
Security & Identity

How it works: The novel
HTTP/2 ‘Rapid Reset’ DDoS

attack
October 10, 2023

Juho Snellman
Daniele Iama�ino

Contact sales Get started for freeCloud Blog

https://twitter.com/intent/tweet?text=How%20it%20works:%20The%20novel%20HTTP/2%20%E2%80%98Rapid%20Reset%E2%80%99%20DDoS%20attack%20@googlecloud&url=https://cloud.google.com/blog/products/identity-security/how-it-works-the-novel-http2-rapid-reset-ddos-attack
https://www.linkedin.com/shareArticle?mini=true&url=https://cloud.google.com/blog/products/identity-security/how-it-works-the-novel-http2-rapid-reset-ddos-attack&title=How%20it%20works:%20The%20novel%20HTTP/2%20%E2%80%98Rapid%20Reset%E2%80%99%20DDoS%20attack
https://www.facebook.com/sharer/sharer.php?caption=How%20it%20works:%20The%20novel%20HTTP/2%20%E2%80%98Rapid%20Reset%E2%80%99%20DDoS%20attack&u=https://cloud.google.com/blog/products/identity-security/how-it-works-the-novel-http2-rapid-reset-ddos-attack
mailto:?subject=How%20it%20works:%20The%20novel%20HTTP/2%20%E2%80%98Rapid%20Reset%E2%80%99%20DDoS%20attack&body=Check%20out%20this%20article%20on%20the%20Cloud%20Blog:%0A%0AHow%20it%20works:%20The%20novel%20HTTP/2%20%E2%80%98Rapid%20Reset%E2%80%99%20DDoS%20attack%0A%0ALearn%20how%20the%20new%20DDoS%20attack%20technique%20Rapid%20Reset%20works,%20and%20how%20to%20mitigate%20it%0A%0Ahttps://cloud.google.com/blog/products/identity-security/how-it-works-the-novel-http2-rapid-reset-ddos-attack
https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

Staff Software Engineer Staff Site Reliability
Engineer

A number of Google services and Cloud customers
have been targeted with a novel HTTP/2-based
DDoS a�ack which peaked in August. These a�acks
were signi�cantly larger than any previously-
repo�ed Layer 7 a�acks, with the largest a�ack
surpassing 398 million requests per second.

The a�acks were largely stopped at the edge of our
network by Google's global load balancing
infrastructure and did not lead to any outages.
While the impact was minimal, Google's DDoS
Response Team reviewed the a�acks and added
additional protections to fu�her mitigate similar
a�acks. In addition to Google's internal response,
we helped lead a coordinated disclosure process
with industry pa�ners to address the new HTTP/2
vector across the ecosystem.

Hear monthly from our Cloud CISO in your
inbox

Contact sales Get started for freeCloud Blog

https://cloud.google.com/blog/products/identity-security/how-google-cloud-blocked-largest-layer-7-ddos-attack-at-46-million-rps
https://cloud.google.com/blog/products/identity-security/how-google-cloud-blocked-largest-layer-7-ddos-attack-at-46-million-rps
https://cloud.google.com/blog/products/identity-security/google-cloud-mitigated-largest-ddos-attack-peaking-above-398-million-rps
https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

Get security updates, musings, and more from
Google Cloud CISO Phil Venables direct to your
inbox every month.

Subscribe today

Below, we explain the predominant methodology for
Layer 7 a�acks over the last few years, what
changed in these new a�acks to make them so
much larger, and the mitigation strategies we
believe are e�ective against this a�ack type. This
a�icle is wri�en from the perspective of a reverse
proxy architecture, where the HTTP request is
terminated by a reverse proxy that forwards
requests to other services. The same concepts
apply to HTTP servers that are integrated into the
application server, but with slightly di�erent
considerations which potentially lead to di�erent
mitigation strategies.

A primer on HTTP/2 for
DDoS

Since late 2021, the majority of Layer 7 DDoS
a�acks we've observed across Google �rst-pa�y
services and Google Cloud projects protected by
Cloud Armor have been based on HTTP/2, both by
number of a�acks and by peak request rates.

Contact sales Get started for freeCloud Blog

https://go.chronicle.security/cloudciso-newsletter-signup?utm_source=cgc-blog&utm_medium=blog&utm_campaign=FY23-Cloud-CISO-Perspectives-newsletter-blog-embed-CTA&utm_content=-&utm_term=-
https://cloud.google.com/armor
https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

A primary design goal of HTTP/2 was e�ciency, and
unfo�unately the features that make HTTP/2 more
e�cient for legitimate clients can also be used to
make DDoS a�acks more e�cient.

Stream multiplexing

HTTP/2 uses "streams", bidirectional abstractions
used to transmit various messages, or "frames",
between the endpoints. “Stream multiplexing” is the
core HTTP/2 feature which allows higher utilization
of each TCP connection. Streams are multiplexed in
a way that can be tracked by both sides of the
connection while only using one Layer 4 connection.
Stream multiplexing enables clients to have multiple
in-�ight requests without managing multiple
individual connections.

One of the main constraints when mounting a Layer
7 DoS a�ack is the number of concurrent transpo�
connections. Each connection carries a cost,
including operating system memory for socket
records and bu�ers, CPU time for the TLS
handshake, as well as each connection needing a
unique four-tuple, the IP address and po� pair for
each side of the connection, constraining the
number of concurrent connections between two IP
addresses.

In HTTP/1.1, each request is processed serially. The
server will read a request, process it, write a
response, and only then read and process the next
request. In practice, this means that the rate of

Contact sales Get started for freeCloud Blog

https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

requests that can be sent over a single connection
is one request per round trip, where a round trip
includes the network latency, proxy processing time
and backend request processing time. While
HTTP/1.1 pipelining is available in some clients and
servers to increase a connection's throughput, it is
not prevalent amongst legitimate clients.

With HTTP/2, the client can open multiple
concurrent streams on a single TCP connection,
each stream corresponding to one HTTP request.
The maximum number of concurrent open streams
is, in theory, controllable by the server, but in
practice clients may open 100 streams per request
and the servers process these requests in parallel.
It’s impo�ant to note that server limits can not be
unilaterally adjusted.

For example, the client can open 100 streams and
send a request on each of them in a single round
trip; the proxy will read and process each stream
serially, but the requests to the backend servers
can again be parallelized. The client can then open
new streams as it receives responses to the
previous ones. This gives an e�ective throughput for
a single connection of 100 requests per round trip,
with similar round trip timing constants to HTTP/1.1
requests. This will typically lead to almost 100 times
higher utilization of each connection.

The HTTP/2 Rapid Reset
attack

Contact sales Get started for freeCloud Blog

https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

The HTTP/2 protocol allows clients to indicate to the
server that a previous stream should be canceled by
sending a RST_STREAM frame. The protocol does
not require the client and server to coordinate the
cancellation in any way, the client may do it
unilaterally. The client may also assume that the
cancellation will take e�ect immediately when the
server receives the RST_STREAM frame, before any
other data from that TCP connection is processed.

This a�ack is called Rapid Reset because it relies on
the ability for an endpoint to send a RST_STREAM
frame immediately a�er sending a request frame,
which makes the other endpoint sta� working and
then rapidly resets the request. The request is
canceled, but leaves the HTTP/2 connection open.

HTTP/1.1 and HTTP/2 request and response pattern

The HTTP/2 Rapid Reset a�ack built on this
capability is simple: The client opens a large number
of streams at once as in the standard HTTP/2 a�ack,
but rather than waiting for a response to each
request stream from the server or proxy, the client
cancels each request immediately.

Contact sales Get started for freeCloud Blog

https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

The ability to reset streams immediately allows each
connection to have an inde�nite number of requests
in �ight. By explicitly canceling the requests, the
a�acker never exceeds the limit on the number of
concurrent open streams. The number of in-�ight
requests is no longer dependent on the round-trip
time (RTT), but only on the available network
bandwidth.

In a typical HTTP/2 server implementation, the
server will still have to do signi�cant amounts of
work for canceled requests, such as allocating new
stream data structures, parsing the query and doing
header decompression, and mapping the URL to a
resource. For reverse proxy implementations, the
request may be proxied to the backend server
before the RST_STREAM frame is processed. The
client on the other hand paid almost no costs for
sending the requests. This creates an exploitable
cost asymmetry between the server and the client.

Another advantage the a�acker gains is that the
explicit cancellation of requests immediately a�er
creation means that a reverse proxy server won't
send a response to any of the requests. Canceling
the requests before a response is wri�en reduces
downlink (server/proxy to a�acker) bandwidth.

HTTP/2 Rapid Reset attack
variants

In the weeks a�er the initial DDoS a�acks, we have
seen some Rapid Reset a�ack variants. These

Contact sales Get started for freeCloud Blog

https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

variants are generally not as e�cient as the initial
version was, but might still be more e�cient than
standard HTTP/2 DDoS a�acks.

The �rst variant does not immediately cancel the
streams, but instead opens a batch of streams at
once, waits for some time, and then cancels those
streams and then immediately opens another large
batch of new streams. This a�ack may bypass
mitigations that are based on just the rate of
inbound RST_STREAM frames (such as allow at most
100 RST_STREAMs per second on a connection
before closing it).

These a�acks lose the main advantage of the
canceling a�acks by not maximizing connection
utilization, but still have some implementation
e�ciencies over standard HTTP/2 DDoS a�acks. But
this variant does mean that any mitigation based on
rate-limiting stream cancellations should set fairly
strict limits to be e�ective.

The second variant does away with canceling
streams entirely, and instead optimistically tries to
open more concurrent streams than the server
adve�ised. The bene�t of this approach over the
standard HTTP/2 DDoS a�ack is that the client can
keep the request pipeline full at all times, and
eliminate client-proxy RTT as a bo�leneck. It can
also eliminate the proxy-server RTT as a bo�leneck
if the request is to a resource that the HTTP/2
server responds to immediately.

RFC 9113, the current HTTP/2 RFC, suggests that an
a�empt to open too many streams should invalidate

Contact sales Get started for freeCloud Blog

https://www.rfc-editor.org/rfc/rfc9113.html
https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

only the streams that exceeded the limit, not the
entire connection. We believe that most HTTP/2
servers will not process those streams, and is what
enables the non-cancelling a�ack variant by almost
immediately accepting and processing a new
stream a�er responding to a previous stream.

A multifaceted approach to
mitigations

We don't expect that simply blocking individual
requests is a viable mitigation against this class of
a�acks — instead the entire TCP connection needs
to be closed when abuse is detected. HTTP/2
provides built-in suppo� for closing connections,
using the GOAWAY frame type. The RFC de�nes a
process for gracefully closing a connection that
involves �rst sending an informational GOAWAY that
does not set a limit on opening new streams, and
one round trip later sending another that forbids
opening additional streams.

However, this graceful GOAWAY process is usually
not implemented in a way which is robust against
malicious clients. This form of mitigation leaves the
connection vulnerable to Rapid Reset a�acks for too
long, and should not be used for building mitigations
as it does not stop the inbound requests. Instead,
the GOAWAY should be set up to limit stream
creation immediately.

This leaves the question of deciding which
connections are abusive. The client canceling

Contact sales Get started for freeCloud Blog

https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

requests is not inherently abusive, the feature exists
in the HTTP/2 protocol to help be�er manage
request processing. Typical situations are when a
browser no longer needs a resource it had
requested due to the user navigating away from the
page, or applications using a long polling approach
with a client-side timeout.

Mitigations for this a�ack vector can take multiple
forms, but mostly center around tracking
connection statistics and using various signals and
business logic to determine how useful each
connection is. For example, if a connection has
more than 100 requests with more than 50% of the
given requests canceled, it could be a candidate for
a mitigation response. The magnitude and type of
response depends on the risk to each pla�orm, but
responses can range from forceful GOAWAY frames
as discussed before to closing the TCP connection
immediately.

To mitigate against the non-cancelling variant of
this a�ack, we recommend that HTTP/2 servers
should close connections that exceed the
concurrent stream limit. This can be either
immediately or a�er some small number of repeat
o�enses.

Applicability to other
protocols

We do not believe these a�ack methods translate
directly to HTTP/3 (QUIC) due to protocol

Contact sales Get started for freeCloud Blog

https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

di�erences, and Google does not currently see
HTTP/3 used as a DDoS a�ack vector at scale.
Despite that, our recommendation is for HTTP/3
server implementations to proactively implement
mechanisms to limit the amount of work done by a
single transpo� connection, similar to the HTTP/2
mitigations discussed above.

Industry coordination

Early in our DDoS Response Team's investigation
and in coordination with industry pa�ners, it was
apparent that this new a�ack type could have a
broad impact on any entity o�ering the HTTP/2
protocol for their services. Google helped lead a
coordinated vulnerability disclosure process taking
advantage of a pre-existing coordinated
vulnerability disclosure group, which has been used
for a number of other e�o�s in the past.

During the disclosure process, the team focused on
notifying large-scale implementers of HTTP/2
including infrastructure companies and server
so�ware providers. The goal of these prior
noti�cations was to develop and prepare mitigations
for a coordinated release. In the past, this approach
has enabled widespread protections to be enabled
for service providers or available via so�ware
updates for many packages and solutions.

During the coordinated disclosure process, we
reserved CVE-2023-44487 to track �xes to the
various HTTP/2 implementations.

Contact sales Get started for freeCloud Blog

https://nvd.nist.gov/vuln/detail/CVE-2023-44487
https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

Related a�icles

Security & Identity Security & Identity

Next steps

The novel a�acks discussed in this post can have
signi�cant impact on services of any scale. All
providers who have HTTP/2 services should assess
their exposure to this issue. So�ware patches and
updates for common web servers and programming
languages may be available to apply now or in the
near future. We recommend applying those �xes as
soon as possible.

For our customers, we recommend patching
so�ware and enabling the Application Load
Balancer and Google Cloud Armor, which has been
protecting Google and existing Google Cloud
Application Load Balancing users.

Posted in Security & Identity—Networking—
Google Cloud

Cloud CISO Perspectives: Why
ISACs are valuable security

What’s new in Assured
Workloads: Japan regions, move

Contact sales Get started for freeCloud Blog

https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-why-isacs-are-valuable-security-partners
https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-why-isacs-are-valuable-security-partners
https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-why-isacs-are-valuable-security-partners
https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-why-isacs-are-valuable-security-partners
https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-why-isacs-are-valuable-security-partners
https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-why-isacs-are-valuable-security-partners
https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-why-isacs-are-valuable-security-partners
https://cloud.google.com/blog/products/identity-security/whats-new-in-assured-workloads-japan-region-migration-compliance-analysis
https://cloud.google.com/blog/products/identity-security/whats-new-in-assured-workloads-japan-region-migration-compliance-analysis
https://cloud.google.com/blog/products/identity-security/whats-new-in-assured-workloads-japan-region-migration-compliance-analysis
https://cloud.google.com/blog/products/identity-security/whats-new-in-assured-workloads-japan-region-migration-compliance-analysis
https://cloud.google.com/blog/products/identity-security/whats-new-in-assured-workloads-japan-region-migration-compliance-analysis
https://cloud.google.com/blog/products/identity-security/whats-new-in-assured-workloads-japan-region-migration-compliance-analysis
https://cloud.google.com/blog/products/identity-security/whats-new-in-assured-workloads-japan-region-migration-compliance-analysis
https://cloud.google.com/load-balancing?hl=en
https://cloud.google.com/load-balancing?hl=en
https://cloud.google.com/armor
https://cloud.google.com/blog/products/identity-security
https://cloud.google.com/blog/products/networking
https://cloud.google.com/blog/products/gcp
https://cloud.google.com/contact/
https://console.cloud.google.com/freetrial/
https://cloud.google.com/
https://cloud.google.com/blog

https://blog.cloudflare.com/
https://blog.cloudflare.com/search/
https://blog.cloudflare.com/author/lucas/
https://blog.cloudflare.com/author/lucas
https://blog.cloudflare.com/author/julien-desgats/
https://blog.cloudflare.com/author/julien-desgats
https://blog.cloudflare.com/zh-cn/technical-breakdown-http2-rapid-reset-ddos-attack-zh-cn/
https://blog.cloudflare.com/zh-tw/technical-breakdown-http2-rapid-reset-ddos-attack-zh-tw/
https://blog.cloudflare.com/ja-jp/technical-breakdown-http2-rapid-reset-ddos-attack-ja-jp/
https://blog.cloudflare.com/ko-kr/technical-breakdown-http2-rapid-reset-ddos-attack-ko-kr/
https://blog.cloudflare.com/de-de/technical-breakdown-http2-rapid-reset-ddos-attack-de-de/
https://blog.cloudflare.com/fr-fr/technical-breakdown-http2-rapid-reset-ddos-attack-fr-fr/
https://blog.cloudflare.com/es-es/technical-breakdown-http2-rapid-reset-ddos-attack-es-es/

https://blog.cloudflare.com/cloudflare-mitigates-record-breaking-71-million-request-per-second-ddos-attack/
https://blog.cloudflare.com/cloudflare-mitigates-record-breaking-71-million-request-per-second-ddos-attack/
https://www.cloudflare.com/h2/
https://www.cve.org/CVERecord?id=CVE-2023-44487

 HTTP-message = start-line CRLF
 *(field-line CRLF)

https://www.cloudflare.com/learning/ddos/how-to-prevent-ddos-attacks/
https://www.rfc-editor.org/rfc/rfc9110.html
https://www.rfc-editor.org/rfc/rfc9112.html
https://www.rfc-editor.org/rfc/rfc9112.html#section-2.1

 CRLF
 [message-body]

https://blog.cloudflare.com/

GET / HTTP/1.1 CRLFHost: blog.cloudflare.comCRLFCRLF

HTTP/1.1 200 OK CRLFServer: cloudflareCRLFContent-Length:

100CRLFtext/html; charset=UTF-8CRLFCRLF<100 bytes of data>

https://blog.cloudflare.com/

https://blog.cloudflare.com/page/2/

GET / HTTP/1.1 CRLFHost: blog.cloudflare.comCRLFCRLFGET /page/2/ HTTP/1.1

CRLFHost: blog.cloudflare.comCRLFCRLF

HTTP/1.1 200 OK CRLFServer: cloudflareCRLFContent-Length:

100CRLFtext/html; charset=UTF-8CRLFCRLF<100 bytes of data>CRLFHTTP/1.1

200 OK CRLFServer: cloudflareCRLFContent-Length: 100CRLFtext/html;

charset=UTF-8CRLFCRLF<100 bytes of data>

https://blog.cloudflare.com

https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9113#name-headers
https://www.rfc-editor.org/rfc/rfc9113#name-data
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/

https://www.rfc-editor.org/rfc/rfc9113#section-5.1.2
https://www.rfc-editor.org/rfc/rfc9113#SETTINGS_MAX_FRAME_SIZE
https://www.rfc-editor.org/rfc/rfc9113#section-6.4
https://www.rfc-editor.org/rfc/rfc9113#section-5.1

https://www.rfc-editor.org/rfc/rfc9113.html#section-6.9
https://www.rfc-editor.org/rfc/rfc9113.html#section-6.3

https://www.rfc-editor.org/rfc/rfc9113#section-5.1.2-2
https://www.rfc-editor.org/rfc/rfc9113#SETTINGS_MAX_CONCURRENT_STREAMS

https://www.cve.org/CVERecord?id=CVE-2023-44487

https://www.rfc-editor.org/rfc/rfc9110#section-3.7-6
https://www.rfc-editor.org/rfc/rfc9113#SETTINGS_MAX_CONCURRENT_STREAMS
https://blog.cloudflare.com/content/images/rapidreset.pcapng

https://blog.cloudflare.com/hpack-the-silent-killer-feature-of-http-2/

https://blog.cloudflare.com/on-the-recent-http-2-dos-attacks/
https://www.rfc-editor.org/rfc/rfc9113#section-6.8

https://www.cve.org/CVERecord?id=CVE-2023-44487
https://blog.cloudflare.com/on-the-recent-http-2-dos-attacks/
https://www.cve.org/CVERecord?id=CVE-2023-44487

