
1984 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 6, DECEMBER 2015

Measurement Study of Netflix, Hulu, and a Tale of
Three CDNs

Vijay K. Adhikari, Yang Guo, Fang Hao, Member, IEEE, Volker Hilt, Member, IEEE,
Zhi-Li Zhang, Fellow, IEEE, Member, ACM, Matteo Varvello, and Moritz Steiner

Abstract—Netflix and Hulu are leading Over-the-Top (OTT)
content service providers in the US and Canada. Netflix alone
accounts for 29.7% of the peak downstream traffic in the US in
2011. Understanding the system architectures and performance of
Netflix and Hulu can shed light on the design of such large-scale
video streaming platforms, and help improving the design of
future systems. In this paper, we perform extensive measurement
study to uncover their architectures and service strategies. Netflix
and Hulu bear many similarities. Both Netflix and Hulu video
streaming platforms rely heavily on the third-party infrastruc-
tures, with Netflix migrating that majority of its functions to the
Amazon cloud, while Hulu hosts its services out of Akamai. Both
service providers employ the same set of three content distri-
bution networks (CDNs) in delivering the video contents. Using
active measurement study, we dissect several key aspects of OTT
streaming platforms of Netflix and Hulu, e.g., employed streaming
protocols, CDN selection strategy, user experience reporting, etc.
We discover that both platforms assign the CDN to a video request
without considering the network conditions and optimizing the
user-perceived video quality. We further conduct the performance
measurement studies of the three CDNs employed by Netflix and
Hulu. We show that the available bandwidths on all three CDNs
vary significantly over the time and over the geographic loca-
tions. We propose a measurement-based adaptive CDN selection
strategy and a multiple-CDN-based video delivery strategy that
can significantly increase users' average available bandwidth.
Index Terms—CDN selection strategy, content distribution net-

works (CDN), Hulu, Netflix, Over-the-Top (OTT) content service,
video streaming.

I. INTRODUCTION

N ETFLIX and Hulu are the leading subscription-based
video streaming service providers for movies and

TV shows. By April 2014, Netflix has attracted more than
35 million subscribers in the US alone and about 48 mil-
lion worldwide [1]. It is the single largest source of Internet
traffic, consuming 29.7% of peak downstream traffic in
2011 [2]. Like Netflix, Hulu also has a large viewer base, with
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38 million casual viewers who watch Hulu at least once a year
and 3 million paying subscribers. Both providers offer video
at multiple quality levels, capable of adapting to the user's
available bandwidth. Designing such large-scale, fast-growing
video streaming platforms with high availability and scalability
is technically challenging. Because of their popularity and size,
the design and traffic management decisions of these services
also have a profound impact on the Internet infrastructure.
In this paper, we provide a detailed analysis of the Netflix

and Hulu architectures, which are designed to serve a massive
amount of content by combining multiple third-party services.
For instance, Netflix heavily utilizes the Amazon cloud ser-
vice [3], replacing in-house IT by Amazon Web Service (AWS)
and using Amazon SimpleDB, S3, and Cassandra for file
storage [3]. Microsoft Silverlight [4] is employed as the video
playback platform for Netflix desktop users. Both Netflix and
Hulu use Akamai, Limelight, and Level3 content distribution
networks (CDNs) for video content delivery. Such third-party
service-based architecture can be regarded as a system de-
sign blueprint by future Over-the-Top (OTT) content service
providers.
Despite the popularity of Netflix and Hulu, surprisingly few

studies have been looking into their streaming service plat-
forms. In order to understand the architectural design issues
of such large-scale video streaming service platforms and their
implications, we conducted extensive measurement studies
from June to October 2011, with initial results being published
in [5] and [6]. This present paper integrates/unifies the results
from [5] and [6] and offers a comprehensive treatment of the
two most popular content distribution platforms. The issues
common for both platforms are carefully compared, while their
differences are stressed. In particular, we have investigated the
interactions between different components of such an architec-
ture and analyzed the strategies used by Netflix and Hulu that
provide the glue to piece together the overall system. We have
also looked into the implications of these design decisions on
CDNs, underlying ISP networks, as well as end-user quality of
experience (QoE).
To the best of our knowledge, we are the first to take a

systematic look into the architecture of these video streaming
platforms together with an extensive measurement study of
three CDNs they employ. Our results suggest the plausible
role of business relations between Netflix/Hulu and CDNs in
constraining how a content provider decides which CDN to
select to serve streaming videos to end-users, and reveal the
differing CDN selection strategies used by Netflix and Hulu to
meet the business constraints. Furthermore, our measurement
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results demonstrate that the CDN selection strategies employed
by Netflix and Hulu do not necessarily provide the best possible
QoE to end-users, thus highlighting a key tradeoff in CDN se-
lection decision making: business constraints versus end-user
QoE. To illustrate how this tradeoff can be effectively exploited,
we propose new video delivery strategies that can significantly
improve the user QoE by effectively utilizing multiple CDNs
while still conforming to the business constraints. The main
contributions of this paper are summarized as follows.
• We dissect the basic architecture of the two popular video
streaming platforms by monitoring the communications
between the client-side player and various components of
the two platforms.

• We analyze how Netflix and Hulu make use of multiple
CDNs under changing bandwidth conditions. We find that
both Netflix and Hulu players stay with the same CDN
even if the other CDNs may offer better video quality. In
addition, Netflix tends to tie preferred CDNs with user ac-
counts, while Hulu randomly selects the preferred CDN for
individual video playback following an underlying CDN
utilization distribution. Such CDN selection decisions are
likely tied to—and constrained by—the business relations
between the content providers and CDNs.

• We perform an extensive bandwidth measurement study of
the three CDNs used by Netflix and Hulu. The results show
that there are significant variations in CDN performance
across time and geo-locations. These results imply that the
(static) CDN selections made by Netflix and Hulu do not
necessarily provide the best QoE to end-users.

• Finally, we explore alternative strategies for improving
video delivery performance using multiple CDNs while
conforming to the business constraints. Our study shows
that selecting the best serving CDN based on a small
number of measurements at the beginning of each video
session can deliver more than 12% bandwidth improve-
ment over the static CDN assignment strategy currently
employed by Netflix. Furthermore, using multiple CDNs
simultaneously can achieve more than 50% improvement.
Higher available bandwidth opens doors for supporting
ever-improving video quality (thus higher video bit rate)
and new services such as 3-D movies and/or multiple
concurrent movies in a single household.

The paper is organized as follows. Sections II and III describe
the architectures of Netflix and Hulu video streaming platforms
and their CDN selection strategy. Section IV presents our mea-
surement study of the three CDNs. Section V explores the alter-
native strategies for CDN assignment in order to improve video
delivery performance. Section VI discusses the related work. Fi-
nally, Section VII concludes the paper and discusses the future
work.

II. NETFLIX VIDEO STREAMING PLATFORM
We start the section with the overview of Netflix video

streaming platform architecture. We dissect the architecture via
traffic monitoring, DNS resolutions, and WHOIS [7] lookup.
We then present the timeline of serving a single Netflix client
as an example to illustrate the interplay between a Netflix
player and various service components. We further collect a

Fig. 1. Netflix architecture.

TABLE I
KEY NETFLIX HOSTNAMES

large number of video streaming manifest files using Tamper
Data add-on [8] and analyze how geographic locations, client
capabilities, and content types influence the streaming parame-
ters. Finally, we focus on the Netflix CDN assignment strategy.
Using dummynet [9] to strategically throttle individual CDNs'
bandwidth, we discover how Netflix makes use of multiple
CDNs in the face of bandwidth fluctuation.

A. Overview of Netflix Architecture
To observe the basic service behavior, we create a new user

account, login into the Netflix Web site, and play a movie. We
monitor the traffic during all of this activity and record the host-
names of the servers involved in the process. We then perform
DNS resolutions to collect the canonical names (CNAMEs) and
IP addresses of all the server names that the browser has con-
tacted.We also performWHOIS [7] lookups for the IP addresses
to find out their owners. Table I summarizes the most relevant
hostnames and their owners. Fig. 1 shows the basic architec-
ture for Netflix video streaming platform. It consists of four
key components: Netflix data center, Amazon cloud, CDNs, and
players.
Netflix Data Centers: Our analysis reveals that Netflix

uses its own IP address space for the hostname www.net-
flix.com. This server primarily handles two key functions:
1) registration of new user accounts and capture of payment in-
formation (credit card or Paypal account); and 2) redirect users
to movies.netflix.com or signup.netflix.com
based on whether the user is logged in or not, respectively.
This server does not interact with the client during the movie
playback, which is consistent with the recent presentation from
the Netflix team [10].
Amazon Cloud: Except for www.netflix.com,

which is hosted by Netflix, most of the other Netflix
servers such as agmoviecontrol.netflix.com and
movies.netflix.com are served off the Amazon
cloud [11]. Reference [10] indicates that Netflix uses various
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Fig. 2. Timeline in serving a Netflix client.

Amazon cloud services, ranging from EC2 and S3 to SDB
and VPC [11]. Key functions, such as content ingestion, log
recording/analysis, DRM, CDN routing, user sign-in, and
mobile device support, are all done in the Amazon cloud.
CDNs: Netflix employs multiple CDNs to deliver the video

content to end-users. The encoded and DRM protected videos
are sourced in the Amazon cloud and copied to CDNs. Netflix
employs three CDNs: Akamai, LimeLight, and Level-3. For the
same video with the same quality level, the same encoded con-
tent is delivered from all three CDNs. In Section II-D, we study
the Netflix strategy used to select these CDNs to serve videos.
Players: Netflix uses Silverlight to download, decode, and

play Netflix movies on desktopWeb browsers. The run-time en-
vironment for Silverlight is available as a plug-in for most Web
browsers. There are also players for mobile phones and other
devices such as Wii, Roku, etc. This paper, however, focuses on
Silverlight player running on desktop PCs.
Netflix uses the Dynamic Streaming over HTTP (DASH)

protocol for streaming. In DASH, each video is encoded
at several different quality levels and is divided into small
“chunks”—video segments of no more than a few seconds in
length. The client requests one video chunk at a time via HTTP.
With each download, it measures the received bandwidth and
runs a rate determination algorithm to determine the quality of
the next chunk to request. DASH allows the player to freely
switch between different quality levels at the chunk boundaries.

B. Servicing a Netflix Client
We now take a closer look at the interaction between the

client Web browser and various Web servers involved in
the video playback process. Fig. 2 shows the timeline along
which the streaming service is provided to a desktop client
and indicates the involved server entities. The -axis in this
figure shows the time from the beginning of the experiment
to 5 min, and the -axis lists different activities. The client
first downloads the Microsoft Silverlight application from
movies.netflix.com and authenticates the user. After
authentication, the player fetches the manifest file from the
control server at agmoviecontrol.netflix.com, based
on which it starts to download trickplay data and audio/video
chunks from different CDNs. Client reports are sent back to
the control server periodically. We describe further details of
individual activities.
1) Silverlight Player Download and User Authentication:

Video playback on a desktop computer requires the Microsoft
Silverlight browser plug-in to be installed on the computer.

When the user clicks on the “Play Now” button, the browser
downloads the Silverlight application, and then that application
starts downloading and playing the video content. This small
Silverlight application is downloaded for each video playback.
2) Netflix Manifest File: Netflix video streaming is con-

trolled by instructions in a manifest file that the Silverlight
client downloads. The Netflix manifest file provides the DASH
player metadata to conduct the adaptive video streaming. The
manifest files are client-specific, i.e., they are generated ac-
cording to each client's playback capability. For instance, if the
user player indicates it is capable of rendering h.264 encoded
video, h.264 format video is included in the manifest file. If the
player indicates that it can only play back .wmv format, only
.wmv format video is included.
The manifest file is delivered to the end-user via SSL connec-

tion, and hence the content of the file cannot be read over the
wire using packet capture tools such as tcpdump or wireshark.
We use Firefox browser and Tamper Data plug-in to extract
the manifest files. The extracted manifest file is in XML format
and contains several key pieces of information including the list
of the CDNs, location of the trickplay data, video/audio chunk
URLs for multiple quality levels, and timing parameters such as
timeout interval, polling interval, and so on. The manifest file
also reveals interesting information on the Netflix system archi-
tecture. For instance, they show that Netflix uses three CDNs
to serve the videos. Different ranks are assigned to different
CDNs to indicate to the clients which CDN is more preferred
than others. A section of one of the manifest files is shown in
Fig. 3, where Level3 is listed as the most preferred CDN for this
client. We will conduct more elaborate experiments and discuss
more details of the manifest files later in this section.
3) Trickplay: Netflix Silverlight player supports simple

trickplay such as pause, rewind, forward, and random seek.
Trickplay is achieved by downloading a set of thumbnail
images for periodic snapshots. The thumbnail resolution, pixel
aspect, trickplay interval, and CDN from where to download
the trickplay file are described in the manifest file. The trickplay
interval for the desktop browser is 10 s, and multiple resolutions
and pixel aspects are provided.
4) Audio and Video Chunk Downloading: As shown in

Fig. 2, audio and video contents are downloaded in chunks.
Download sessions are more frequent at the beginning so as
to build up the player buffer. Once the buffer is sufficiently
filled, downloads become periodic. The interval between the
beginning of two consecutive downloads is approximately
4 s—the playback length of a typical chunk.
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Fig. 3. CDN list in manifest file.

Fig. 4. Video downloadable for one quality level.

The manifest file contains multiple audio and video quality
levels. For each quality level, it contains the URLs for individual
CDNs, as shown in Fig. 4.
5) User Experience Reporting: After the playback starts,

Netflix player communicates periodically with the control
server agmoviecontrol.netflix.com. Based upon the
keywords such as “/heartbeat” and “/logblob” in the request
URLs and the periodicity of the communication, we conjecture
that they are periodic keep-alive messages and log updates.
However, the actual messages that we have extracted by using
Tamper Data do not appear to be in clear text, and hence we
cannot verify it further.

C. Manifest File Analysis
A manifest file is delivered over the SSL connection. We

use Tamper Data plug-in for Firefox browser to read the file.

Since the manifest files contain a wealth of information and shed
light on the Netflix strategies, we conduct a large-scale exper-
iment by collecting and analyzing a number of manifest files.
We are interested in understanding how geographic locations,
client capabilities, and content type (e.g., popular versus un-
popular, movies versus TV shows) may impact the streaming
parameters. We use six different user accounts; 25 movies of
varying popularity, age, and type; and four computers with Mac
and Windows systems at four different locations for this exper-
iment. From each computer, we log into Netflix site using each
of the user accounts and play all of the movies for a few minutes
to collect the manifest files. In addition to using client machines
located in different geographies, we also configure those client
browsers to use Squid proxy servers running on 10 PlanetLab
nodes hosted by US universities in different geographic regions
to collect additional manifest files.
1) CDN Ranking and User Accounts: Netflix manifest

files rank CDNs to indicate which CDNs are preferred. CDN
ranking determines from which CDN the client downloads the
video and may affect user-perceived video quality. We analyze
the collected manifest files to understand the factors that affect
the rankings of the CDNs. For this analysis, we build a table
that lists CDN ranking for each combination of user account,
client computer (or PlanetLab proxy), movie ID, and time of
day for several days. Analysis of this table suggests that the
CDN ranking is only based upon the user account. For a given
user account, the CDN ranking in the manifest file remains
the same irrespective of movie types, computers, time, and
locations. Furthermore, for the same movie, computer, location,
and around the same time, two different users may see different
CDN rankings. We also observe that the CDN ranking for each
user account remains unchanged for at least several days. Such
assignment of ranking seems to be independent of available
bandwidth from each CDN as shown in Section IV.
2) Audio/Video Bit Rates: Netflix serves videos in multiple

formats and bit rates.When a Netflix client requests for the man-
ifest file from Netflix, the client indicates the formats of the con-
tent it can play. The Netflix server then sends back a manifest
file based upon the client request. For instance, a Netflix client
running on an older computer (Thinkpad T60 with Windows
XP) and one on a newer computer (Macbook Pro with Snow
Leopard) have different capabilities and receive different video
downloading formats and bit rates.
Based on the client capabilities, the server sends URLs for the

video and audio chunks in the returnedmanifest files. In general,
manifest files contain information about video chunks encoded
in bit rates between 100–1750 kb/s [and 2350 and 3600 kb/s for
videos available in high definition (HD)] for the manifest files
sent to the newer computer. We see that videos available in HD
can be served in up to 14 different bit rates, whereas non-HD
content can be served in up to 12 different bit rates. We also
note that Netflix clients do not try all possible available bit rates
when trying to determine the optimal playback rate.

D. CDN Selection Strategy

We have seen that a Netflix client can choose different video
bit rates and different CDNs for video downloading. In this
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Fig. 5. CDN switching.

section, we conduct experiments to help understand how Net-
flix makes such choices when bandwidth is dynamic. We play
a single movie from the beginning. Once the playback starts,
we gradually throttle the available bandwidth of the top-ranked
CDN in the manifest file. We use dummynet to throttle the in-
bound bandwidth to the client.
At the beginning, servers from each CDN are allowed to send

data at 3900 kb/s. After every minute, we reduce the available
bandwidth for the current CDN by 100 kb/s until it reaches
100 kb/s. At that point, we start throttling the next CDN in
the same way and so on. We plot our observation in Fig. 5. In
this figure, the -axis shows the time starting from the begin-
ning of playback. The -axis shows both the throttled bandwidth
and the playback rate. In this instance, Level3, Limelight, and
Akamai CDNs are ranked first, second, and third, respectively.
The client starts downloading video chunks from the first CDN.
In the beginning, it starts from a low bit rate and gradually im-
proves the bit rate in a probing fashion. As we lower the avail-
able bandwidth for the first CDN while leaving the other CDNs
intact, we notice something interesting. Instead of switching to
a different CDN, which is not throttled, the client keeps low-
ering the bit rate and stays with the first CDN. Only when it can
no longer support even the very low quality level (i.e., when
the available bandwidth for the first CDN reaches 100 kb/s), it
switches to the second CDN. It repeats almost the same behavior
as we leave the first CDN at 100 kb/s and gradually lower the
available bandwidth for the second CDNwhile leaving the third
CDN intact. In general, the Netflix clients stay with the same
CDN as long as possible even if it has to degrade the playback
quality level.

III. HULU VIDEO STREAMING PLATFORM
Besides Netflix, Hulu is another major OTT video service

provider that does not own extensive infrastructure, yet man-
ages to support large-scale video streaming service. Examining
the similarity and discrepancy of Netflix and Hulu's respective
video streaming platform and employed technologies shall
shed light on the state of the art of the video streaming platform
design. Unlike Netflix, Hulu offers both subscription-based
service (called HuluPlus) and free service. Free service is for
desktop users, while HuluPlus supports additional platforms,
e.g., set-top boxes, mobile devices, etc., and offers HD video
quality. Video advertisement is another major component of

Fig. 6. High-level Hulu architecture.

Hulu, where short advertisement clips are typically delivered
to users prior to the main video content.
We employ methodologies similar to the ones used in the

Netflix study in studying Hulu. We play multiple videos on
different Web browsers from multiple locations with different
ISPs, with or without firewalls and proxy servers. We also cor-
roborate several of these observations using what has been pub-
lished on Hulu's help pages and blogs. A high-level Hulu ar-
chitecture for desktop clients is shown in Fig. 6. The client
gets the HTML pages for the video from Hulu's front-end Web
server at www.hulu.com. It then contacts s.hulu.com to
obtain a manifest file that describes the server location, avail-
able bit rates, and other details. The client uses the instruc-
tion in the manifest file to contact a video server to download
the video. The client also periodically sends its status report
to t.hulu.com. The similarity between the Netflix architec-
ture and the Hulu architecture is striking—both platforms utilize
the third-party commercial data centers and multiple CDNs to
flexibly scale up/down to accommodate for the changing user
population.
Bandwidth Requirements: Hulu videos are streamed at 480

and 700 kb/s. A few videos can also be streamed at 1000 kb/s.
HuluPlus subscribers can also access videos in HD quality when
available. Clients can switch between bit rates during playback
based on available bandwidth, as we will explain later.
CDNs: Hulu employs the same three CDNs as Netflix to de-

liver video contents to users. Based on manifest files, a Hulu
client is first assigned a preferred CDN hostname, and then uses
DNS to select a server IP address.
Streaming Protocol: Hulu uses encrypted Real Time Mes-

saging Protocol (RTMP) to deliver movies to desktop browsers.
Hulu videos can be delivered over raw RTMP on port 1935 or
RTMP tunneled over HTTP (RTMPT). Our experiments reveal
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that Level3 prefers raw RTMP, whereas Akamai and Limelight
prefer RTMPT. All three CDNs use RTMPT when TCP port
1935 is blocked (by a firewall for instance). HuluPlus on a
desktop browser uses the same technologies and protocols.
However, on mobile devices, HuluPlus uses adaptive streaming
over HTTP. For instance, on iPhone and iPad, HuluPlus
content is delivered over HTTP LiveStreaming technology [12].
Hulu advertisements are single .FLV files. These files are small
(a few megabytes) and are downloaded over single HTTP
transactions.

A. CDN Selection Strategy
Analyzing the captured packet traces, we find that Hulu uses

only one CDN server throughout the duration of a video. Yet
interestingly, it usually switches to a different CDN for the next
video. To further understand how network conditions affect
player behavior and CDN selection strategy, we conduct the
same bandwidth throttling experiment as in the Netflix mea-
surement study. At the beginning, servers from each CDN are
allowed to send data at 1501 kb/s. At the end of every minute,
we reduce the available bandwidth for the current active CDN
by 100 kb/s until it reaches 1 kb/s. As we lower the available
bandwidth for the current CDN while leaving the other CDNs
intact, we notice that instead of switching to a different CDN,
which is not throttled, the client keeps lowering the bit rate and
stays with the original CDN. This indicates that Hulu adapts to
changing bandwidth by adjusting the bit rates and continues to
use the same CDN server as long as possible. Only when the
current CDN server is unable to serve the lowest possible bit
rate, it switches to a different CDN server. In summary, for a
single video playback, Hulu's CDN selection strategy is very
similar to that of Netflix.

B. User Experience Reporting
From the packet trace, we find that the Hulu player sends peri-

odic reports to a server that includes detailed information about
the status of the client machine at that time, the CDN servers for
video content and advertisements, and any problems encoun-
tered in the recent past. These periodic status reports are sent
to t.hulu.com, which maps to the same single IP address
from all the locations in the US. Using WHOIS [7] queries, we
learn that the corresponding IP address, 208.91.157.68, is allo-
cated to Hulu. Examples of detailed performance information
contained in the periodic reports include: video bit rate, current
video playback position, total amount of memory the client is
using, the current bandwidth at the client machine, number of
buffer under-runs, and number of dropped frames. When the
client adapts bit rate due to changing network conditions, the
periodic reports also include details on why the bit rate was
changed. For instance, one of the messages reads “Move up
since avg dropped FPS and ,” with
FPS indicating frames per second. It appears that Hulu has suffi-
cient user performance information for dynamic CDN selection
if they choose to do so.

C. Manifest Files and CDN Usage Analysis
Hulu clients follow the manifest files they receive from the

server to decide which CDN to use. Since Hulu encrypts the

Fig. 7. Section of Hulu manifest file.

manifest file sent to the client, the manifest files from the net-
work traces are not readable. We collect the manifest files using
a tool called get-flash-videos [13]. A small section of an
example Hulu manifest file is shown in Fig. 7. The last line in
the figure shows Hulu's CDN preference in that manifest file.
When we examine CDN preferences in a few manifest files, we
observe that the preferred CDN varies from one manifest file to
another. For instance, when we make two sequential requests
for the same video, the preferred CDNs for those two requests
can be different.
To better understand how Hulu selects different CDNs, we

request the manifest file every second for the same video from
the same computer for 100 s. Fig. 8 depicts the preferred CDN
along time, with “ ” indicating the selected CDN for each re-
quest. Since the network conditions on the tested Hulu client is
fairly stable during the experiment, the above result indicates
that Hulu CDN selection is not based on instantaneous network
conditions.
To further understand the impact of various factors such as

client location, video, and time on CDN selection, we use the
get-flash-videos tool to collect manifest data for 61 dif-
ferent videos of different genres, length, popularity, and ratings
available on Hulu from 13 different locations across the US
over multiple days (up to 24 days at one of the locations). The
client machines on these locations are connected to residential
broadband networks or business high-speed Internet services.
They also cover a number of different ISPs including Comcast,
AT&T, Verizon, and CenturyLink.
For a given video at a given location and time, we download

the manifest file 100 times, with 1-s interval between two con-
secutive downloads. We call such 100 consecutive downloads
an experiment. Each downloaded manifest file assigns one CDN
as the preferred CDN. We count the number of times each CDN
is preferred for each experiment. We refer to the percentage of
times that a CDN is preferred in an experiment as preference
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Fig. 8. CDN preference change in a 100-s time interval.

Fig. 9. Overall CDN preference distribution.

Fig. 10. CDN preference from geographic regions.

percentage. This preference percentage essentially reflects the
likelihood for a CDN to be selected by Hulu.
Overall CDN Preference: Fig. 9 shows the distribution of

preference percentage for the three CDNs based on results for
all videos, locations, and time. The three curves representing the
three CDNs are very close to Gaussian distributions. The mean
preference percentage for Limelight, Akamai, and Level3 are
25, 28, and 47, respectively. Level3 is the preferred CDN 47%
of times, much more than the other two CDNs.
CDN Preference Over Different Locations: Fig. 10 shows

CDN preference observed from clients at different geographic
locations. These 13 locations span different cities across eight
US states. For this analysis, we combine data for all the videos
collected at the same location and calculate the average pref-
erence percentage for each location. We observe that different
CDNs have different popularity, but the popularity does not
change over different locations.

Fig. 11. CDN preference for different videos.

Fig. 12. CDN preference over time.

CDN Preference for Different Videos: Fig. 11 shows CDN
preference for different videos. Here, we aggregate the experi-
ments for each video across location and time and calculate its
average preference percentage. The small variation in prefer-
ence percentage across different videos indicates CDN prefer-
ence is independent of which video is being served.
CDN Preference Over Time: Fig. 12 shows CDN preference

change over different days at the same location. This result
is based on 24 days of experiments at a single location. Each
data point represents the average preference percentage over all
videos on each day for a given CDN. The results for other lo-
cations (not shown here) are similar. We observe that the CDN
preferences do not change over time either.
In summary, we conclude that Hulu selects the preferred CDN

randomly following a fixed latent distribution for each of the
playback requests. On average, one CDN (Level3) is preferred
more than others, but such selection preference does not seem to



ADHIKARI et al.: MEASUREMENT STUDY OF NETFLIX, HULU, AND TALE OF THREE CDNs 1991

depend on instantaneous network conditions. It is also evident
that CDN selection is not affected by client location at which
the video is played. Also, the selection does not change over the
24 days that we measured. We conjecture that such CDN prefer-
ence is most likely based on pricing and business arrangements
and is not dependent upon instantaneous bandwidth or past per-
formance history of the CDNs. Note that the above CDN usage
analysis is not doable for Netflix since Netflix ties the CDN
preference to the individual user account. It is impractical to
create a large number of Netflix accounts to infer its CDN usage
strategy.

IV. CDN PERFORMANCE MEASUREMENT

In the previous sections, we have shown that Netflix ties
the CDN preference to user accounts, while Hulu chooses the
preferred CDN for each video based on a latent distribution. In
both cases, factors such as user geographic locations, network
conditions, and requested video contents do not trigger the
CDN preference change. These observations suggest that the
CDN preference and selection strategies employed by Netflix
and Hulu are plausibly due to business considerations such
as business relations (e.g., pricing agreements) between the
content providers and CDNs: While Netflix and Hulu employ
different CDN selection strategies (one ties the preferred CDN
to each user account, and the other ties to each video), both at-
tempt to distribute and balance the video serving traffic among
the CDN in accordance with certain latent distribution. This
raises a key design tradeoff in CDN selection decision-making,
business constraints versus end-user QoE, and leads to the
following questions.
• How does each CDN perform? Can the selected CDN
server consistently support the bandwidth needed for
high-quality streaming?

• How do different CDNs compare in terms of performance?
Is any CDN clearly better or worse than others?

• How far is the current CDN selection strategy from
“optimal”? Can the strategy be improved to support
higher-delivery bandwidth while conforming to the busi-
ness constraints?

In this section and Section V, we attempt to address the above
questions by conducting extensive measurement experiments
for the three CDNs used by Netflix from 95 vantage points
across the US.1
We measure the bandwidth throughput between each vantage

point and a given CDN server by downloading multiple video
chunks from the CDN server. Video file URLs are collected for
all three CDNs from Netflix manifest files. Here, we take ad-
vantage of the fact that the URLs in the manifest remain valid
for several hours from the time the manifest file is generated,
and the validity of the URLs is not tied to client IP address.
Furthermore, the byte “range” of the download can be adjusted
without affecting the URL validity. Once we extract the URLs

1As Hulu shares the same set of CDN providers with Netflix, and since the
RTMPE protocol used by Hulu is more difficult to work with than the DASH
protocol used by Netflix, here we choose Netflix to conduct the CDN experi-
ments.

for the three CDNs, we “replay” the GET request from all van-
tage points with byte range modified so that we download video
chunks of the same size.
Similar to the actual Netflix video playback, when GET re-

quests are sent from a vantage point, the hostnames in the URLs
are resolved by DNS server, which returns the IP address of the
edge server assigned by the CDN. To ensure the measured band-
widths of three CDNs are comparable, we send GET requests to
three CDNs in round-robin order within a short duration. More
specifically, measurement is repeated in multiple “rounds,” with
each round lasting 96 s. A round is further partitioned into four
“slots,” with 24 s for each slot. The first three slots of each round
correspond to three CDNs, respectively, and we download video
chunks of size 1.8MB. The last slot of each round is for a “joint”
measurement for all CDNs, i.e., we send GET requests to the
three CDNs simultaneously, each requesting video chunks for
0.6-MB data. We intend to find out how much total bandwidth
one can get if all three CDNs are used simultaneously. We pick
the size of the chunks and length of “slots” based upon mul-
tiple trial measurements. In our trials, we find that these numbers
make sure that different experiments do not interfere with each
other and chunk size is sufficiently large so that we can have a
good estimate of the bandwidth. We also send keep-alive mes-
sages to each server every second when no data is transferred to
make sure that the TCP session is alive and sender window size
does not drop.
The measurement is conducted for 2 h between 8–10 pm

CST, from June 8–26, 2011. Based on downloading time, we
calculate the instantaneous bandwidth (i.e., throughput for each
GET request), the one-day average bandwidth (average band-
width during the 2-h period), and average bandwidth (over en-
tire measurement study). These metrics allow us to examine
CDN performance at multiple timescales. We conducted exper-
iments from both residential sites and PlanetLab nodes. There
are 12 residential sites, 10 in New Jersey, 1 in Minnesota, and
1 in California. The residential sites use five different service
providers. To cover a wider range of geographic locations, we
also choose 83 PlanetLab nodes spread across the US as ad-
ditional vantage points. We ensure that all selected PlanetLab
nodes are lightly loaded so that the nodes themselves do not
become the bottleneck and the measurement results reflect the
actual bandwidth that can be supported by the CDN server and
the network.
The rest of this section attempts to address the first two ques-

tions on CDN performance.Wewill further investigate the other
two questions on performance improvement in Section V. We
use CDNs , and to denote the three CDNs without par-
ticular order in the rest of the discussion.

A. Overall CDN Performance
Fig. 13 shows the locations of all vantage points in our exper-

iments as well as the CDN with highest average bandwidth at
each vantage point during the measurement period. As the result
indicates, no CDN clearly outperforms the others. In addition,
Fig. 14 shows the cumulative distribution function (CDF) of
average bandwidth at the PlanetLab nodes over the entire
measurement period. The available bandwidth at different
PlanetLab nodes varies significantly from location to location,
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Fig. 13. Best CDN at each vantage point.

Fig. 14. CDF of average bandwidth at PlanetLab nodes.

ranging from 3 to more than 200 Mb/s. The CDF curves
of three CDNs, however, are close to each other, indicating
similar overall performance. Figs. 15 and 16 further show
the average bandwidth at individual locations for PlanetLab
nodes and residential sites, respectively. The location index is
sorted in the ascending order of CDN 's average bandwidth.
CDN bandwidth measured at PlanetLab nodes appear to have
much higher than that of residential sites in general. This is
because most PlanetLab nodes are located in universities,
which typically have better access links. This also implies that
in most cases, the last mile is still the bottleneck for streaming
video. However, even the residential sites with relatively low
bandwidth, e.g., homes 1 and 2 in Fig. 16, can support 1.3 Mb/s
on average, enough for standard-definition (SD) videos.
It is also interesting to note that home sites 4, 9, and 11 see

significantly different average bandwidth from different CDNs.
In particular, CDN outperforms all others considerably. We
find that these three homes use the same ISP. It is conceivable
that CDN has a better presence in this provider's network.

B. Daily Bandwidth Variations

Next, we examine the bandwidth variation at different sites
from the three CDNs over various timescales. We compute the
coefficient of variance (CoV) of the daily average bandwidth at
all PlanetLab nodes by computing the ratio of the standard devi-
ation to the mean at each of the locations. Fig. 17 shows the CoV
for the one-day average bandwidth at various PlanetLab nodes
over multiple days. We indeed see high CoV at most nodes. The
average CoV is 0.33, 0.30, and 0.30 for CDN , , and , re-
spectively. At most locations, there are significant variations in

Fig. 15. Average bandwidth at PlanetLab nodes over the entire period.

Fig. 16. Average bandwidth at residential networks over the entire period.

Fig. 17. Coefficient of variance for the one-day average at PlanetLab nodes.

daily bandwidth for all three CDNs. We show a few represen-
tative locations in Figs. 18–20, which plot the one-day average
bandwidth over the measurement period at one PlanetLab node
and two residential sites, respectively. The results show signif-
icant variations of average bandwidth on a daily basis.
Figs. 18– 20 show that the performance ranking of the three

CDNs also varies over time. Although the lowest CDN band-
width across all three nodes is still above 3 Mb/s—sufficient
to support SD levels—significant variations in bandwidth and
varying rankings of CDNs over time suggest that further im-
provement in CDN selection strategies is possible.

C. Variations in Instantaneous Bandwidth
We further investigate the instantaneous bandwidth vari-

ation during 2 h of video playing. This is important since a
DASH player constantly monitors the available bandwidth to
decide which quality level of video to download. The small
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Fig. 18. One-day average bandwidth at a PlanetLab node over time.

Fig. 19. One-day average bandwidth over time at residential site 7.

Fig. 20. One-day average bandwidth over time at residential site 9.

timescale bandwidth may significantly impact the Netflix users'
viewing experience as 2 h is a typical length of a movie.
Figs. 21–23 show the comparison of three CDNs for the same
PlanetLab node and residential nodes. Although the variance is
still significant, there is a “pattern” in the bandwidth change.
For example, bandwidth for CDN in Fig. 21 alternates
between two levels, one around 35 Mb/s and one around 20
Mb/s. The average coefficient of variation for a 2-h period is
0.19, 0.21, and 0.18, respectively, for CDNs , , and for
residential sites.

V. ALTERNATE VIDEO DELIVERY STRATEGIES
We have shown that Netflix and Hulu always prefer to use

one CDN for video delivery, with the other two CDNs serving

Fig. 21. Instantaneous bandwidth at a PlanetLab node.

Fig. 22. Instantaneous bandwidth at residential site 7.

Fig. 23. Instantaneous bandwidth at residential site 9.

as backups: They are used only if the current CDN cannot sup-
port even the lowest video quality. We have also shown that
the available bandwidth on all three CDNs varies significantly
over time and over geographic locations. For instance, as shown
in Fig. 13, out of 83 PlanetLab locations, CDNs , and

perform best at 30, 28, and 25 locations, respectively. The
measurement study of residential hosts shows similar results.
Hence, if users are given a bad CDN choice, their video viewing
quality may suffer even though other CDNs can provide them
with a more satisfying experience. In addition to improving ex-
perience for “unlucky” users, exploring potential ways of in-
creasing video delivery bandwidth may also open doors for new
bandwidth-demanding services in the future, e.g., 3-D movies
or multiple concurrent movies in the same household. In this
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Fig. 24. Average bandwidth and the upper bound at residential sites.

Fig. 25. Average bandwidth and the upper bound at PlanetLab nodes.

section, we first determine how much room is available for fur-
ther improvement. In other words, if we could have the optimal
CDN selection strategy in theory, how much better it would be
compared to current static assignment. We then explore two al-
ternative CDN selection strategies that can easily be deployed
in practice, and demonstrate that we can indeed significantly in-
crease the bandwidth for video delivery despite the simplicity
of such strategies.

A. Room for Improvement

Given the instantaneous bandwidth trace, the optimal CDN
selection strategy is to choose the top CDN at each point of
time. Although this cannot be done in practice as we do not
know the instantaneous bandwidth beforehand, this theoretical
optimal strategy allows us to find out the highest bandwidth each
client can receive if the best CDN is used at any given time. We
refer to the average bandwidth achieved by the optimal strategy
as the upper-bound average bandwidth.
Figs. 24 and 25 show the average bandwidth of three CDNs

and the upper-bound average bandwidth for residential sites
and PlanetLab nodes, respectively. Here, we use the average
bandwidth over all three CDNs to reflect the static assignment
strategy. The actual assignment may of course be better or worse
depending on which CDN gets selected, but this gives the ex-
pected value. We also show the bandwidth if one top CDN, i.e.,
the one with highest average bandwidth, is selected. For the ma-
jority of the sites, the upper bound is much better than the av-
erage CDN case and close to the top CDN case. In particular, the

Fig. 26. Effect of number of measurements.

upper bound is 17% and 33% better than the average case for
residential sites and PlanetLab nodes, respectively, indicating
there is significant room for improvement. Assigning users to
the top CDN is only 6%–7% worse than the theoretical optimal
case. This indicates that if we can estimate which CDN is likely
to perform best in the next couple hours, we can achieve av-
erage bandwidth that is fairly close to the upper-bound average
bandwidth.

B. Measurement Based CDN Selection
Since selecting the top CDN for users gives good perfor-

mance, we next study how to identify the top CDN effectively.
We propose to have the player conduct the instantaneous band-
width measurement multiple times at the beginning, and as-
sign users the best-performing CDN for the rest of the movie.
Fig. 26 shows the effect of number of measurements on per-
formance. As reference, two straight lines show the ratio of the
CDN average bandwidth over top CDN bandwidth for all Plan-
etLab and residential nodes, respectively. In both cases, we cal-
culate the average CDN bandwidth over all locations, time, and
CDN providers, so they reflect the expected CDN performance,
assuming the three CDNs are equally likely to be chosen in the
static CDN assignment strategy. The other two curves are the
ratio of average bandwidth using measurement-based CDN se-
lection strategy over that of using top CDN for both PlanetLab
nodes and residential sites. Using a small number of measure-
ments , the measurement-based strategy delivers more than
12% improvement over the static CDN assignment strategy. Al-
though the average improvement is moderate, for certain users
the improvement is significant, e.g., more than 100% for res-
idential host 4. Given this method is very straightforward and
easy to implement, we believe this is a favorable approach for
improving video delivery.

C. Using Multiple CDNs Simultaneously
In previous sections, we have assumed that only one CDN can

be used at a time. However, since Silverlight player downloads
video and audio content in chunks, it is possible to use all three
CDNs simultaneously. For instance, the player can download
three different chunks in parallel from three different CDNs to
obtain larger bandwidth. Since the design of an HTTP adaptive
streaming protocol that can best utilize multiple CDNs is out of
the scope of this paper, we try to see if multiple CDNs can be
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Fig. 27. Best CDN versus three combined CDNs for residential hosts.

Fig. 28. Best CDN versus three combined CDNs for PlanetLab nodes.

used, whether they can offer higher aggregated throughput for
end-users.
Figs. 27 and 28 compare the average bandwidth using top

CDN and the average bandwidth obtained by combining three
CDNs for residential and PlanetLab nodes, respectively. We see
that combining all three CDNs can significantly improve the
average bandwidth. Specifically, the aggregate bandwidth ob-
tained by combining all three CDNs is greater than the band-
width of the single best CDN by 54%–70% for residential sites
and PlanetLab nodes, respectively.

D. Considering Business Constraints

In the above client-side initiated CDN selection strategies, the
business constraints are not considered. We intend to show how
much performance improvement can be achieved by allowing
the end-users to freely choose the best CDN or use multiple
CDNs simultaneously. In practice, the content providers may
well have business arrangement with CDN service providers,
in terms of pricing, the amount of traffic needed to be carried
over a specific CDN, etc. How to integrate the business con-
straints with the client-side initiated CDN selection strategy to
form a practical and high-performance video delivery frame-
work is an interesting research challenge. We consider one type
of the business constraints, where the overall traffic is shared by
three CDNs based on a fixed split ratio—the same business con-
straint as used by Hulu (see Section III-C). We explore a prob-
abilistic CDN profile assignment strategy that conforms with
the aforementioned business constraint, yet provides end-users

better QoE by allowing them to choose the best CDN from a list
of candidate CDNs provided by the content provider.
Define a CDN profile to be a list of candidate CDNs from

which the end-user can choose the best one to retrieve the video.
Denote by the th profile. For three CDNs, there are seven
valid CDN profiles,

, and ,
where denotes the th CDN, . Note that of-
fers end-users all three CDNs and hence is the most preferred;

, and offer two candidate CDNs that allow users to
avoid the worst-performing CDN. For profiles , and ,
the end-users have no choice but to use the assigned CDN,
which is the current strategy used by Hulu. Upon the arrival of
a request, the content provider assigns the th profile to this re-
quest with the probability . The goal is to find the optimal
so that the usage of profiles , and is maximized
while conforming with the business constraints. Denote by
the targeted traffic fraction for CDN , and by the prob-
ability that an end-user selects CDN as the best-performing
CDN given the profile . , with if CDN
is not included in the candidate list of profile . The optimiza-

tion problem is formulated as the following linear program:

(1)

subject to
(2)

(3)

(4)

where is the weight to favor profile 0. Constraint (2)
ensures that the targeted traffic split is satisfied. Constraint (3)
ensures is a valid probability distribution. The values of

can be measured using the following approach. At the
beginning of the service, the content provider randomly assigns

requests with profile , with being a large number, e.g.,
1000 requests. It then collects , the number of requests that
select CDN given profile . The estimation
can be improved further over time. Also, a request's video size
does not explicitly appear in the model. Since each profile will
be assigned to a large number of requests/sessions, the average
session size approaches its mean thanks to the Law of Large
Numbers.
Next, we use a numerical example to illustrate the bene-

fits of the proposed scheme. Suppose the target traffic split
is . The vectors for profiles 0–6 are

, and , respectively. The value of is set to be 10.
Solving the linear program using CPLEX, the optimal solution
is , and the rest are zeros. In
other words, 62.5% of the users are able to select the best CDN
from three CDNs, 12.5% of the users are able to select a better
CDN between and , and only 25% of the users use
the assigned . The above example clearly demonstrates
the possibility of integrating the business constraints into the
CDN selection strategy. Note that the profiles are only used
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for limiting user's choice during performance optimization; the
CDNs that are not in the profile can still be used as backup. For
example, users that are assigned can still switch to CDN
or when is not feasible.

VI. RELATED WORK

Several recent studies have been conducted in analyzing dif-
ferent aspects of Netflix video streaming. Akhshabi et al. [14]
have studied several video streaming players including Net-
flix player and investigated how the streaming clients react to
bandwidth changes. The measurement is done mostly from one
fixed location. Recently, Huang et al. conducted the measure-
ment study to examine the dynamic rate selection algorithm of
Netflix, Hulu, and Vudu and proposed a technique to improve
users' perceived video quality [15]. Unlike the previous work,
we investigate a broader set of components in Netflix video de-
livery system and focus on how the player interacts with dif-
ferent CDNs. To achieve this, we conduct more extensive mea-
surement from multiple geo-locations.
Recent work has also been done for other streaming plat-

forms [16], [17]. Krishnappa et al. have studied Hulu streaming
with emphasis on improving performance using prefetching and
caching [16], [17]. Adhikari et al. build a measurement infra-
structure by using PlanetLab nodes with the goal to understand
the YouTube system architecture [17]. Unlike our work, such
works do not cover the behavior of multiple CDNs.
A large-scale video quality measurement study is conducted

in [18] by examining a large number of video sessions from 91
content providers during a one-week time period. The results
show that the existing video delivery fails to provide clients
satisfactory quality of experience. A centralized video control
plane framework is proposed to optimally select CDN for end-
users and achieve significant QoE improvement. Unlike [18],
our work focuses on two representative content providers, i.e.,
Netflix and Hulu, and dissects their architecture. Some of the
measurement results presented in this paper, however, are con-
sistent with the observations made in [18]. In addition, rather
than a centralized control plane solution, a client-side initiated
CDN selection mechanism is investigated in this work.
Measurement studies of CDNs such as Akamai, Limelight,

and YouTube [17], [19], [20] have also been conducted, most
of which focus on measurement of latency and do not cover the
scenario where the client interacts with multiple CDNs. Many
techniques have been proposed to measure available bandwidth
on a network path before, such as pathchar [21], pathload [22],
and FabProbe [23]. However, they are not suitable for our study
for two reasons. First, both pathchar and pathload require con-
trol at the target machine of the measurement. Second, all such
tools only measure the in-path bandwidth, and they cannot cap-
ture possible bandwidth shaping at the server side. Additionally,
using our method more accurately reflects the download speed
over HTTP than other generic methods.

VII. SUMMARY

In this paper, we performed active and passive measure-
ments to uncover the overall architecture of Netflix and Hulu,
and dissect several key components of these two streaming
platforms. Since Netflix and Hulu use multiple CDNs to deliver

videos to its subscribers, we measured the available bandwidth
of employed CDNs and investigated its behavior at multiple
timescales and at different geographic locations. We observed
that neither Netflix nor Hulu takes into account the current
network conditions when choosing a CDN. We found that
conducting light-weighted measurement at the beginning of
the video playback and choosing the best-performing CDN
can improve the average bandwidth by more than 12% than
static CDN assignment strategy, and using all three CDNs
simultaneously can improve the average bandwidth by more
than 50%. This can be very beneficial for supporting future
bandwidth-demanding services.
As OTT continues to become one of themajor means in deliv-

ering video content, the design of the streaming platform keeps
evolving to be more scalable and flexible and provide better ser-
vice. For instance, starting in June 2012, Netflix initiated its own
content delivery network called “Open Connect” so that ISPs
can directly connect their networks to Open Connect [24]. The
Open Connect CDN allows ISPs to peer with Netflix CDN for
free at common Internet exchanges or put Netflix storage ap-
pliances in or near an ISP network to save even more transit
costs. The initiative has attracted some ISPs to connect to Open
Connect. However, some major ISPs still refuse to connect with
Open Connect due to the business concerns. For the users be-
longing to these unconnected ISPs, three CDNs are still used.
Hence, our results/conclusions remain valid for these ISPs and
their users. As the user base of OTT continues to grow, the de-
sign of the streaming platform must evolve and advance accord-
ingly. Hence, keeping up with the new design, understanding its
pros and cons, and improving upon it remain to be an interesting
research topic for the future.
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