
Improving Network Availability with Protective ReRoute
David Wetherall, Abdul Kabbani∗, Van Jacobson, Jim Winget, Yuchung Cheng,

Charles B. Morrey III, Uma Moravapalle, Phillipa Gill, Steven Knight, and Amin Vahdat
Google

ABSTRACT
We present PRR (Protective ReRoute), a transport technique for
shortening user-visible outages that complements routing repair.
It can be added to any transport to provide benefits in multipath
networks. PRR responds to flow connectivity failure signals, e.g.,
retransmission timeouts, by changing the FlowLabel on packets
of the flow, which causes switches and hosts to choose a different
network path that may avoid the outage. To enable it, we shifted our
IPv6 network architecture to use the FlowLabel, so that hosts can
change the paths of their flows without application involvement.
PRR is deployed fleetwide at Google for TCP and Pony Express,
where it has been protecting all production traffic for several years.
It is also available to our Cloud customers. We find it highly ef-
fective for real outages. In a measurement study on our network
backbones, adding PRR reduced the cumulative region-pair outage
time over TCP with application-level recovery by 63–84%. This is
the equivalent of adding 0.4–0.8 “nines” of availability.

CCS CONCEPTS
•Networks→Data path algorithms;Network reliability;End
nodes;

KEYWORDS
Network availability, Multipathing, FlowLabel

ACM Reference Format:
David Wetherall, Abdul Kabbani, Van Jacobson, Jim Winget, Yuchung
Cheng, Charles B. Morrey III, Uma Moravapalle, Phillipa Gill, Steven Knight,
and Amin Vahdat. 2023. Improving Network Availability with Protective
ReRoute. In ACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23), Sep-
tember 10, 2023, New York, NY, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3603269.3604867

1 INTRODUCTION
Hyperscalers operate networks that support services with billions
of customers for use cases such as banking, hospitals and com-
merce. High network availability is a paramount concern. Since it
is impossible to prevent faults in any large network, it is necessary
to repair them quickly to avoid service interruptions. The classic
repair strategies depend on routing protocols to rapidly shift traffic
from failed links and switches onto working paths.

*The author contributed to this work while at Google.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0236-5/23/09.
https://doi.org/10.1145/3603269.3604867

In our experience, the main barrier to high availability in large
networks is the non-negligible number of faults for which routing
does not quickly restore connectivity. Sometimes routing fails to
help due to configuration mistakes, software bugs, or unexpected
interactions that are only revealed after a precipitating event, such
as a hardware fault. For example, bugs in switches may cause pack-
ets to be dropped without the switch also declaring the port down.
Or switches may become isolated from their SDN controllers so
that part of the network cannot be controlled. And routing or traffic
engineering may use the wrong weights and overload links.

While unlikely, these complex faults do occur in hyperscaler
networks due to their scale. They result in prolonged outages due
to the need for higher-level repair workflows. This has an out-
size impact on availability: a single 5 min outage means <99.99%
monthly uptime. Qualitatively, outages that last minutes are highly
disruptive for customers, while brief outages lasting seconds may
not be noticed.

Perhaps surprisingly, routing is insufficient even for the out-
ages that it can repair. Traffic control systems operate at multiple
timescales. Fast reroute [3, 4] performs local repair within seconds
to move traffic to backup paths for single faults. Routing performs
a global repair, taking tens of seconds in very large networks to
propagate topology updates, compute new routes, and install them
at switches. Finally, traffic engineering responds within minutes to
fit demand to capacity by adjusting path weights.

For routing alone to maintain high availability, we need fast
reroute to always succeed. Yet a significant fraction of outages only
fully recover via global routing and traffic engineering. This is be-
cause fast reroute depends on limited backup paths. These paths
may not cover the actual fault because they are pre-computed for
the Shared Risk Link Group (SRLG) [9] of a planned fault. Backup
paths that do survive the fault are less performant than the failed
paths they replace. Because the number of paths grows exponen-
tially with path length, there are fewer local options for paths be-
tween the switches adjacent to a fault than global end-to-end paths
that avoid the same fault. With limited options plus the capacity
loss due to the fault, backup paths are easily overloaded.

Our reliability architecture shifts the responsibility for rapid
repair from routing to hosts. Modern networks provide the oppor-
tunity to do so because they have scaled by adding more links, not
only faster links. To add capacity, the links must be disjoint. This
leads to multiple paths between pairs of endpoints that can fail
independently. Thus the same strategy that scales capacity also
adds diversity that can raise reliability.

Hosts typically see bimodal outage behavior: some connections
take paths to a destination that are black holes which discard pack-
ets in the network, while other connections to the same destination
take paths that continue to work correctly. This partial loss of
connectivity is a consequence of multiple paths plus standard tech-
niques to avoid single points of failure. For example, it is unlikely

https://doi.org/10.1145/3603269.3604867
https://doi.org/10.1145/3603269.3604867


Site A Site B Site A

DCN DstDCNSrc

X

X

FL#1

FL#4

FL#2

FL#3

Figure 1: Multipath between hosts can route around faults shown in dotted red.

that a fault will impact geographically distinct fiber routes, or all
shards of a network entity that is partitioned for reliability.

To restore connectivity, hosts must avoid failed paths and use
working ones. This poses a dilemma because the IPv4 architecture
does not let hosts influence the network path of a flow. Instead, with
the rise of multiple paths, Equal-Cost Multi-Path (ECMP) [24, 48]
routing at switches uses transport identifiers to spread flows across
paths. This design ties a connection to a path. Fortunately, now that
we have migrated Google networks to IPv6, we can leverage the
IPv6 FlowLabel [2, 34] in its intended architectural role to influence
the path of connections.

With Protective ReRoute (PRR), switches include the FlowLabel
in the ECMP hash. Hosts then repath connections by changing the
FlowLabel on their packets. Linux already supports this behavior
for IPv6, building on the longstanding notion of host rerouting on
transport failures, e.g., TCP timeouts. We completed this support
by handling outages encountered by acknowledgement packets.

PRR repairs failed paths at RTT timescales and without added
overhead. It is applicable to all reliable transports, including multi-
path ones (§2.5). It has a small implementation, and is incrementally
deployable across hosts and switches.

For the last several years, PRR has run 24x7 on Google networks
worldwide to protect all TCP and Pony Express [31] (an OS-bypass
datacenter transport) traffic. Recently, we have extended it to cover
Google Cloud traffic. The transition was lengthy due to the ven-
dor lead times for IPv6 FlowLabel hashing, plus kernel and switch
upgrades. But the availability improvements have been well worth-
while: fleetwide monitoring of our backbones over a 6-month study
found that PRR reduced the cumulative region-pair outage time
(sum of outage time between all pairs of regions in the network)
over TCP with application-level recovery by 63–84%.

This work makes two contributions. We describe the nature of
outages in a large network, using case studies to highlight long
outages that undermine availability. And we present data on the
effectiveness of PRR for our fleet as a whole, plus learnings from
production experience. We hope our work will encourage others to
leverage the IPv6 FlowLabel with an architecture in which routing
provides hosts with many diverse paths, and transports shift flows
to improve reliability.

This work does not raise ethical issues.

2 DESIGN
We describe PRR, starting with our network architecture, and then
how outage detection and repathing work in it.

2.1 Multipath Architecture
PRR is intended for networks in which routing provides multiple
paths between each pair of hosts, as is the case for most modern
networks. For example, in Fig 1 we see an abstract WAN in which a
pair of hosts use four paths at once out of many more possibilities.
When there is a fault, some paths will lose connectivity but others
may continue to work. In the figure, one path fails due to a switch
failure, and another due to a link failure. But two paths do not fail
despite these faults.

Multipath provides an opportunity for hosts to repair the fault
for users. To do so, we need hosts to be able to control path selection
for their connections. We shifted our IPv6 network architecture to
use the FlowLabel [2] to accomplish this goal.

In the original IPv4 Internet, hosts were intentionally oblivious
to the path taken by end-to-end flows. This separation between end
hosts and routing was suited to a network that scaled by making
each link run faster and thus had relatively few IP-level paths be-
tween hosts. Over the past two decades, networks have increasingly
scaled capacity by adding many links in parallel, resulting in numer-
ous additional viable paths. Flows must be spread across these paths
to use the capacity well, and so multipathing with ECMP [24, 48]
has become a core part of networks. The same paths that spread
flows to use capacity for performance also increase diversity for
reliability.

The IPv6 architecture allows hosts to directly manage the multi-
plicity of paths by using the FlowLabel to tell switches which set of
packets needed to take the same path, without knowing the specifics
of the path [34]. This arrangement lets transports run flows over
individual paths while letting the IP network scale via parallel links.
However, IPv6 was not widely deployed until around 2015, and
this usage did not catch on. In the interim, ECMP used transport
headers for multipathing, e.g., each switch hashes IP addresses and
TCP/UDP ports of each packet to pseudo-randomly select one of
the available next-hops. This approach eases the scaling problem,
but limits each TCP connection to a fixed network path.



The adoption of IPv6 allows us to use the FlowLabel as intended.
At switches, we include the FlowLabel in the ECMP hash, a capa-
bility which is broadly available across vendors1. As a pragmatic
step, we extend ECMP to use the FlowLabel along with the usual
4-tuple. The key benefit is to let hosts change paths without chang-
ing transport identifiers. In Fig 1, one connection may be shifted
across the four paths simply by changing the FlowLabel.

2.2 High-Level Algorithm
PRR builds on the concept of host rerouting in response to transport
issues. An instance of PRR runs for each connection at a host to
protect the forward path to the remote host. This is necessary
because connections use different paths due to routing and ECMP,
so one instance of PRR cannot learn working paths from another.

An outage for a connection occurs when its network path loses
IP connectivity. If the connection is active during an outage, PRR
will detect an outage event via the transport after a short time,
as described in §2.3. The outage may be a forward, reverse, or
bidirectional path failure. Unidirectional failures are quite common
since routes between hosts are often asymmetric, due to traffic
engineering onto non-shortest paths [23].

PRR triggers repathing intended to recover connectivity in re-
sponse to the outage event, as described in §2.4. If the new path suc-
cessfully recovers connectivity, the outage ends for the connection
(even though the fault may persist). If not, PRR will detect a subse-
quent outage event after an interval, and again trigger repathing. It
will continue in this manner until either recovery is successful, the
outage ends for exogenous reasons (e.g. repair of the fault by the
control plane), or the connection is terminated.

A fundamental ambiguity in this process is that a host alone
cannot distinguish forward from reverse or bidirectional path fail-
ure. As a result, outage events may cause PRR to perform spurious
repathing, which can slow recovery by causing a forward path fail-
ure where none existed. Fortunately, this does not affect correctness
because outage events will continue to trigger repathing until both
forward and reverse paths recover.

2.3 TCP Outage Detection
PRR can be implemented for all reliable transports. We describe
how it works with TCP as an important example. Since network
outages are uncommon, PRR must have acceptable overhead when
there is no outage. This means PRR must be very lightweight in
terms of host state, processing and messages. Our approach is to
detect outages as part of normal TCP processing.
Data Path. There are many different choices for how to infer
an outage, from packet losses to consecutive timeouts. For estab-
lished connections, PRR takes each TCP RTO (Retransmission Time-
Out) [35] in the Google network as an outage event. This method
provides a signal that recurs at exponential backoff intervals while
connectivity is sufficiently impaired that the connection is unable
to make forward progress. It is possible that an RTO is spurious
or indicates a remote host failure, but repathing is harmless in
these situations (as it is either very likely to succeed or won’t help
because the fault is not network related).

1Support was limited when we began but has increased steadily.

X
RTO

RTO
Repair

X
Dup

Dup

XRTO

RTO
Repair

X

Time

Figure 2: Example recovery of a Unidirectional Forward (left) and
Reverse (right) fault. Non-solid lines indicate a changed FlowLabel.

ACK Path. Interestingly, RTOs are not sufficient for detecting
reverse path outages. Failure of the ACK path will not cause an
RTO for the ACK sender because ACKs are not themselves reliably
acknowledged. Consider request/response traffic. The response will
not be sent until the request has been fully received, which will not
happen if the pure ACKs for a long request are lost.

We use the reception of duplicate data beginning with the sec-
ond occurrence as a signal that the ACK path has failed. A single
duplicate is often due to a spurious retransmission or use of Tail
Loss Probes (TLP) [10], whereas a second duplicate is highly likely
to indicate ACK loss.
Control Path. Finally, we detect outages in an analogous way
when a new connection is being established.We use SYN timeouts in
the client to server direction, and reception of SYN retransmissions
in the server to client direction.
Performance. The performance of PRR depends on how quickly
these sequences are driven by RTOs. Outside Google, a reasonable
heuristic for the first RTO on established connections is RTO= 3RTT,
with a minimum of 200ms. Inside Google, we use the default Linux
TCP RTO formula [36] but reduce the lower-bound of RTTVAR and
the maximum delayed ACK time to 5ms and 4ms from the default
200ms and 40ms, respectively [8]. Thus a reasonable heuristic is
RTO = RTT + 5ms. It yields RTOs as low as single digit ms for
metropolitan areas, tens of ms within a continent, and hundreds of
ms for longer paths. These lower RTOs speed PRR by 3–40X over
the outside heuristic. For new connections, a typical first SYN time-
out is 1s, at the upper end of RTOs. This implies that connection
establishment during outages will take significantly longer than
repairing existing connections.
Examples. Recovery for request/response traffic with a unidirec-
tional path fault is shown in Fig 2. For simplicity the figures focus
on the initial transmission and later ones involving repathing, while
omitting other packets present for fast recovery and TLP, etc. Each
non-solid line indicates a changed FlowLabel.

In the forward case, the behavior is simple: each RTO triggers
retransmission with repathing (dashed line). This continues until a
working forward path is found. Recovery is then direct since the re-
verse path works. The number of repaths (here two) is probabilistic.
The expected value depends on the fraction of working paths.

The reverse case differs in two respects. The RTOs cause spuri-
ous repathing (dot-dash line) since the forward path was already
working. However, it is not harmful because only the reverse di-
rection is faulty. Duplicate detection at the remote host (after TLP
which is not shown) causes reverse repathing until a working path
is found. The recovery time is the same as the forward case despite
these differences.

Bidirectional faults are more involved because the repair be-
havior depends on whether the connection initially failed on the



X

RTO

RTO

Repair

X

X

RTO

RTO

X

Dup

RTO X

RTO

X

RTO

Repair

X
X

X

Dup

Dup

Time X Dup

RTO

RTO

RTO

Figure 3: Example recovery of a Bidirectional fault when only the
Reverse path (left) or both directions (right) initially failed. Non-
solid lines indicate a changed FlowLabel. Red dash-dot lines indi-
cate harmful repathing.

forward path, reverse path, or in both directions. Unlike the case
of a unidirectional fault, we may have harmful spurious repathing
and delayed reverse repathing.

If the connection initially experiences a forward path failure but
(by chance) no reverse failure, then recovery proceeds as for the
unidirectional case. When the forward repair succeeds, it is the
first time the packet reaches the receiver. Thus the receiver will not
repath. It will use its working reverse path to complete recovery.

Conversely, if the connection initially fails only on the reverse
path (Fig 3 left) then we see different behavior. At the first RTO,
spurious forward repathing occurs. Now it can be harmful, and is in
this example (dot-dash red line). It causes a forward path loss that
requires subsequent RTOs to repair. When the forward path works,
duplicate reception causes reverse repathing. We must draw both a
working forward and reverse path at the same time to recover.

The longest recovery occurs when the connection has failed in
both directions (Fig 3 right). Reverse repathing is needed for recov-
ery but delayed until after two repairs of the forward path. This
is because the receiver first repaths on the second duplicate recep-
tion and the original transmission and TLP are lost. To complete
recovery, we need a subsequent joint forward and reverse repair.
As before, spurious forward repathing may slow this process.

2.4 Repathing with the FlowLabel
PRR repaths as a local action by using the FlowLabel. It does not
rely on communication with other network components (e.g., SDN
controllers or routing) during outages.
RandomRepathing. For each outage event, PRR randomly changes
the FlowLabel value used in the packets of the connection. This
behavior has been the default in Linux via txhash since 2015, with
our last upstream change (for repathing ACKs) landing in 2018. The
OS takes this action without involving applications, which greatly
simplifies deployment.

With a good ECMP hash function, different inputs are equivalent
to a random draw of the available next-hops at each switch. If we
define a path as the concatenation of choices at each switch, then
paths more than a few switches long will change with very high

probability. However, the key question is how often a new path
will intersect the fault.

The fraction of failed paths for the outage must be measured
empirically since it depends on the nature of the fault. It also varies
for each prefix-pair and changes over time. Often the outage fraction
is small, leading to rapid recovery. For example, with a 25% outage
(in which a quarter of the paths fail) a single random draw will
succeed 75% of the time. More generally, for an IP prefix-pair with
a 𝑝% outage, the probability of a connection being in outage after
𝑁 rerouting attempts falls as 𝑝𝑁 .

Avoiding Cascades Repathing needs to avoid cascade failures,
where shifting a large amount of traffic in response to a problem
focuses load elsewhere and causes a subsequent problem. PRR is
superior to routing in this respect: fast-reroute shifts many “live”
connections in the same way at the same time, while PRR shifts
traffic more gradually and smoothly.

The shift is gradual because each TCP connection independently
reacts to the outage, which spreads reaction times out at RTO
timescales. Each connection is quiescent when it moves, following
an RTO, and will ramp its sending rate under congestion control.

The shift is smooth because random repathing loads working
paths according to their routingweights. The expected load increase
on each working path due to repathing in one RTO interval is
bounded by the outage fraction. For example, it is 50% for a 50%
outage: half the connections repath and half of them (or a quarter)
land on the other half of paths that remain. This increase is at most
2X, and usually significantly lower, which is no worse than TCP
slow-start [25] and comfortably within the adaptation range of
congestion control. Moreover, PRR can only use policy-compliant
paths which have acceptable properties such as latency, while there
are no such guarantees for bypass routes.

A related concern is that repathing in response to an outage
will leave traffic concentrated on a portion of the network after the
outage has concluded. However, this does not seem to be the case in
practice: routing updates spread traffic by randomizing the ECMP
hash mapping, and connection churn also corrects imbalance.

2.5 Alternatives

Multipath Transports. A different approach is to use multipath
transports such as MPTCP [6] or SRD [38] since connections that
use several paths are more likely to survive an outage; these trans-
ports can also improve performance in the datacenter [33]. However,
PRR may be applied to any transport to boost reliability, including
multipath ones. For example, MPTCP can lose all paths by chance,
and it is vulnerable during connection establishment since sub-
flows are only added after a successful three-way handshake. PRR
protects against these cases.

Moreover, many connections are lightly used, so the resource
and complexity cost of maintaining multiple paths does not have
a corresponding performance benefit. The prospect of migrating
all datacenter usage to a new transport was also a consideration.
Instead, we apply PRR to TCP and Pony Express to increase the
reliability of our existing transports.

Application-Level Recovery. Applications can approximate PRR
without IPv6 or the FlowLabel by reestablishing TCP connections



Time (seconds)

F
ai

le
d 

F
ra

ct
io

n

0.0

0.1

0.2

0.3

0 20 40 60 80

RTO=1.0 RTO =0.5 (No Spread) RTO=0.1

Fault Duration

Time (RTOs)

F
ai

le
d 

F
ra

ct
io

n

0.0

0.1

0.2

0.3

0 25 50 75 100

UNI 50% UNI 25% BI 25%+25%

Fault Duration

Time (RTOs)

F
ai

le
d 

F
ra

ct
io

n

0.0

0.2

0.4

0.6

0 25 50 75 100

All Both Reverse Forward Oracle

Fault Duration

Figure 4: (a) Effect of RTO (b) Uni- and bi-directional repair curves (c) Breakdown of bidirectional repair

that have not made progress after a timeout2. We relied on this
approach before PRR. However, using low RPC timeout values is
much more expensive than PRR, as well as less performant. This is
because establishing an RPC channel takes several RTTs and has
computational overhead for security handshakes. Coverage is also
more limited since it relies on application developers. Adding PRR
to TCP covers all manner of applications, including control traffic
such as BGP and OpenFlow, whether originating at switches or
hosts, and achieves the ideal of avoiding application recovery.
PLB. Finally, PRR is closely related to Protective Load Balanc-
ing [32]. In our implementation, they are unified to use the same
repathing mechanism but for different purposes. PLB repaths using
congestion signals (from ECN and network queuing delay) to bal-
ance load. PRR repaths using connectivity signals (e.g., timeouts)
to repair outages. These signals coexist without difficulty, but there
is one point of interaction. PRR activates during an outage to move
traffic to a new working path. Since outages reduce capacity, it is
possible that PLB will then activate due to subsequent network
congestion and repath back to a failed path. Therefore, we pause
PLB after PRR activates to avoid oscillations and a longer recovery.

3 SIMULATION RESULTS
We use a simple model to predict how PRR reduces the fraction
of failed connections. Our purpose is to provide the reader with
a mental model for how PRR is expected to perform; we will see
these effects in our case studies (§4.2).

We simulate repathing driven by TCP exponential backoff for an
ensemble of 20K long-lived connections under various fault models.
This workload represents the active probing that we use to measure
connectivity. The fault starts at 𝑡 = 0 and impacts each connection
when it first sends at 𝑡 ≥ 0. We model black hole loss and ignore
congestive loss. A connection is considered failed if a packet is not
acknowledged within 2s. The repair behavior is strongly influenced
by two factors that we consider in turn: the RTO (Retransmission
TimeOut), and the outage fraction of failed paths.
RTO. The RTO depends on the connection RTT and state, and
the TCP implementation. For our network the RTT ranges from
O(1ms) in a metro, to O(10ms) in a continent, to O(100ms) globally.
For new connections, the SYN RTO is commonly 1s. This variation
has a corresponding effect on the speed of recovery.

Fig 4(a) shows the repair of a 50% outage (i.e., half the paths
fail) in one direction for three different RTO scenarios. The middle
line in the graph is the repair curve for connections having RTOs
2Linux fails TCP connections after ∼15 mins by default. Application timeouts are
shorter.

clustered around a median of 0.5s, with most mass from 0.45 to 0.55s.
They are generated with a log-normal distribution, LogN(0, 0.06),
scaled by the median RTO of 0.5s. The connections also have 1s of
jitter in their start times. The aggregate behavior is a “step” pattern,
where the failed fraction is reduced by 50% when the connections
repath at each step. Note that the failed fraction starts at around 0.2,
much lower than the 50% of connections that were initially black
holed. This is because the black holed connections RTO and most
recover before the 2s timeout.

While instructive, we only see this step pattern on homogeneous
subsets of data. More typical are the smooth curves of the top and
bottom lines due to connections repathing at different times. They
have median RTOs of 1s and 100ms, respectively, and are generated
with LogN(0, 0.6) scaled by the median RTO. This distribution
spreads the RTOs to have a standard deviation that is 10X larger
than before. The bottom line shows a much faster repair due to the
lower median RTO and has become smooth due to the RTO spread.
The smaller 100ms RTO makes a large difference. It both reduces
the initial failed fraction and reaches successive RTOs more quickly.
The top line, with initial RTOs around 1s, models the failure rate for
new connections as well as long RTTs. It shows a correspondingly
slower repair due to the larger RTO.

For both curves, the failed fraction of connections, 𝑓 , falls poly-
nomially over time. Suppose the outage fails a fraction paths 𝑝 .
After 𝑁 RTOs, 𝑓 is 𝑝𝑁 below its starting value, which is exponen-
tially lower. However, the RTOs are also exponentially-spaced in
time, 𝑡 , so we have 𝑡 ≈ 2𝑁 for the Nth RTO. Combining expressions,
𝑓 ≈ 𝑝𝑙𝑜𝑔2 (𝑡 ) = 1/(𝑡)𝐾 , for𝐾 = −𝑙𝑜𝑔𝑝 (2). Thus for 𝑝 = 1

2 , the failure
probability falls as 1/𝑡 . For 𝑝 = 1

4 , it falls as 1/𝑡
2.

A notable effect is that the fault (dashed line) ends at 𝑡 = 40s, yet
some connections still lack connectivity until 𝑡 = 80s. That is, the
failures visible to TCP can last longer than the IP-level outage. The
reason is exponential backoff. It is not until the first retry after the
fault has resolved that the connection will succeed in delivering a
packet and recover. If the fault ends at 𝑡 = 40s then some connec-
tions may see failures in the interval [20, 40). These connections
will increase their RTO and retry in the interval [40, 80).

Outage Fraction. The severity of the fault has a similarly large
impact on recovery time. Fig 4(b) shows repair for three different
long-lived faults. We normalize time in units of median initial RTOs,
spread RTOs as before, and use a timeout of twice the median RTO.

The top solid line is for a 50% outage in one direction. It cor-
responds to the 1s RTO curve from before. The bottom solid line
shows the repair of a 25% outage in one direction. It has the same



effects, but starts from a lower failed fraction and falls more quickly.
Now, each RTO repairs 75% of the remaining connections.

The dashed line shows the repair of a bidirectional outage in
which 25% of paths fail in each direction. For each connection, the
forward and reverse paths fail independently to model asymmetric
routing. This curve is similar to the 50% unidirectional outage, even
though it might be expected to recover more quickly since the
probability of picking a working forward and reverse path is 9

16 ,
which is larger than 1

2 . The reason is that the bidirectional outage
has three components that repair at different rates, as we see next.

In Fig 4(c), we break the repair of a long-lived 50% forward and
50% reverse outage (solid line) into its components (dashed lines)
as described in §2.3. This outage is demanding, with 75% of the
round-trip paths having failed, so the tail falls by only one quarter
at each RTO. Connections that initially failed in one direction only,
either forward or reverse, are repaired most quickly. Connections
that initially failed in both directions are repaired slowly due to
spurious repathing and the delayed onset of reverse repathing. To
see the cost of these effects, the Oracle line (dotted) shows the how
the failed fraction improves without them.

Summary. We conclude that for established connections with
small RTOs, PRR will repair >95% of connections within seconds
for faults that black hole up to half the paths. This repair is fast
enough that the black holes are typically not noticed. Larger RTOs
and new connections will require tens of seconds for the same level
of repair, and show up as a small service interruption. PRR cannot
avoid a noticeable service interruption for the combination of large
RTOs and faults that black hole the vast majority of paths, though
it will still drive recovery over time.

4 PRODUCTION RESULTS
PRR runs in Google networks 24x7 and fleetwide for TCP and Pony
Express traffic. We present a measurement study to show how it
is able to maintain high network availability for users, beginning
with case studies of outages and ending with fleet impact.

Our study observes real outages at global scale across the entire
production network. It covers two backbones, B2 and B4 [23, 26],
that use widely differing technologies (from MPLS to SDN) and
so have different fault and repair behaviors. Further, the results
we derive are consistent with service experience to the best of our
knowledge. One limitation of our study is that we are unable to
present data on service experience. We report results for long-lived
probing flows instead. Still, our measurements are comprehensive,
with literally trillions of probes.

4.1 Measuring loss
We monitor loss in our network using active probing. We send
probes between datacenter clusters using multiple flows, defined
as source/destination IP and ports. Flows take different paths due
to ECMP. Each flow sends ∼120 probes per minute. Each pair of
clusters is probed by at least 200 flows. This arrangement lets us
look at loss over time and loss over paths, with high resolution
in each dimension. We also aggregate measurements to pairs of
network regions, where each region is roughly a metropolitan area
and contains multiple clusters.

We use three types of probes to observe loss at different network
layers. First, UDP probes measure packet loss at the IP level. We
refer to these probes as L3. They let us monitor the connectivity
of the underlying network, which highlights faults and routing
recovery, but not how services experience the network.

To measure application performance before PRR, we use empty
Stubby RPCs as probes; Stubby is an internal version of the open
source gRPC [18] remote procedure call framework. We refer to
these probes as L7. They benefit from TCP reliability and RPC
timeouts, which reestablish TCP connections that are not making
progress. An L7 probe is considered lost if the RPC does not com-
plete within 2s. Stubby reestablishes TCP connections after 20s to
match the gRPC default timeout.

Finally, to measure application performance with PRR, we is-
sue the L7 probes with PRR enabled, which we refer to as L7/PRR.
These probes benefit from PRR repathing as well as TCP reliability
and RPC timeouts. Note that the network may be in outage while
applications are not, due to PRR, TCP and RPC repair mechanisms.
Thus comparing the three sets of probes lets us understand the ben-
efits of PRR relative to applications without it and the underlying
network.

Our fleet summaries use probe data for 6 months to the middle
of 2023 between all region-pairs in our core network, and on both
backbones. Since the functionality to disable PRR is not present
on all probe machines, we note that there are slightly fewer L7
probes (29%) than L7/PRR (37%) and L3 probes (33%), but we have
no reason to believe the results are not representative.

4.2 Case Studies
We begin with case studies of how PRR behaves during a diverse
set of significant outages. Most outages are brief or small outages.
The long and large outages we use for case studies are exceptional.
They are worthy of study because they are highly disruptive to
users, unless repaired by PRR or other methods.

Case Study 1: ComplexB4Outage. The first outage is the longest
we consider, lasting 14 mins. It impacted region-pairs connected
by the B4 backbone. We use it to highlight multiple levels of repair
operating at different timescales. It was caused by a rare dual power
failure that took down one rack of switches in a B4 supernode [23]
and disconnected the remainder of the supernode from an SDN
controller. It was prolonged by a repair workflow that was blocked
by unrelated maintenance. Long outages have diverse causes and
typically complex behaviors. In this case, a single power failure
would not have led to an outage, and a successful repair workflow
would have led to a much shorter outage, but in this unlucky case
three events happened together.

The probe loss during the outage is shown in Fig 5. The top
graph shows the loss versus time for L3, L7 and L7/PRR probes
over impacted inter-continental region-pairs over B4. The bottom
graph shows the same for intra-continental pairs. We separate them
since the behaviors are qualitatively different. One datapoint covers
0.5s, so the graphs show a detailed view of how the fault degraded
connectivity over time. Each datapoint is averaged over many thou-
sands of flows sending in the same interval, which exercised many
thousands of paths.



0.0%

5.0%

10.0%

0 200 400 600 800
Time Since Start of Event (seconds)

A
ve

ra
ge

 P
ro

be
 L

os
s 

R
at

io

L7/PRR L7 L3

0.00%

0.25%

0.50%

0 25 50

(a) Inter-continental probe loss

0.0%

2.5%

5.0%

7.5%

0 100 200 300 400
Time Since Start of Event (seconds)

A
ve

ra
ge

 P
ro

be
 L

os
s 

R
at

io

L7/PRR L7 L3

0.00%

0.25%

0.50%

0 25 50

(b) Intra-continental probe loss

Figure 5: Probe loss during a complex B4 outage.

Consider first the L3 line, which shows the IP-level connectivity.
Since the SDN control plane was disconnected by the fault, it could
not program fixes to drive a fast repair process. Around 100s, global
routing systems intervened to reroute traffic not originating from
or destined for the outage neighborhood. This action reduced the
severity of the outage but did not fix it completely. After more
than 10 mins, the drain workflow removed the faulty portion of the
network from service to complete the repair.

The loss rate stayed below 13% throughout the outage because
only one B4 supernode was affected by the fault so most flows tran-
sited healthy supernodes. However, the outage was more disruptive
than the loss rate may suggest because the failure was bimodal, as
is typical for non-congestive outages: all flows taking the faulty
supernode saw 100% loss, while all flows taking the healthy supern-
odes saw normal, low loss. For customers using some of the faulty
paths, the network was effectively broken (without PRR) because
it would stall applications even though most paths still functioned
properly.

The L7 line shows the outage recovery behavior prior to the
development of PRR. The L7 loss rate started out the same as L3,
but dropped greatly after 20s, after which it decayed slowly, with
occasional spikes. The L7 improvement is due to the RPC layer,
i.e., application-level recovery, which opened a new connection
after 20s without progress. These new connections with different
port numbers avoided the outage by taking different network paths
due to ECMP. Most of the new paths worked by chance because
the L3 loss rate tells us that on average only 13% of paths initially
failed. This is similar to the repathing done by PRR except that (1)
by using the FlowLabel, PRR can repath without reestablishing the

0.0%

20.0%

40.0%

60.0%

0 20 40
Time Since Start of Event (seconds)

A
ve

ra
ge

 P
ro

be
 L

os
s 

R
at

io

L7/PRR L7 L3

0.00%

5.00%

10.00%

0 10 20

(a) Inter-continental probe loss

0.0%

20.0%

40.0%

60.0%

0 20 40
Time Since Start of Event (seconds)

A
ve

ra
ge

 P
ro

be
 L

os
s 

R
at

io

L7/PRR L7 L3

0.00%

5.00%

10.00%

0 10 20

(b) Intra-continental probe loss

Figure 6: Probe loss during an optical link failure on B4.

TCP connection; and (2) PRR operates at RTT timescales, which
are much shorter than the 20s RPC timeout.

Some TCP flows required multiple attempts to find working
paths, so there was a tail as connectivity was restored. The subse-
quent spikes arose when routing updates changed paths, altering
the ECMP mapping and causing some working connections to be-
come black holed. TCP retransmissions were of little help in this
process, since a connection either worked or lost all of its packets
at a given time.

Finally, the L7/PRR line shows the outage recovery using the
same RPC probes as the L7 case but with PRR enabled. The loss
rate was greatly reduced, to the point of being visible only in the
inset panel. The repair was roughly 100X more rapid than the L7
case, especially for the intra-continental case due to its shorter RTT.
It achieved the desired result: most customers were unaware that
there was an outage because the connectivity interruption is brief
and does not trigger application recovery mechanisms.

This case study highlights outage characteristics that we observe
more broadly. Many outages black hole a fraction of paths between
a region-pair while leaving many other paths working at the same
time. And some outages are not repaired by fast reroute so they
have long durations that are disruptive for users without quick
recovery. Outages with both characteristics provide an opportunity
for PRR to raise network availability.

Case Study 2: Optical failure. Next we consider an optical link
failure that resulted in partial capacity loss for the B4 backbone.
Fig 6 shows the probe loss over time for inter- and intra-continental
paths during the outage. In this case, L3 loss was around 60% when



0.0%

5.0%

10.0%

15.0%

20.0%

0 100 200 300 400 500
Time Since Start of Event (seconds)

A
ve

ra
ge

 P
ro

be
 L

os
s 

R
at

io

L7/PRR L7 L3

0.00%

1.00%

2.00%

30 40 50

Figure 7: Inter-continent probe loss during a device failure on B2.
(No intra-continent probe loss was observed.)

the event began, indicating that most paths had failed but there
was still working capacity.

Immediately after the outage began, fast routing repair mecha-
nisms acted to reduce the L3 loss to ∼40% within 5s. Further im-
provements gradually reduced the L3 loss to ∼20% by around 20s
from the start of the event. The cause of this sluggish repair was
congestion on bypass links due to the loss of a large fraction of
outgoing capacity, and SDN programming delays due to the need to
update many routes at once. Finally, the outage was resolved after
60 seconds when unresponsive data plane elements were avoided
using traffic engineering.

The L7 line starts out slightly lower then the L3 one because L7
probes have a timeout of 2s, during which time routing was able to
repair some paths. We see that TCP was unable to mitigate probe
loss during the first 20s since retransmissions do not help more than
routing recovery. In fact, after around 10s, L7 loss exceeded L3 loss
because the detection of working paths was delayed by exponential
backoff. Around 20s, RPC channel reestablishment roughly halves
the loss rate for the remainder of the outage for both intra- and
inter-continental paths. All these effects are consistent with our
simulation results (§3).

In contrast, PRR lowered peak probe loss and quickly resolved the
outage. For intra-continental paths, L7/PRR reduced the peak probe
loss to 2.4% and had completely mitigated the loss by 20s into the
outage. L7/PRR similarly performed well for inter-continental paths
where probe loss peaked at around 11%, which is over 5X less than
the peak L3 probe loss. This outage illustrated how the path RTT
affects PRR. Consistent with simulation (§3), intra-continental paths
that have lower RTTs observed a lower peak and faster resolution
than inter-continental paths. In both cases, PRR greatly reduced
probe loss beyond L7.

Case Study 3: Line card issues on a single device. The next
outage involved a single device in our B2 backbone (Fig 7). During
the outage, the device had two line-cards malfunction, which caused
probe loss for some inter-continental paths. Due to the nature of the
malfunction, routing did not respond. The outage was eventually
mitigated when an automated procedure drained load from the
device and took it out of service.

While the cause of this outage is different than the others, we see
similar results: PRR was able to greatly reduce loss. In this case, the

0.0%

20.0%

40.0%

60.0%

0 200 400 600
Time Since Start of Event (seconds)

A
ve

ra
ge

 P
ro

be
 L

os
s 

R
at

io

L7/PRR L7 L3

0.00%

5.00%

10.00%

15.00%

0 100 200

Figure 8: Intra-continental probe loss for a regional fiber cut in B2.
(The inter-continental graph is omitted as similar.)

0%

25%

50%

75%

100%

B4:Inter B4:Intra B2:Inter B2:Intra

R
ed

uc
tio

n 
in

 C
um

ul
at

iv
e

O
ut

ag
e 

M
in

ut
es

L7 vs. L3 L7/PRR vs. L7 L7/PRR vs. L3

Figure 9: Reduction in outage minutes for B2 and B4 intra- and
inter-continental paths.

peak probe loss seen by L3 was 19%. L7/PRR reduced this peak loss
over 15X to 1.2% and, as with the prior outage, quickly lowered the
loss level to near zero after 20 seconds. Conversely, the L7 probe
loss has a large peak of 14% and persists for significantly longer
than L7/PRR.

Case Study 4: Regional fiber cut. Finally, we present an outage
that challenged PRR (Fig 8). In this outage, a fiber cut caused a
significant loss of capacity. The average L3 probe loss peaked at
70% and remained around 50% or higher for 3 mins. This severe fault
impacted many paths. Fast reroute did not mitigate it because the
bypass paths were overloaded due to the large capacity reduction.
After ∼3 mins, global routing moved traffic away from the outage,
lowering the loss rate and alleviating congestion on the bypass
paths.

L7/PRR reduced the peak loss to 14%, a 5X improvement. It was
much more effective than L7, which reduced peak loss to 65%, but
was not able to fully repair this outage because of the large fraction
of path loss. This path loss was exacerbated by routing updates
during the event: PRR moved connections to working paths only
for some of the connections to shift back to failed paths when the
ECMP mapping was changed. As a result, we see a pattern in which
L7/PRR loss fell over time but was interrupted with a series of
spikes.



4.3 Aggregate Improvements
Case studies provide a detailed view of how PRR repairs individual
outages. To quantify how PRR raises overall network availability,
we aggregate measurements for all outages across all region-pairs
in the Google network for the 6-month study period. The vast
majority of the total outage time is comprised of brief or small
outages. Our results show that PRR is effective for these outages,
as well as long and large outages.
Outage Minutes Our goal is to raise availability, which is defined
as 𝑀𝑇𝐵𝐹/(𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅), where 𝑀𝑇𝐵𝐹 is the Mean Time Be-
tween Failures and𝑀𝑇𝑇𝑅 is the Mean Time to Repair. This formula
is equivalent to 1 minus the fraction of outage time. Since we are
unable to report absolute availability measures due to confiden-
tiality, we report relative reductions in outage time across L3, L7,
and L7/PRR layers. These relative reductions translate directly to
availability gains. For instance, a 90% reduction in outage time is
equivalent to adding one “nine” to availability, e.g., hypothetically
improving from 99% to 99.9%

Wemeasure outage time for each of L3, L7 and L7/PRR inminutes
derived from flow-level probe loss. Specifically, we compute the
probe loss rate of each flow over each minute. If a flow has more
than 5% loss, such that it exceeds the low, acceptable loss of normal
conditions, then we mark it as lossy. If a 1-minute interval between
a pair of network regions has more than 5% of lossy flow, such
that it is not an isolated flow issue, then it is an outage minute for
that region-pair. We further trim the minute to 10s intervals having
probe loss to avoid counting a whole minute for outages that start
or end within the minute.

In Fig 9, we show the percent of total outage minutes that were
repaired for L7/PRR probes relative to L3 probes. We give results
for both B2 and B4 backbones, and broken out by intra- and inter-
continental paths. Similarly, we compare L7 (without PRR) with L3
and L7/PRR with L7 to understand where the gains come from. The
results are computed across many thousands of region-pairs and
include hundreds of outage events.
PRR reduces outage minutes by 64-87% over L3. PRR com-
bined with transport and application layer recovery mechanisms
is very effective at shortening IP network outages for applications.
We see large reductions in outage minutes when using L7/PRR for
both backbone networks. The reductions range from 64% for inter-
continental paths on B4, to 87% for intra-continental paths on B2.
Note that, unlike for individual outages, we do not see a consistent
pattern between inter- and inter-continental results across outages.
This is because PRR effectiveness depends on topological factors
and not only the RTT.
PRR reduces outageminutes by 54-78% over L7. PRR is able to
repair most of the outage minutes that are not repaired by the TCP
and application-level recovery of L7 probes. This result confirms
that most of the L7/PRR improvement over L3 is not due to the
RPC layer and TCP retransmissions; L7 reduces the cumulative
outage minutes by only 15–42% relative to L3. We believe that a
large portion of this gain is coming from RPC reconnects, since
TCP retransmission is ineffective for black holes.
PRR performs well over time. As a check, we also look at how
PRR behavior varies over time. Fig 10 shows the Generalized Addi-
tive Model (GAM) smoothing [43] of the fraction of daily outage

0%

25%

50%

75%

100%

Jan Apr Jul
Date

R
ed

uc
tio

n 
in

 D
ai

ly
O

ut
ag

e 
M

in
ut

es

L7/PRR vs. L3 L7/PRR vs. L7 L7 vs. L3

Figure 10: Fraction of outage minutes reduced over time.

minutes repaired. We see some variation over time, reflecting the
varying nature of outages, while PRR consistently delivers large
reductions in outage minutes throughout the study period.

4.4 Effectiveness for Region-Pairs
Outages affect multiple region-pairs, each of which may see a dif-
ferent repair behavior. We next look at how the benefit of PRR is
distributed across region-pairs in our network. Fig 11 shows the
Complementary Cumulative Distribution Function (CCDF) over
region-pairs of the fraction of outage minutes repaired between
layers. This graph covers all region-pairs in the fleet over our en-
tire study period. Points higher and further to the right are better
outcomes as they mean a larger fraction of region-pairs repaired a
greater fraction of outage minutes.

PRR performs well for a variety of paths. We see that the vast
majority of region-pairs see a large benefit from L7/PRR over L3 on
both backbones. It is able to repair 100% of outage minutes for 50%
and 16% of B2 intra- and inter-continental region-pairs, respectively.
PRR performance is more varied for B4 where outage minutes are
decreased by half for 63% and 77% of intra- and inter-continental
region-pairs, respectively.

PRR improves significantly over L7. As expected, L7/PRR pro-
vides much greater benefit than L7. The lines showing PRR gain
are quite similar whether they are relative to L3 or L7 and show
a reduction in outage minutes for nearly all region-pairs. (The ex-
ceptions tend to be region-pairs with very few outage minutes for
which L7/PRR dynamics for sampling were unlucky.) Conversely,
L7 without PRR increases the number of outage minutes relative to
L3 for 3-16% of region pairs. This counter-intuitive result is possible
because TCP exponential backoff on failed paths tends to prolong
outage times (until RPC timeouts are reached).

5 DISCUSSION
We briefly discuss some additional aspects of PRR.

Other Transports. PRR can be applied to protect all transports,
including multipath ones, since all reliable transports detect de-
livery failures. For example, we use PRR with Pony Express [31]
OS-bypass traffic with minor differences from TCP. User-space UDP
transports can implement repathing by using syscalls to alter the
FlowLabel when they detect network problems. Even protocols



0%

25%

50%

75%

100%

0% 25% 50% 75% 100%
Fraction of Outage Minutes Repaired by Between Protocols

P
er

ce
nt

ag
e 

of
N

et
w

or
k 

R
eg

io
n 

P
ai

rs

L7/PRR vs. L3 L7/PRR vs. L7 L7 vs. L3

(a) intra-continental (B2)

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%
Fraction of Outage Minutes Repaired by Between Protocols

P
er

ce
nt

ag
e 

of
N

et
w

or
k 

R
eg

io
n 

P
ai

rs

L7/PRR vs. L3 L7/PRR vs. L7 L7 vs. L3

(b) inter-continental (B2)

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%
Fraction of Outage Minutes Repaired by Between Protocols

P
er

ce
nt

ag
e 

of
N

et
w

or
k 

R
eg

io
n 

P
ai

rs

L7/PRR vs. L3 L7/PRR vs. L7 L7 vs. L3

(c) intra-continental (B4)

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%
Fraction of Outage Minutes Repaired by Between Protocols

P
er

ce
nt

ag
e 

of
N

et
w

or
k 

R
eg

io
n 

P
ai

rs

L7/PRR vs. L3 L7/PRR vs. L7 L7 vs. L3

(d) inter-continental (B4)

Figure 11: CCDF of improvement across region pairs.

such as DNS and SNMP can change the FlowLabel on retries to
improve reliability.
Cloud & Encapsulation. PRR must be extended to protect IPv6
traffic from Cloud customers because virtualization affects ECMP.
Google Cloud virtualization [12] uses PSP encryption [19], adding
IP/UDP/PSP headers to the original VM packet as shown in Fig 12.
In the network, switches use the outer headers for ECMP and
ignore the VM packet headers. To enable the VM to repath via
the FlowLabel, we hash the VM headers into the outer headers.

IPv6 UDP PSP
Header IPv6 L4 L4 Payload PSP

Trailer

VM Packet

Propagate FL

Figure 12: PSP Encapsulation

Now, when the guest OS has PRR and a TCP connection detects an
outage and changes its FlowLabel, the encapsulation headers also
change and hence ECMP causes the connection to be repathed. For
different encapsulation formats, e.g., IPSEC, the details will vary,
but the propagation approach is the same.

We also use encapsulation to enable PRR for Cloud IPv4 traffic.
The gve [20] driver passes connection metadata to the hypervisor,
which hashes it into the encapsulation headers. This technique
works for other IPv4 networks as well: encapsulate with IPv4 to
provide a layer of indirection, and propagate inner header entropy
to an outer UDP header (since there is no FlowLabel).
Deployment. Backwards-compatibility and incremental deploy-
ment are highly desirable to protect existing deployments. PRR
excels in this respect. Its rollout was lengthy due to vendor partici-
pation, upstream kernel changes, and switch upgrades, but other-
wise straightforward. Hosts could be upgraded in any order to use
the FlowLabel for outgoing TCP traffic. Switches could be concur-
rently upgraded in any order to ECMP hash on the FlowLabel; this
change is harmless given the semantics of the FlowLabel.

It is not necessary for all switches to hash on the FlowLabel
for PRR to work, only some switches upstream of the fault. Often,
substantial protection is achieved by upgrading only a fraction of
switches. This property has implications for the reliability of IPv6
traffic in the global Internet. Not only can each provider enable
FlowLabel hashing to protect their own network, but upstream
providers have some ability to work around downstream faults by
changing the ingress into downstream networks.

6 RELATEDWORK
Most work on improving network reliability focuses on network
internals such as fast reroute [3, 4], backbones [23, 40, 47], or dat-
acenters [44]. Fewer papers report on the causes of outages [17,
21, 41] or availability metrics suited to them, such as windowed-
availability [22], which separates short from long outages.

Hosts have the potential to raise availability using the FlowLa-
bel [5], but no large-scale deployment or evaluation has been pre-
sented to the best of our knowledge. Most host-side work focuses
on multipath transports like MPTCP [6], SRD [38], and multipath
QUIC [13] that send messages over a set of network paths. While
they primarily aim to improve performance, these transports also
increase availability, e.g., MPTCP may reroute data in one subflow
to another upon RTO. However, they use only a small set of paths
and may not protect the reliability of connection establishment, e.g.,
MPTCP adds paths only after a successful three-way handshake [5].
PRR can be added to multipath transports to increase reliability by
exploring new paths until it finds working ones, and protecting
connection establishment.



There is a large body of work on a related host behavior: multi-
pathing for load balancing [1, 6, 14–16, 27–30, 32, 37, 39, 42, 45, 46].
Some of this work considers reliability, for example, CLOVE [28]
uses ECMP to map out working paths. PRR shows this mapping
is not necessary, as random path draws work well. Most of this
work is not done in the context of IPv6 and does not consider the
FlowLabel; we find it apt for multipathing. In our network, PRR
and PLB [32] are implemented together, using repathing for both
load balancing and rerouting around failures.

Finally, [7] argues that hosts should play a greater role in path se-
lection, instead of routers reacting to failures. PRR is one realization
of this argument.

7 CONCLUSION
PRR is deployed fleet-wide at Google, where it has protected the
reliability of nearly all production traffic for several years. It is also
available to our Cloud customers. PRR greatly shortens user-visible
outages. In a 6-month study on two network backbones, it reduced
the cumulative region-pair outage time over TCP with application-
level recovery by 63–84%. This is the equivalent of adding 0.4–0.8
“nines” to availability. We now require that all our transports use
PRR.

PRR (and its sister technique, PLB [32]) represent a shift in our
network architecture. In the early Internet [11], the network in-
structed hosts how to behave, e.g., ICMP Source Quench. This did
not work well, and in the modern Internet neither hosts nor routers
instruct each other: hosts send packets, and routers decide how to
handle them.

In our architecture, hosts instruct the network how to select
paths for their traffic by using the IPv6 FlowLabel. This shift has
come about because networks scale capacity by adding parallel
links, which has greatly increased the diversity of paths. To make
the most of this diversity, we rely on routing to provide hosts
access to many paths, and hosts to shift traffic flows across paths
to increase reliability and performance. We hope this architectural
approach, enabled by the FlowLabel, will become widespread.

REFERENCES
[1] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed
Congestion-Aware Load Balancing for Datacenters. In Proceedings of the 2014
ACM Conference on SIGCOMM (SIGCOMM ’14). Association for Computing Ma-
chinery, New York, NY, USA, 503–514. https://doi.org/10.1145/2619239.2626316

[2] Shane Amante, Jarno Rajahalme, Brian E. Carpenter, and Sheng Jiang. 2011. IPv6
Flow Label Specification. RFC 6437. (Nov. 2011). https://doi.org/10.17487/RFC6437

[3] Alia Atlas, George Swallow, and Ping Pan. 2005. Fast Reroute Extensions to RSVP-
TE for LSP Tunnels. RFC 4090. (May 2005). https://doi.org/10.17487/RFC4090

[4] Alia Atlas and Alex D. Zinin. 2008. Basic Specification for IP Fast Reroute:
Loop-Free Alternates. RFC 5286. (Sept. 2008). https://doi.org/10.17487/RFC5286

[5] Alexander Azimov. 2020. Self-healing Network or The Magic of Flow Label.
https://ripe82.ripe.net/presentations/20-azimov.ripe82.pdf. (2020).

[6] Olivier Bonaventure, Christoph Paasch, and Gregory Detal. 2017. Use Cases
and Operational Experience with Multipath TCP. RFC 8041. (Jan. 2017). https:
//doi.org/10.17487/RFC8041

[7] Matthew Caesar, Martin Casado, Teemu Koponen, Jennifer Rexford, and Scott
Shenker. 2010. Dynamic Route Recomputation Considered Harmful. ACM
SIGCOMM Computer Communication Review 40, 2 (Apr. 2010), 66–71. https:
//doi.org/10.1145/1764873.1764885

[8] Neal Cardwell, Yuchung Cheng, and Eric Dumazet. 2016. TCP Op-
tions for Low Latency: Maximum ACK Delay and Microsecond Times-
tamps, IETF 97 tcpm. https://datatracker.ietf.org/meeting/97/materials/
slides-97-tcpm-tcp-options-for-low-latency-00. (2016).

[9] Sid Chaudhuri, Gisli Hjalmtysson, and Jennifer Yates. 2000. Control of lightpaths
in an optical network. In Optical Internetworking Forum.

[10] Yuchung Cheng, Neal Cardwell, Nandita Dukkipati, and Priyaranjan Jha. 2021.
The RACK-TLP Loss Detection Algorithm for TCP. RFC 8985. (Feb. 2021). https:
//doi.org/10.17487/RFC8985

[11] David Clark. 1988. The Design Philosophy of the DARPA Internet Protocols.
SIGCOMM Comput. Commun. Rev. 18, 4 (aug 1988), 106–114. https://doi.org/10.
1145/52325.52336

[12] Mike Dalton, David Schultz, Ahsan Arefin, Alex Docauer, Anshuman Gupta,
Brian Matthew Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,
Jake Adriaens, Jesse L Alpert, Jing Ai, Jon Olson, Kevin P. DeCabooter, Marc Asher
de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi, Srini-
vas Krishnan, Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin Vahdat.
2018. Andromeda: Performance, Isolation, and Velocity at Scale in Cloud Net-
work Virtualization. In 15th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2018. USENIX Association, Renton, WA, 373–387.

[13] Quentin De Coninck and Olivier Bonaventure. 2017. Multipath QUIC: Design
and Evaluation. In Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies.

[14] Advait Dixit, Pawan Prakash, Y. Charlie Hu, and Ramana Rao Kompella. 2013.
On the impact of packet spraying in data center networks. In 2013 Proceedings
IEEE INFOCOM. 2130–2138. https://doi.org/10.1109/INFCOM.2013.6567015

[15] Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani, and Mohammad Alizadeh.
2016. Juggler: A Practical Reordering Resilient Network Stack for Datacenters.
In Proceedings of the Eleventh European Conference on Computer Systems (EuroSys
’16). Association for Computing Machinery, New York, NY, USA, Article 20,
16 pages. https://doi.org/10.1145/2901318.2901334

[16] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey, Yashar Ganjali, and Amin
Firoozshahian. 2017. DRILL: Micro Load Balancing for Low-Latency Data Center
Networks. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM ’17). Association for Computing Machinery,
New York, NY, USA, 225–238. https://doi.org/10.1145/3098822.3098839

[17] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding
Network Failures in Data Centers: Measurement, Analysis, and Implications.
SIGCOMM Comput. Commun. Rev. 41, 4 (aug 2011), 350–361.

[18] Google. 2015. gRPC Motivation and Design Principles (2015-09-08). https:
//grpc.io/blog/principles/. (2015).

[19] Google. 2022. PSP Architecture Specification (2022-11-17). https://github.com/
google/psp/blob/main/doc/PSP_Arch_Spec.pdf. (2022).

[20] Google. 2022. Using Google Virtual NIC. https://cloud.google.com/compute/
docs/networking/using-gvnic. (2022).

[21] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
2016. Evolve or Die: High-Availability Design Principles Drawn from Googles
Network Infrastructure. In Proceedings of the 2016 ACM SIGCOMM Conference
(SIGCOMM ’16). Association for Computing Machinery, New York, NY, USA,
58–72. https://doi.org/10.1145/2934872.2934891

[22] Tamás Hauer, Philipp Hoffmann, John Lunney, Dan Ardelean, and Amer Diwan.
2020. Meaningful Availability. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). USENIX Association, Santa Clara, CA,
545–557. https://www.usenix.org/conference/nsdi20/presentation/hauer

[23] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Alimi,
Kondapa Naidu B., Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill
Mendelev, Steve Padgett, Faro Rabe, Saikat Ray, Malveeka Tewari, Matt Tierney,
Monika Zahn, Jonathan Zolla, Joon Ong, and Amin Vahdat. 2018. B4 and after:
Managing Hierarchy, Partitioning, and Asymmetry for Availability and Scale
in Google’s Software-Defined WAN. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM ’18). Association
for Computing Machinery, New York, NY, USA, 74–87. https://doi.org/10.1145/
3230543.3230545

[24] Christian Hopps and Dave Thaler. 2000. Multipath Issues in Unicast andMulticast
Next-Hop Selection. RFC 2991. (Nov. 2000). https://doi.org/10.17487/RFC2991

[25] Van Jacobson. 1988. Congestion Avoidance and Control. SIGCOMM Comput.
Commun. Rev. 18, 4 (aug 1988), 314–329. https://doi.org/10.1145/52325.52356

[26] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. 2013. B4: Experience with a Globally-
Deployed Software Defined Wan. SIGCOMM Comput. Commun. Rev. 43, 4 (aug
2013), 3–14.

[27] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and Fabien Duchene. 2014.
FlowBender: Flow-Level Adaptive Routing for Improved Latency and Through-
put in Datacenter Networks. In Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and Technologies (CoNEXT
’14). Association for Computing Machinery, New York, NY, USA, 149–160.
https://doi.org/10.1145/2674005.2674985

[28] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy, Aran Bergman, Changhoon
Kim, and Jennifer Rexford. 2017. Clove: Congestion-Aware Load Balancing at
the Virtual Edge. In Proceedings of the 13th International Conference on Emerging

https://doi.org/10.1145/2619239.2626316
https://doi.org/10.17487/RFC6437
https://doi.org/10.17487/RFC4090
https://doi.org/10.17487/RFC5286
https://ripe82.ripe.net/presentations/20-azimov.ripe82.pdf
https://doi.org/10.17487/RFC8041
https://doi.org/10.17487/RFC8041
https://doi.org/10.1145/1764873.1764885
https://doi.org/10.1145/1764873.1764885
https://datatracker.ietf.org/meeting/97/materials/slides-97-tcpm-tcp-options-for-low-latency-00
https://datatracker.ietf.org/meeting/97/materials/slides-97-tcpm-tcp-options-for-low-latency-00
https://doi.org/10.17487/RFC8985
https://doi.org/10.17487/RFC8985
https://doi.org/10.1145/52325.52336
https://doi.org/10.1145/52325.52336
https://doi.org/10.1109/INFCOM.2013.6567015
https://doi.org/10.1145/2901318.2901334
https://doi.org/10.1145/3098822.3098839
https://grpc.io/blog/principles/
https://grpc.io/blog/principles/
https://github.com/google/psp/blob/main/doc/PSP_Arch_Spec.pdf
https://github.com/google/psp/blob/main/doc/PSP_Arch_Spec.pdf
https://cloud.google.com/compute/docs/networking/using-gvnic
https://cloud.google.com/compute/docs/networking/using-gvnic
https://doi.org/10.1145/2934872.2934891
https://www.usenix.org/conference/nsdi20/presentation/hauer
https://doi.org/10.1145/3230543.3230545
https://doi.org/10.1145/3230543.3230545
https://doi.org/10.17487/RFC2991
https://doi.org/10.1145/52325.52356
https://doi.org/10.1145/2674005.2674985


Networking EXperiments and Technologies (CoNEXT ’17). Association for Comput-
ing Machinery, New York, NY, USA, 323–335. https://doi.org/10.1145/3143361.
3143401

[29] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. HULA: Scalable Load Balancing Using Programmable Data Planes.
In Proceedings of the Symposium on SDN Research (SOSR ’16). Association for
Computing Machinery, New York, NY, USA, Article 10, 12 pages. https://doi.org/
10.1145/2890955.2890968

[30] Ming Li, Deepak Ganesan, and Prashant Shenoy. 2009. PRESTO: Feedback-Driven
Data Management in Sensor Networks. IEEE/ACM Transactions on Networking
17, 4 (2009), 1256–1269. https://doi.org/10.1109/TNET.2008.2006818

[31] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Mike Dalton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily Musick,
Lena Olson, Mike Ryan, Erik Rubow, Kevin Springborn, Paul Turner, Valas Valan-
cius, Xi Wang, and Amin Vahdat. 2019. Snap: a Microkernel Approach to Host
Networking. In In ACM SIGOPS 27th Symposium on Operating Systems Principles.
New York, NY, USA.

[32] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam
Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, and Abdul
Kabbani. 2022. PLB: Congestion Signals Are Simple and Effective for Network
Load Balancing. In Proceedings of the ACM SIGCOMM 2022 Conference (SIGCOMM
’22). Association for Computing Machinery, New York, NY, USA, 207–218. https:
//doi.org/10.1145/3544216.3544226

[33] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon
Wischik, and Mark Handley. 2011. Improving Datacenter Performance and
Robustness with Multipath TCP. SIGCOMM Comput. Commun. Rev. 41, 4 (aug
2011), 266–277.

[34] Jarno Rajahalme, Alex Conta, Brian E. Carpenter, and Dr. Steve E Deering. 2004.
IPv6 Flow Label Specification. RFC 3697. (March 2004). https://doi.org/10.17487/
RFC3697

[35] Matt Sargent, Jerry Chu, Dr. Vern Paxson, and Mark Allman. 2011. Computing
TCP’s Retransmission Timer. RFC 6298. (June 2011). https://doi.org/10.17487/
RFC6298

[36] Pasi Sarolahti and Alexey Kuznetsov. 2002. Congestion Control in
Linux TCP. In 2002 USENIX Annual Technical Conference (USENIX ATC 02).
USENIX Association, Monterey, CA. https://www.usenix.org/conference/
2002-usenix-annual-technical-conference/congestion-control-linux-tcp

[37] Siddhartha Sen, David Shue, Sunghwan Ihm, and Michael J. Freedman. 2013.
Scalable, Optimal Flow Routing in Datacenters via Local Link Balancing. In
Proceedings of the Ninth ACM Conference on Emerging Networking Experiments
and Technologies (CoNEXT ’13). Association for Computing Machinery, New York,
NY, USA, 151–162. https://doi.org/10.1145/2535372.2535397

[38] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sabbag. 2020. A Cloud-
Optimized Transport Protocol for Elastic and Scalable HPC. IEEE Micro 40,
6 (2020), 67–73. https://doi.org/10.1109/MM.2020.3016891

[39] Shan Sinha, Srikanth Kandula, and Dina Katabi. 2004. Harnessing TCP’s bursti-
ness with flowlet switching. In Proc. 3rd ACMWorkshop on Hot Topics in Networks
(Hotnets-III).

[40] Sucha Supittayapornpong, Barath Raghavan, and Ramesh Govindan. 2019. To-
wards Highly Available Clos-Based WAN Routers. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM ’19). Association for
Computing Machinery, New York, NY, USA, 424–440. https://doi.org/10.1145/
3341302.3342086

[41] Daniel Turner, Kirill Levchenko, Alex C. Snoeren, and Stefan Savage. 2010. Cal-
ifornia Fault Lines: Understanding the Causes and Impact of Network Fail-
ures. SIGCOMM Comput. Commun. Rev. 40, 4 (aug 2010), 315–326. https:
//doi.org/10.1145/1851275.1851220

[42] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.
2017. Let It Flow: Resilient Asymmetric Load Balancing with Flowlet Switching.
In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). USENIX Association, Boston, MA, 407–420. https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/vanini

[43] Simon N Wood. 2017. Generalized additive models: an introduction with R (second
ed.). Chapman and Hall/CRC, Boca Raton. https://doi.org/10.1201/9781315370279

[44] Dingming Wu, Yiting Xia, Xiaoye Steven Sun, Xin Sunny Huang, Simbarashe
Dzinamarira, and T. S. Eugene Ng. 2018. Masking Failures from Application
Performance in Data Center Networks with Shareable Backup. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’18). Association for Computing Machinery, New York, NY, USA,
176–190. https://doi.org/10.1145/3230543.3230577

[45] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy
Katz. 2012. DeTail: Reducing the Flow Completion Time Tail in Datacenter
Networks. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM
’12). Association for Computing Machinery, New York, NY, USA, 139–150. https:
//doi.org/10.1145/2342356.2342390

[46] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf Chowdhury.
2017. Resilient Datacenter Load Balancing in the Wild. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’17). Association for Computing Machinery, New York, NY, USA, 253–266. https:
//doi.org/10.1145/3098822.3098841

[47] Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj, Jonathan Leach, Yiting Xia,
and Ying Zhang. 2021. ARROW: Restoration-Aware Traffic Engineering. In
Proceedings of the 2021 ACM SIGCOMM 2021 Conference (SIGCOMM ’21). As-
sociation for Computing Machinery, New York, NY, USA, 560–579. https:
//doi.org/10.1145/3452296.3472921

[48] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon Poutievski, Arjun
Singh, and Amin Vahdat. 2014. WCMP:Weighted Cost Multipathing for Improved
Fairness in Data Centers. Article No. 5. https://dl.acm.org/doi/10.1145/2592798.
2592803

https://doi.org/10.1145/3143361.3143401
https://doi.org/10.1145/3143361.3143401
https://doi.org/10.1145/2890955.2890968
https://doi.org/10.1145/2890955.2890968
https://doi.org/10.1109/TNET.2008.2006818
https://doi.org/10.1145/3544216.3544226
https://doi.org/10.1145/3544216.3544226
https://doi.org/10.17487/RFC3697
https://doi.org/10.17487/RFC3697
https://doi.org/10.17487/RFC6298
https://doi.org/10.17487/RFC6298
https://www.usenix.org/conference/2002-usenix-annual-technical-conference/congestion-control-linux-tcp
https://www.usenix.org/conference/2002-usenix-annual-technical-conference/congestion-control-linux-tcp
https://doi.org/10.1145/2535372.2535397
https://doi.org/10.1109/MM.2020.3016891
https://doi.org/10.1145/3341302.3342086
https://doi.org/10.1145/3341302.3342086
https://doi.org/10.1145/1851275.1851220
https://doi.org/10.1145/1851275.1851220
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini
https://doi.org/10.1201/9781315370279
https://doi.org/10.1145/3230543.3230577
https://doi.org/10.1145/2342356.2342390
https://doi.org/10.1145/2342356.2342390
https://doi.org/10.1145/3098822.3098841
https://doi.org/10.1145/3098822.3098841
https://doi.org/10.1145/3452296.3472921
https://doi.org/10.1145/3452296.3472921
https://dl.acm.org/doi/10.1145/2592798.2592803
https://dl.acm.org/doi/10.1145/2592798.2592803

	Abstract
	1 Introduction
	2 Design
	2.1 Multipath Architecture
	2.2 High-Level Algorithm
	2.3 TCP Outage Detection
	2.4 Repathing with the FlowLabel
	2.5 Alternatives

	3 Simulation Results
	4 Production Results
	4.1 Measuring loss
	4.2 Case Studies
	4.3 Aggregate Improvements
	4.4 Effectiveness for Region-Pairs

	5 Discussion
	6 Related Work
	7 Conclusion
	References

