other
protocols

We do not believe these attack methods translate
directly to HTTP/3 (QUIC) due to protocol

https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

GO gle Cloud B|Og (Contact saIes) Get started for free

pespiILe uid, our recornimnenaacort is 10r Al 1r7o
server implementations to proactively implement
mechanisms to limit the amount of work done by a
single transport connection, similar to the HTTP/2
mitigations discussed above.

Industry coordination

Early in our DDoS Response Team's investigation
and in coordination with industry partners, it was
apparent that this new attack type could have a
broad impact on any entity offering the HTTP/2
protocol for their services. Google helped lead a
coordinated vulnerability disclosure process taking
advantage of a pre-existing coordinated
vulnerability disclosure group, which has been used
for a number of other efforts in the past.

During the disclosure process, the team focused on
notifying large-scale implementers of HTTP/2
including infrastructure companies and server
software providers. The goal of these prior
notifications was to develop and prepare mitigations
for a coordinated release. In the past, this approach
has enabled widespread protections to be enabled
for service providers or available via software
updates for many packages and solutions.

During the coordinated disclosure process, we
reserved CVE-2023-44487 to track fixes to the
various HTTP/2 implementations.

https://nvd.nist.gov/vuln/detail/CVE-2023-44487
https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

GO g|€ Cloud B|Og (Contact sales) Get started for free

The novel attacks discussed in this post can have
significant impact on services of any scale. All
providers who have HTTP/2 services should assess
their exposure to this issue. Software patches and
updates for common web servers and programming
languages may be available to apply now or in the
near future. We recommend applying those fixes as
soon as possible.

For our customers, we recommend patching

software and enabling the Application Load
Balancer and Google Cloud Armor, which has been
protecting Google and existing Google Cloud
Application Load Balancing users.

Posted in Security & Identity—Networking—
Google Cloud

Related articles

e

Cybersecurity
Action Team

Security & Identity Security & Identity

Cloud CISO Perspectives: Why What’s new in Assured
ISACs are valuable security Workloads: Japan regions, move

https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-why-isacs-are-valuable-security-partners
https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-why-isacs-are-valuable-security-partners
https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-why-isacs-are-valuable-security-partners
https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-why-isacs-are-valuable-security-partners
https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-why-isacs-are-valuable-security-partners
https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-why-isacs-are-valuable-security-partners
https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-why-isacs-are-valuable-security-partners
https://cloud.google.com/blog/products/identity-security/whats-new-in-assured-workloads-japan-region-migration-compliance-analysis
https://cloud.google.com/blog/products/identity-security/whats-new-in-assured-workloads-japan-region-migration-compliance-analysis
https://cloud.google.com/blog/products/identity-security/whats-new-in-assured-workloads-japan-region-migration-compliance-analysis
https://cloud.google.com/blog/products/identity-security/whats-new-in-assured-workloads-japan-region-migration-compliance-analysis
https://cloud.google.com/blog/products/identity-security/whats-new-in-assured-workloads-japan-region-migration-compliance-analysis
https://cloud.google.com/blog/products/identity-security/whats-new-in-assured-workloads-japan-region-migration-compliance-analysis
https://cloud.google.com/blog/products/identity-security/whats-new-in-assured-workloads-japan-region-migration-compliance-analysis
https://cloud.google.com/load-balancing?hl=en
https://cloud.google.com/load-balancing?hl=en
https://cloud.google.com/armor
https://cloud.google.com/blog/products/identity-security
https://cloud.google.com/blog/products/networking
https://cloud.google.com/blog/products/gcp
https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

Y

CLOUDFLARE

Q

HTTP/2 Rapid Reset: deconstructing the

record-breaking attack
10/10/2023

Lucas Pardue 4! Julien Desgats

16 min read

This post is also available in E{AR, ZEEHL, HAEE, 81=01, Deutsch, Frangais and Espafiol.

Starting on Aug 25, 2023, we started to notice some unusually big HTTP attacks
hitting many of our customers. These attacks were detected and mitigated by our
automated DDoS system. It was not long however, before they started to reach

https://blog.cloudflare.com/
https://blog.cloudflare.com/search/
https://blog.cloudflare.com/author/lucas/
https://blog.cloudflare.com/author/lucas
https://blog.cloudflare.com/author/julien-desgats/
https://blog.cloudflare.com/author/julien-desgats
https://blog.cloudflare.com/zh-cn/technical-breakdown-http2-rapid-reset-ddos-attack-zh-cn/
https://blog.cloudflare.com/zh-tw/technical-breakdown-http2-rapid-reset-ddos-attack-zh-tw/
https://blog.cloudflare.com/ja-jp/technical-breakdown-http2-rapid-reset-ddos-attack-ja-jp/
https://blog.cloudflare.com/ko-kr/technical-breakdown-http2-rapid-reset-ddos-attack-ko-kr/
https://blog.cloudflare.com/de-de/technical-breakdown-http2-rapid-reset-ddos-attack-de-de/
https://blog.cloudflare.com/fr-fr/technical-breakdown-http2-rapid-reset-ddos-attack-fr-fr/
https://blog.cloudflare.com/es-es/technical-breakdown-http2-rapid-reset-ddos-attack-es-es/

record breaking sizes — and eventually peaked just above 201 million requests
per second. This was nearly 3x bigger than our previous biggest attack on

record.

Under attack or need additional protection? Click here to get help.

Concerning is the fact that the attacker was able to generate such an attack with
a botnet of merely 20,000 machines. There are botnets today that are made up
of hundreds of thousands or millions of machines. Given that the entire web
typically sees only between 1-3 billion requests per second, it's not inconceivable
that using this method could focus an entire web’s worth of requests on a small
number of targets.

Detecting and Mitigating

This was a novel attack vector at an unprecedented scale, but Cloudflare's
existing protections were largely able to absorb the brunt of the attacks. While
initially we saw some impact to customer traffic — affecting roughly 1% of
requests during the initial wave of attacks — today we've been able to refine our
mitigation methods to stop the attack for any Cloudflare customer without it
impacting our systems.

We noticed these attacks at the same time two other major industry players —
Google and AWS — were seeing the same. We worked to harden Cloudflare's
systems to ensure that, today, all our customers are protected from this new
DDoS attack method without any customer impact. We've also participated with
Google and AWS in a coordinated disclosure of the attack to impacted vendors
and critical infrastructure providers.

This attack was made possible by abusing some features of the HTTP/2 protocol
and server implementation details (see CVE-2023-44487 for details). Because

the attack abuses an underlying weakness in the HTTP/2 protocol, we believe any

https://blog.cloudflare.com/cloudflare-mitigates-record-breaking-71-million-request-per-second-ddos-attack/
https://blog.cloudflare.com/cloudflare-mitigates-record-breaking-71-million-request-per-second-ddos-attack/
https://www.cloudflare.com/h2/
https://www.cve.org/CVERecord?id=CVE-2023-44487

vendor that has implemented HTTP/2 will be subject to the attack. This included
every modern web server. We, along with Google and AWS, have disclosed the
attack method to web server vendors who we expect will implement patches. In
the meantime, the best defense is using a DDoS mitigation service like
Cloudflare’s in front of any web-facing web or API server.

This post dives into the details of the HTTP/2 protocol, the feature that attackers
exploited to generate these massive attacks, and the mitigation strategies we
took to ensure all our customers are protected. Our hope is that by publishing
these details other impacted web servers and services will have the information
they need to implement mitigation strategies. And, moreover, the HTTP/2
protocol standards team, as well as teams working on future web standards, can
better design them to prevent such attacks.

RST attack details

HTTP is the application protocol that powers the Web. HTTP Semantics are

common to all versions of HTTP — the overall architecture, terminology, and
protocol aspects such as request and response messages, methods, status
codes, header and trailer fields, message content, and much more. Each
individual HTTP version defines how semantics are transformed into a "wire
format" for exchange over the Internet. For example, a client has to serialize a
request message into binary data and send it, then the server parses that back
into a message it can process.

HTTP/1.1 uses a textual form of serialization. Request and response messages are
exchanged as a stream of ASCII characters, sent over a reliable transport layer
like TCP, using the following format (where CRLF means carriage-return and
linefeed):

HTTP-message = start-line CRLF
*(field-1line CRLF)

https://www.cloudflare.com/learning/ddos/how-to-prevent-ddos-attacks/
https://www.rfc-editor.org/rfc/rfc9110.html
https://www.rfc-editor.org/rfc/rfc9112.html
https://www.rfc-editor.org/rfc/rfc9112.html#section-2.1

CRLF
[message-body]

For example, a very simple GET request for https://blog.cloudflare.com/ would
look like this on the wire:

GET / HTTP/1.1 CRLFHost: blog.cloudflare.comCRLFCRLF
And the response would look like:

HTTP/1.1 200 OK CRLFServer: cloudflareCRLFContent-Length:
100CRLFtext/html; charset=UTF-8CRLFCRLF<100 bytes of data>

This format frames messages on the wire, meaning that it is possible to use a
single TCP connection to exchange multiple requests and responses. However,
the format requires that each message is sent whole. Furthermore, in order to
correctly correlate requests with responses, strict ordering is required; meaning
that messages are exchanged serially and can not be multiplexed. Two GET
requests, for https://blog.cloudflare.com/ and
https://blog.cloudflare.com/page/2/, would be:

GET / HTTP/1.1 CRLFHost: blog.cloudflare.comCRLFCRLFGET /page/2/ HTTP/1.1
CRLFHost: blog.cloudflare.comCRLFCRLF

With the responses:

HTTP/1.1 200 OK CRLFServer: cloudflareCRLFContent-Length:
100CRLFtext/html; charset=UTF-8CRLFCRLF<100 bytes of data>CRLFHTTP/1.1
200 OK CRLFServer: cloudflareCRLFContent-Length: 100CRLFtext/html;
charset=UTF-8CRLFCRLF<100 bytes of data>

Web pages require more complicated HTTP interactions than these examples.
When visiting the Cloudflare blog, your browser will load multiple scripts, styles
and media assets. If you visit the front page using HTTP/1.1 and decide quickly to

navigate to page 2, your browser can pick from two options. Either wait for all of
the queued up responses for the page that you no longer want before page 2 can
even start, or cancel in-flight requests by closing the TCP connection and
opening a new connection. Neither of these is very practical. Browsers tend to
work around these limitations by managing a pool of TCP connections (up to 6
per host) and implementing complex request dispatch logic over the pool.

HTTP/2 addresses many of the issues with HTTP/1.1. Each HTTP message is
serialized into a set of HTTP/2 frames that have type, length, flags, stream
identifier (ID) and payload. The stream ID makes it clear which bytes on the wire
apply to which message, allowing safe multiplexing and concurrency. Streams are
bidirectional. Clients send frames and servers reply with frames using the same
ID.

In HTTP/2 our GET request for https://blog.cloudflare.com would be
exchanged across stream ID 1, with the client sending one HEADERS frame, and
the server responding with one HEADERS frame, followed by one or more DATA

frames. Client requests always use odd-numbered stream IDs, so subsequent
requests would use stream ID 3, 5, and so on. Responses can be served in any
order, and frames from different streams can be interleaved.

Client Server
HEADERS HEADERS HEADERS
Stream ID 1 Stream ID 3 Stream ID 5 >
< HEADERS Data HEADERS Data HEADERS Data
Stream ID 1 Stream ID 1 Stream ID 3 Stream ID 3 Stream ID 5 Stream ID 5

Stream multiplexing and concurrency are powerful features of HTTP/2. They
enable more efficient usage of a single TCP connection. HTTP/2 optimizes
resources fetching especially when coupled with prioritization. On the flip side,

https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9113#name-headers
https://www.rfc-editor.org/rfc/rfc9113#name-data
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/

making it easy for clients to launch large amounts of parallel work can increase
the peak demand for server resources when compared to HTTP/1.1. This is an
obvious vector for denial-of-service.

In order to provide some guardrails, HTTP/2 provides a notion of maximum active
concurrent streams. The SETTINGS_MAX_CONCURRENT_STREAMS parameter
allows a server to advertise its limit of concurrency. For example, if the server

states a limit of 100, then only 100 requests can be active at any time. If a client
attempts to open a stream above this limit, it must be rejected by the server using
a RST_STREAM frame. Stream rejection does not affect the other in-flight

streams on the connection.

The true story is a little more complicated. Streams have a lifecycle. Below is a
diagram of the HTTP/2 stream state machine. Client and server manage their own
views of the state of a stream. HEADERS, DATA and RST_STREAM frames trigger
transitions when they are sent or received. Although the views of the stream state
are independent, they are synchronized.

HEADERS and DATA frames include an END_STREAM flag, that when set to the
value 1 (true), can trigger a state transition.

https://www.rfc-editor.org/rfc/rfc9113#section-5.1.2
https://www.rfc-editor.org/rfc/rfc9113#SETTINGS_MAX_FRAME_SIZE
https://www.rfc-editor.org/rfc/rfc9113#section-6.4
https://www.rfc-editor.org/rfc/rfc9113#section-5.1

O s
—

Client view of request stream states Server view of request stream states
Idle Idle
Send HEADERS Receive HEADERS
/ Open Open \
Send HEADERS or DATA with END_STREAM=1 Receive HEADERS or DATA with END_STREAM=1
Half-closed Send RST STREAM or Send RST STREAM or Half-closed
Receive RST_STREAM Receive RST_STREAM
Receive HEADERS or DATA with END_STREAM =1 or Send HEADERS or DATA with END_STREAM =1 or
Send RST STREAM or Send RST STREAM or
Receive RST_STREAM Receive RST_STREAM
\I v v '
Closed Closed

Let's work through this with an example of a GET request that has no message
content. The client sends the request as a HEADERS frame with the
END_STREAM flag set to 1. The client first transitions the stream from idle to
open state, then immediately transitions into half-closed state. The client half-
closed state means that it can no longer send HEADERS or DATA, only
WINDOW_UPDATE, PRIORITY or RST_STREAM frames. It can receive any frame

however.

Once the server receives and parses the HEADERS frame, it transitions the
stream state from idle to open and then half-closed, so it matches the client. The
server half-closed state means it can send any frame but receive only
WINDOW_UPDATE, PRIORITY or RST_STREAM frames.

The response to the GET contains message content, so the server sends

https://www.rfc-editor.org/rfc/rfc9113.html#section-6.9
https://www.rfc-editor.org/rfc/rfc9113.html#section-6.3

HEADERS with END_STREAM flag set to 0, then DATA with END_STREAM flag
set to 1. The DATA frame triggers the transition of the stream from half-closed to
closed on the server. When the client receives it, it also transitions to closed.
Once a stream is closed, no frames can be sent or received.

Applying this lifecycle back into the context of concurrency, HTTP/2 states:

Streams that are in the "open" state or in either of the "half-closed" states count
toward the maximum number of streams that an endpoint is permitted to open.
Streams in any of these three states count toward the limit advertised in the
SETTINGS_MAX_CONCURRENT_STREAMS setting.

In theory, the concurrency limit is useful. However, there are practical factors that
hamper its effectiveness— which we will cover later in the blog.

HTTP/2 request cancellation

Earlier, we talked about client cancellation of in-flight requests. HTTP/2 supports
this in a much more efficient way than HTTP/1.1. Rather than needing to tear
down the whole connection, a client can send a RST_STREAM frame for a single
stream. This instructs the server to stop processing the request and to abort the
response, which frees up server resources and avoids wasting bandwidth.

Let's consider our previous example of 3 requests. This time the client cancels
the request on stream 1 after all of the HEADERS have been sent. The server
parses this RST_STREAM frame before it is ready to serve the response and
instead only responds to stream 3 and 5:

https://www.rfc-editor.org/rfc/rfc9113#section-5.1.2-2
https://www.rfc-editor.org/rfc/rfc9113#SETTINGS_MAX_CONCURRENT_STREAMS

CIient Server
HEADERS HEADERS HEADERS RST_STREAM
Stream ID 1 Stream ID 3 Stream ID 5 Stream ID 1 >
- HEADERS Data HEADERS Data
Stream ID 3 Stream ID 3 Stream ID 5 Stream ID 5

Request cancellation is a useful feature. For example, when scrolling a webpage

with multiple images, a web browser can cancel images that fall outside the

viewport, meaning that images entering it can load faster. HTTP/2 makes this

behaviour a lot more efficient compared to HTTP/1.1.

A request stream that is canceled, rapidly transitions through the stream lifecycle.
The client's HEADERS with END_STREAM flag set to 1 transitions the state from
idle to open to half-closed, then RST_STREAM immediately causes a transition

from half-closed to closed.

HEADERS
O END_STREAM=1 | m—
o > —
. RST_STREAM
Client Server
Idle Idle
\Z £\
Open Open
g N
Send HEADERS with END_STREAM=1 Receive HEADERS with END_STREAM=1
nd N
Half-closed Half-closed
N P
Send RST STREAM Receive RST_STREAM

N A

Closed Closed

Recall that only streams that are in the open or half-closed state contribute to the
stream concurrency limit. When a client cancels a stream, it instantly gets the
ability to open another stream in its place and can send another request
immediately. This is the crux of what makes CVE-2023-44487 work.

Rapid resets leading to denial of service

HTTP/2 request cancellation can be abused to rapidly reset an unbounded
number of streams. When an HTTP/2 server is able to process client-sent
RST_STREAM frames and tear down state quickly enough, such rapid resets do
not cause a problem. Where issues start to crop up is when there is any kind of
delay or lag in tidying up. The client can churn through so many requests that a
backlog of work accumulates, resulting in excess consumption of resources on
the server.

https://www.cve.org/CVERecord?id=CVE-2023-44487

A common HTTP deployment architecture is to run an HTTP/2 proxy or load-
balancer in front of other components. When a client request arrives it is quickly
dispatched and the actual work is done as an asynchronous activity somewhere
else. This allows the proxy to handle client traffic very efficiently. However, this
separation of concerns can make it hard for the proxy to tidy up the in-process
jobs. Therefore, these deployments are more likely to encounter issues from rapid
resets.

When Cloudflare's reverse proxies process incoming HTTP/2 client traffic, they

copy the data from the connection’s socket into a buffer and process that
buffered data in order. As each request is read (HEADERS and DATA frames) it is
dispatched to an upstream service. When RST_STREAM frames are read, the
local state for the request is torn down and the upstream is notified that the
request has been canceled. Rinse and repeat until the entire buffer is consumed.
However this logic can be abused: when a malicious client started sending an
enormous chain of requests and resets at the start of a connection, our servers
would eagerly read them all and create stress on the upstream servers to the
point of being unable to process any new incoming request.

Something that is important to highlight is that stream concurrency on its own
cannot mitigate rapid reset. The client can churn requests to create high request
rates no matter the server's chosen value of
SETTINGS_MAX_CONCURRENT_STREAMS.

Rapid Reset dissected

Here's an example of rapid reset reproduced using a proof-of-concept client
attempting to make a total of 1000 requests. I've used an off-the-shelf server
without any mitigations; listening on port 443 in a test environment. The traffic is
dissected using Wireshark and filtered to show only HTTP/2 traffic for clarity.
Download the pcap to follow along.

https://www.rfc-editor.org/rfc/rfc9110#section-3.7-6
https://www.rfc-editor.org/rfc/rfc9113#SETTINGS_MAX_CONCURRENT_STREAMS
https://blog.cloudflare.com/content/images/rapidreset.pcapng

O —— [[—

14 0.001558443 127 4433 127.0.0 . 45466 HTTP2 ~Toa S[TTIrms[a]

15 0.002606575 1 45466 127.0.0.1 4433 HTTP2 16472 Magic, SETTINGS[0], sFTnNGs[ﬂ] WINDOW_UPDATE[0], HFADFR§[1] GET /foo, RST_STREAM[1], HEADERS[3]: GET /foo, RST_STREAM[3], HEADERS[5]: GET /foo, RST_STREAM[5],

3 127.0.0. 1 45466 HTTP2 337 SEIT[NN[], HEADERS[1051]: 484 Not Found, DATA[1851] (tex
7.0.0.1

16 0.003546911 443! AL ext/html)
17 0.003574348 12 45466 12 4433 HTTP2 14805 RST_STREAM[1051], HEADERS[1653]: GET /foo, RST_STREAM[1053], HEADERS[1055]): GET /foo, RST_STREAM[1855], HEADERS[1057]: GET /foo, RST_STREAM[1057], HEADERS[1059]:

It's a bit difficult to see, because there are a lot of frames. We can get a quick
summary via Wireshark's Statistics > HTTP2 tool:

Topic / Item Cour~
v HTTP2 2008
v Type 2008
HEADERS 1001
RST_STREAM 1000
SETTINGS 4
WINDOW _UPDATE 1
GOAWAY 1
DATA 1

The first frame in this trace, in packet 14, is the server's SETTINGS frame, which
advertises a maximum stream concurrency of 100. In packet 15, the client sends
a few control frames and then starts making requests that are rapidly reset. The
first HEADERS frame is 26 bytes long, all subsequent HEADERS are only 9 bytes.
This size difference is due to a compression technology called HPACK. In total,
packet 15 contains 525 requests, going up to stream 1051.

https://blog.cloudflare.com/hpack-the-silent-killer-feature-of-http-2/

¥ HYpPEeriext iransrer v¥rowocoL £
~ Stream: HEADERS, Stream ID: 1, Length 26, GET /foo
Length: 26
Type: HEADERS (1)
» Flags: 0x05, End Headers, End Stream
Q Reserved: Ox0
Stream Identifier: 1

.000 00O C0OE 0OGEe 0000 0000 0000 0001
[Pad Length: 0]
Header Block Fragment: 048362539f87418a089d5c0b8170dc69a659827a852191d35d05
[Header Length: 112]
[Header Count: 5]
Header: :path: /foo
Header: :scheme: https
Header: :authority: 127.0.0.1:4433
Header: :method: GET
Header: user-agent: example
[Full request URI: https://127.0.0.1:4433/fo0]
~ HyperText Transfer Protocol 2
~ Stream: RST_STREAM, Stream ID: 1, Length 4
Length: 4
Type: RST_STREAM (3)
» Flags: 0x00
0

v Vv wewwow

Reserved: 0x0
Stream Identifier: 1

.000 00RO 00GO O0EO 000G 000G PO 0001
Error: CANCEL (8)
~ HyperText Transfer Protocol 2
~ Stream: HEADERS, Stream ID: 3, Length 9, GET /foo
Length: 9
Type: HEADERS (1)
» Flags: 0x05, End Headers, End Stream
Bois scni ases sume suns Enes mess wsan
.000 00CO 00GO OOEO 000G OO0 P00 0011
[Pad Length: @]
Header Block Fragment: 048362539f87bf82be
[Header Length: 112]
[Header Count: 5]
» Header: :path: /foo
» Header: :scheme: https
» Header: :authority: 127.0.0.1:4433
»
»

Reserved: 0x0
Stream Identifier: 3

Header: :method: GET
Header: user-agent: example

[| PRSR _ppey Rppm—nr —pp—m—) pp— app——

Interestingly, the RST_STREAM for stream 1051 doesn't fit in packet 15, so in
packet 16 we see the server respond with a 404 response. Then in packet 17 the
client does send the RST_STREAM, before moving on to sending the remaining
475 requests.

Note that although the server advertised 100 concurrent streams, both packets
sent by the client sent a lot more HEADERS frames than that. The client did not
have to wait for any return traffic from the server, it was only limited by the size of
the packets it could send. No server RST_STREAM frames are seen in this trace,
indicating that the server did not observe a concurrent stream violation.

Impact on customers

As mentioned above, as requests are canceled, upstream services are notified
and can abort requests before wasting too many resources on it. This was the
case with this attack, where most malicious requests were never forwarded to the
origin servers. However, the sheer size of these attacks did cause some impact.

First, as the rate of incoming requests reached peaks never seen before, we had
reports of increased levels of 502 errors seen by clients. This happened on our
most impacted data centers as they were struggling to process all the requests.
While our network is meant to deal with large attacks, this particular vulnerability
exposed a weakness in our infrastructure. Let's dig a little deeper into the details,
focusing on how incoming requests are handled when they hit one of our data

centers:
Cloudflace datacenter \
. \g UNIX domain socket é Upstreom
connections = TLS riec"‘/f"tb"‘ proxy) Business |03;c proxy \§ services
—— AW
L? DDoS m?tis,o{tion

happens here

We can see that our infrastructure is composed of a chain of different proxy
servers with different responsibilities. In particular, when a client connects to
Cloudflare to send HTTPS traffic, it first hits our TLS decryption proxy: it decrypts
TLS traffic, processes HTTP 1, 2 or 3 traffic, then forwards it to our "business
logic" proxy. This one is responsible for loading all the settings for each customer,
then routing the requests correctly to other upstream services — and more
importantly in our case, it is also responsible for security features. This is
where L7 attack mitigation is processed.

The problem with this attack vector is that it manages to send a lot of requests
very quickly in every single connection. Each of them had to be forwarded to the
business logic proxy before we had a chance to block it. As the request
throughput became higher than our proxy capacity, the pipe connecting these
two services reached its saturation level in some of our servers.

When this happens, the TLS proxy cannot connect anymore to its upstream
proxy, this is why some clients saw a bare "502 Bad Gateway" error during the
most serious attacks. It is important to note that, as of today, the logs used to
create HTTP analytics are also emitted by our business logic proxy. The
consequence of that is that these errors are not visible in the Cloudflare
dashboard. Our internal dashboards show that about 1% of requests were
impacted during the initial wave of attacks (before we implemented mitigations),
with peaks at around 12% for a few seconds during the most serious one on
August 29th. The following graph shows the ratio of these errors over a two hours
while this was happening:

Global 502 error rate on August 29th (2h period)

15.00%

10.00%

5.00%

Juu\ ~ o N

0.00%

We worked to reduce this number dramatically in the following days, as detailed
later on in this post. Both thanks to changes in our stack and to our mitigation
that reduce the size of these attacks considerably, this number today is
effectively zero.

Global 502 error rate on October 6th (6h period)

0.010%

0.008%

0.005%

0.003%

0.000%

499 errors and the challenges for HTTP/2
stream concurrency

Another symptom reported by some customers is an increase in 499 errors. The
reason for this is a bit different and is related to the maximum stream
concurrency in a HTTP/2 connection detailed earlier in this post.

HTTP/2 settings are exchanged at the start of a connection using SETTINGS
frames. In the absence of receiving an explicit parameter, default values apply.
Once a client establishes an HTTP/2 connection, it can wait for a server's
SETTINGS (slow) or it can assume the default values and start making requests
(fast). For SETTINGS_MAX_CONCURRENT_STREAMS, the default is effectively

unlimited (stream IDs use a 31-bit number space, and requests use odd numbers,
so the actual limit is 1073741824). The specification recommends that a server
offer no fewer than 100 streams. Clients are generally biased towards speed, so
don't tend to wait for server settings, which creates a bit of a race condition.
Clients are taking a gamble on what limit the server might pick; if they pick wrong
the request will be rejected and will have to be retried. Gambling on 1073741824
streams is a bit silly. Instead, a lot of clients decide to limit themselves to issuing
100 concurrent streams, with the hope that servers followed the specification
recommendation. Where servers pick something below 100, this client gamble
fails and streams are reset.

c lie_n‘t Cc loudplare

HEADERS

SETTINGS
SETTINGS_MAX_CONCURRENT _STREAMS = 3
GOAWAY

All unPinished requests
are logﬁed as 499 errors

There are many reasons a server might reset a stream beyond concurrency limit
overstepping. HTTP/2 is strict and requires a stream to be closed when there are
parsing or logic errors. In 2019, Cloudflare developed several mitigations in
response to HTTP/2 DoS vulnerabilities. Several of those vulnerabilities were

caused by a client misbehaving, leading the server to reset a stream. A very
effective strategy to clamp down on such clients is to count the number of server
resets during a connection, and when that exceeds some threshold value, close
the connection with a GOAWAY frame. Legitimate clients might make one or two
mistakes in a connection and that is acceptable. A client that makes too many
mistakes is probably either broken or malicious and closing the connection
addresses both cases.

https://blog.cloudflare.com/on-the-recent-http-2-dos-attacks/
https://www.rfc-editor.org/rfc/rfc9113#section-6.8

While responding to DoS attacks enabled by CVE-2023-44487, Cloudflare
reduced maximum stream concurrency to 64. Before making this change, we

were unaware that clients don't wait for SETTINGS and instead assume a
concurrency of 100. Some web pages, such as an image gallery, do indeed cause
a browser to send 100 requests immediately at the start of a connection.
Unfortunately, the 36 streams above our limit all needed to be reset, which
triggered our counting mitigations. This meant that we closed connections on
legitimate clients, leading to a complete page load failure. As soon as we realized
this interoperability issue, we changed the maximum stream concurrency to 100.

Actions from the Cloudflare side

In 2019 several DoS vulnerabilities were uncovered related to implementations of

HTTP/2. Cloudflare developed and deployed a series of detections and
mitigations in response. CVE-2023-44487 is a different manifestation of HTTP/2
vulnerability. However, to mitigate it we were able to extend the existing

protections to monitor client-sent RST_STREAM frames and close connections
when they are being used for abuse. Legitimate client uses for RST_STREAM are
unaffected.

In addition to a direct fix, we have implemented several improvements to the
server's HTTP/2 frame processing and request dispatch code. Furthermore, the
business logic server has received improvements to queuing and scheduling that
reduce unnecessary work and improve cancellation responsiveness. Together
these lessen the impact of various potential abuse patterns as well as giving
more room to the server to process requests before saturating.

Mitigate attacks earlier

Cloudflare already had systems in place to efficiently mitigate very large attacks
with less expensive methods. One of them is named "IP Jail". For hyper
volumetric attacks, this system collects the client IPs participating in the attack

https://www.cve.org/CVERecord?id=CVE-2023-44487
https://blog.cloudflare.com/on-the-recent-http-2-dos-attacks/
https://www.cve.org/CVERecord?id=CVE-2023-44487

and stops them from connecting to the attacked property, either at the IP level, or
in our TLS proxy. This system however needs a few seconds to be fully effective;
during these precious seconds, the origins are already protected but our
infrastructure still needs to absorb all HTTP requests. As this new botnet has
effectively no ramp-up period, we need to be able to neutralize attacks before
they can become a problem.

To achieve this we expanded the IP Jail system to protect our entire
infrastructure: once an IP is "jailed", not only it is blocked from connecting to the
attacked property, we also forbid the corresponding IPs from using HTTP/2 to any
other domain on Cloudflare for some time. As such protocol abuses are not
possible using HTTP/1.x, this limits the attacker's ability to run large attacks, while
any legitimate client sharing the same IP would only see a very small performance
decrease during that time. IP based mitigations are a very blunt tool — this is why
we have to be extremely careful when using them at that scale and seek to avoid
false positives as much as possible. Moreover, the lifespan of a given IP in a
botnet is usually short so any long term mitigation is likely to do more harm than
good. The following graph shows the churn of IPs in the attacks we witnessed:

120000

As we can see, many new IPs spotted on a given day disappear very quickly
afterwards.

As all these actions happen in our TLS proxy at the beginning of our HTTPS
pipeling, this saves considerable resources compared to our regular L7 mitigation
system. This allowed us to weather these attacks much more smoothly and now
the number of random 502 errors caused by these botnets is down to zero.

Observability improvements

Another front on which we are making change is observability. Returning errors to
clients without being visible in customer analytics is unsatisfactory. Fortunately, a
project has been underway to overhaul these systems since long before the
recent attacks. It will eventually allow each service within our infrastructure to log
its own data, instead of relying on our business logic proxy to consolidate and
emit log data. This incident underscored the importance of this work, and we are
redoubling our efforts.

We are also working on better connection-level logging, allowing us to spot such
protocol abuses much more quickly to improve our DDoS mitigation capabilities.

Conclusion

While this was the latest record-breaking attack, we know it won't be the last. As
attacks continue to become more sophisticated, Cloudflare works relentlessly to
proactively identify new threats — deploying countermeasures to our global
network so that our millions of customers are immediately and automatically
protected.

Cloudflare has provided free, unmetered and unlimited DDoS protection to all of
our customers since 2017. In addition, we offer a range of additional security

