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Abstract. The network topology has a significant impact on the per-
formance of collection protocols in wireless sensor networks. In this pa-
per, we introduce an unobtrusive methodology to quantify the impact
of the topology on the performance of collection protocols. Specifically,
we propose a protocol-independent metric, the Expected Network Deliv-
ery, that quantifies the delivery performance that a collection protocol
can be expected to achieve given the network topology. Experimental
evidence obtained with two collection protocols on numerous topologies
on testbeds shows that our approach enables a systematic evaluation of
protocol performance.

1 Introduction

The rich and active research in network protocols in Wireless Sensor Networks
(WSNs) has progressively emphasized the testbed evaluation of protocols over
simulation. Several testbeds exist with a hundred or more mote-class nodes.
The use of these testbeds has led to protocols that can function in the harsh
environment they often encounter in real-world deployments. The Collection
Tree Protocol (CTP) [1], for example, was adopted in several deployments [2][3]
due to the promising results it achieved on a large number of testbeds.

Experiments on a testbed subject a network protocol to the vagaries of real-
world wireless links [4], with no approximations or simplifying assumptions about
their behavior. This is a clear improvement over simulation. The uncertainty
in the behavior of wireless links is valuable for protocol evaluation, but it also
represents a drawback of testbed experiments compared to simulations. Network
simulations offer a fine-grained control of the network environment and the prop-
agation conditions. In contrast, testbed users can only test their protocols on
specific, non-reproducible situations, because they have almost no control over
the state of the network.
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In a wireless network, the topology is jointly determined by the network
layout and the link dynamics. The effective topology over which routing paths are
established also depends on the choice of routing destination, which corresponds
to the sink placement in the context of WSNs. The combination of the network
layout, the link dynamics, and the sink placement, which we simply refer to as
network topology, has a large impact on protocol performance.

The performance of a protocol is a function of the topology as well as of the
protocol’s own mechanisms. Thus, we cannot attribute the performance achieved
by a protocol entirely to its mechanisms without considering the state of the
network. This makes it challenging to reason about protocol performance on a
testbed. Figure 1 shows that both CTP and the Arbutus collection protocol [5]
achieve a wide range of delivery ratio and goodput levels even on a single testbed.
With both protocols, we observe a dichotomy between high-performing and low-
performing topologies, which we refer to, respectively, as Class A and Class B
topologies. Due to the lack of a methodology to describe the topology on which
a testbed experiment is performed, even in papers where protocols are compared
experimentally on real-world testbeds, there is at most a quick comment on the
topology used. Different experiments may have been run over different network
topologies, which makes it difficult for the community to reproduce the testbed
results or to systematically reason about the differences in protocol performance
across testbeds.

To cope with the lack of control over the state of a testbed across mul-
tiple experiments, we propose to explicitly capture the state of the network
while evaluating protocols on the testbeds. For this purpose, we introduce a
protocol-independent network metric, the Expected Network Delivery (END),
that captures the reliability of the achievable routing paths from each node to
the sink. The END quantifies the delivery performance that a collection proto-
col can be expected to achieve given the network topology. This metric helps
decouple the impact of the network topology from the impact of the protocol’s
own mechanisms on collection routing performance.

Using the END to characterize the network enables a systematic testbed eval-
uation of network protocols despite the lack of control over the testbed topology.
A collection protocol, for example, might achieve different delivery ratios when
tested on different testbeds or even on the same testbed at different times. If the
END changes significantly across multiple experiments, changes in the network
topology can explain the performance variations. On the other hand, if the END
remains stable, the difference in performance can be attributed to the mecha-
nisms in the protocol that reacted differently on different experiments despite
the network state being roughly the same. Moreover, the range of END values
across different experiments captures the range of network conditions encoun-
tered during the experiments. If we test a protocol across a large number of
testbeds but only span a narrow END range, then we have failed to test the
protocol across a wide range of network conditions.

We have run a large number of experiments with two different collection
protocols, CTP [1] and Arbutus [5], on the Motelab [6] testbed over a period
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Fig. 1. The performance of collection protocols in MoteLab varies significantly depend-
ing on the sink placement, as shown by these results obtained with CTP and Arbutus.
There are two distinct performance classes, which we label as A and B.

of several months. Furthermore, we have tested the performance of CTP on
the Castalia wireless sensor network simulator [7]. We observed that different
combinations of protocol, sink placement, testbed, and experiment time results in
a wide range of performance. With the END computed during these experiments,
we were able to conclude that the performance variations were primarily due to
the properties of the topology present during those experiments rather than the
protocol mechanisms.

In this paper, we make these contributions:

– We show that the performance of collection protocols on testbeds depends
on the network topology at the experiment time.

– We design the END, a protocol-independent metric to capture the key prop-
erties of the network topology that affect the performance of the protocol.

– We propose a methodology to systematically evaluate the performance of a
protocol across various testbeds, topologies, and experiments despite having
no control over the network dynamics on the testbeds.

– We evaluate the effectiveness of the END, by analyzing the results from a
large number of testbed experiments as well as simulations, with CTP and
Arbutus collection protocols as examples.

– We show that our methodology is applicable not only to collection, but also
to other categories of protocols.

2 Quantifying the Impact of the Topology

In this section we define the Expected Network Delivery, our primary topology-
aware metric, along with a secondary metric called Balanced Delivery. We illus-
trate that these metrics quantify the impact of the network topology on collection
performance by capturing the impact of the key links in the network given the
node layout and the sink placement.



0.4 0.4

1

2

3

s

0.3
0.2

1

0.6

1

0.1
0.1

0.1

4

5

6

7

8

9

1

1 1

1

1

1
1

1

1

1
1

0.1

0.1

0.3

0.3

0.1

1
1

1

0.9

Fig. 2. A sample network with challenging connectivity conditions. The numeric values
next to the arrows represent the PRR of the corresponding links in the direction of the
arrow.

Node k Route ek

λi,j , min(πi,j , πj,i) λi,j , πi,j λi,j , πj,i

1 [1, s] 0.4 0.4 0.4

2 [2, s] 0.2 1 0.2

3 [3, s] 0.6 0.6 1

4 [4, 1, s] 0.4 0.4 0.4

5 [5, 1, s] 0.4 0.4 0.4

6 [6, 2, s] 0.2 1 0.2

7 [7, 2, s] 0.2 1 0.2

8 [8, 3, s] 0.6 0.6 1

9 [9, 3, s] 0.6 0.6 1

END=0.4 I-END=0.67 O-END=0.57

Table 1. Expected path delivery (EPD) values for the nodes in the network in Figure
2. The EPD is computed in three different ways: with λi,j , min(πi,j , πj,i) to obtain
the END, with λi,j , πi,j to obtain the I-END, and with λi,j , πj,i to obtain the O-
END. The END, I-END, and O-END are computed as the average of the corresponding
EPDs.



2.1 Expected Network Delivery

Let N ⊂ N denote the set of nodes in a WSN. We assume a many-to-one traffic
flow to a sink s ∈ N enforced by an arbitrary distributed routing protocol.
When node i transmits to node j, they form a directional wireless link that we
denote as (i, j). We use a comma-separated list of nodes within square brackets
to denote a route; for instance, if i uses j as a relay to get its packets to s,
the corresponding two-hop route is represented as [i, j, s]. We define the (one
hop) link Packet Reception Ratio (PRR) over the link (i, j), πi,j , as the fraction
of the packets transmitted by i that were directly received by j (i.e., over one
hop) over a given time window T . The link PRR values collectively give us a
snapshot of the network connectivity over T . We account for asymmetric links
by using λi,j , min(πi,j , πj,i) as the PRR for the link (i, j). We refrain from
using an ETX-like metric such as the product πi,jπj,i because the forward and
the reverse channel are not independent [8].

Given the specific sink placement, each node employs a distributed routing
protocol to find a route to the sink. We assume that the protocol’s goal is to
maximize the delivery of data packets to the sink. To capture the state of the
network, we acquire network connectivity data while the protocol is running
and, after the completion of the experiment, compute the link PRRs and apply
Dijkstra’s algorithm [9] with 1/λi,j as the link metric to obtain the paths from
each node to the sink that maximize the overall delivery to the sink. We then
compute the Expected Path Delivery (EPD) ek from node k to the sink s as

ek = ΠH−1
h=0 λrh,rh+1 , (1)

where rh represents the hth hop between k and s (with r0 , k and rH , s),
and H denotes the number of links that form the route between k and s. In or-
der to quantify the expected performance of a collection protocol with a global
knowledge of the network topology, we define our topology-aware collection met-
ric, the Expected Network Delivery (END), denoted as END ∈ [0, 1], as the
expected path delivery averaged over all nodes:

END =
1
|N |

∑

k∈N
ek. (2)

The END is therefore a function of the link PRRs, which capture the net
effect of all the vagaries of wireless propagation. For this reason, our metric
captures the ground truth of the state of the network and describes the network
topology in a protocol-independent fashion. The END captures the impact of
the link connectivity on a network-wide level, distinguishing the key links from
the redundant ones. Though in this paper we focus on many-to-one traffic, our
methodology is based on the connectivity properties of the network and could
be applied to any traffic pattern.



Although our metric is protocol-independent, it is necessary to extract it
while a given protocol is running so that we can capture the properties of transi-
tional links during the experiment. If a topology is dominated by unstable links
whose coherence time is lower than or comparable to the duration of the ex-
periment, then even capturing connectivity data right before and right after the
experiment would be misleading. Since WSN routing protocols typically employ
broadcast control traffic for topology discovery and route maintenance,we ob-
tain our metrics by computing the PRR measurements based on the protocol’s
control traffic, which is acquired over the testbed’s backchannel. This approach
is non-intrusive, because it relies on passive measurements that do not inter-
fere with the protocol. We ignore all protocol-specific information, such as, for
instance, the contents of the neighbor tables.

Since the END is computed by using λi,j , min(πi,j , πj,i) as the PRR for
the link (i, j), the END is insensitive to the direction of the network traffic. For
this reason, we complement the END with a secondary metric, the Balanced
Delivery (BD). The BD, denoted as Bs ∈ [−1, 1], is defined as:

Bs = E(out)
s − E(in)

s , (3)

where E
(out)
s ∈ [0, 1] is the Outbound Expected Network Delivery (O-END) of

the sink s, and E
(in)
s ∈ [0, 1] is the Inbound Expected Network Delivery (I-END)

of the sink s. The I-END is obtained by applying Dijkstra’s algorithm with
λi,j , πi,j , while the O-END is obtained by applying Dijkstra’s algorithm with
λi,j , πj,i.

2.2 Capturing the Impact of the Key Links

We use the network shown in Figure 2 as an example to explain how the proposed
metrics are computed. In the figure, the value on each directional link indicates
the PRR. In Table 1, we report the optimal route from each node k to the sink
s obtained with Dijkstra’s algorithm, along with the corresponding expected
path delivery ek with respect to the appropriate link metric. The END, I-END,
and O-END are obtained by averaging out the expected path deliveries over all
nodes.

The distribution of the link PRR for all the links in the network might seem
like a promising alternative to the END. A network with a large number of
high quality links should result in a better protocol performance. However, the
protocol performance depends on the quality of the links that the protocol uses
and not on the quality of the remaining links. We use the expression key links
to indicate those links whose absence would partition the network or force the
routing protocol to use unreliable links. Because efficient and reliable routing
protocols select key links, the END is designed to capture their impact. To
clarify this point, let us perturb the network in Figure 2 in different ways to see
how the END responds as opposed to the mean link PRR.

1. An unreliable key link becomes reliable. The improvement of a key link is
a huge benefit to the network, and so the value of a valid topology-aware



Experiment set Testbed Routing IPI [sec] IBI [min] Points Duration [hrs]

ave min max tot

motelab-ctp MoteLab CTP 10 Trickle 18 1 1 1 18

motelab-arbutus MoteLab Arbutus 10 1 32 0.5 0.2 1 16

Table 2. Overview of the experiment sets used in the paper.

metric should increase significantly. Link (s, 2) is a key link with a low PRR.
If the PRR of this link increases to 1, the END increases by more than 66%
(from 0.4 to 0.67), while the mean link PRR only changes slightly (from 0.67
to 0.69).

2. A reliable key link becomes unreliable. Link (3, s) is the most reliable key link
in the network, although its PRR is just 0.6. If we set π3,s = 0, the END
drops 50% (from 0.4 to 0.2), while the mean link PRR remains virtually
unchanged. The drop in the END in response to the worsening of a key link
is proportional to the relative importance of the link. For instance, link (3,
8) is only used for route [8, 3, s] and is not as critical as (3, s); if we set
π3,8 = 0, the END only decreases by 15% (from 0.4 to 0.34).

These examples illustrate that the added value of the END comes from its
ability to distinguish the links that matter from those that do not.

3 Network Topology and Protocol Performance

In this section, we show how the END and BD metrics make it possible to
isolate and better understand the impact of the network topology on protocol
performance. We also explore the generality of these metrics by applying them
to simulation studies of collection and point-to-point routing protocols.

3.1 Experiments and Metrics

Table 2 shows an overview of the experiment sets used in this paper (the results
in Figure 1 are from the experiments in motelab-arbutus and motelab-ctp). We
also performed a smaller number of experiments on the Tutornet testbed, as well
as simulations on TOSSIM [10] and Castalia [7].

In our experiments, each node injects packets at a constant Inter-Packet
Interval (IPI) value towards the single destination, the sink. The IPI includes
a small jitter to avoid packet synchronization across the nodes. The routing
protocols broadcast their own control messages, known as beacons, at a given
Inter-Beacon Interval (IBI), which is fixed for Arbutus and variable for CTP,
which employs adaptive beaconing [1]. In this study, we use the performance
metrics typically employed in evaluation of routing protocols:



Sink Class END Delivery Ratio

46 A 0.73 0.9984

25 A 0.38 0.9864

22 B 0.18 0.8722

90 B 0.05 0.5119

Table 3. END and delivery ratio for four examples of MoteLab topologies.

END Range Delivery Ratio Goodput [pkts/sec] Path Length Cost

mean σ mean mean σ mean σ

[0, 0.5) (B) 0.06 0.09 0.61e-3 7.1 2.5 23.7 18.9

[0.5, 0.9) (A-) 0.9246 1.47e-2 9.2e-2 4.1 0.9 5.5 2.8

[0.9, 1] (A+) 0.9997 2.33e-4 9.9e-2 3.2 0.2 3.7 0.2

[0.5, 1] (A) 0.9361 0.31e-2 9.3e-2 4.0 0.9 5.2 0.9

Table 4. Results from the experiment set motelab-ctp. Performance of CTP at IPI=10s
averaged over different END ranges: Class B, Class A, and its subclasses, A+ (upper
Class A) and A- (lower Class A).

– Delivery Ratio: The ratio of the number of packets that are delivered to the
sink to the total number of injected packets.

– Goodput: Number of application packets delivered to the sink per node per
unit time (here measured in pkts/sec).

– Delay: The time it takes for a packet to travel from the source to its desti-
nation.

– Cost: The total number of transmissions (including retransmissions) needed
to get a packet from its source to the sink.

During each experiment, we log all control beacons and use them offline
to measure the PRR for all the network links. In turn, the measured PRR is
employed to compute the END metric for the experiment at hand.

3.2 Protocol Performance and Topology

Table 3 shows the values of the END metric and the delivery ratio from four
examples of MoteLab topologies from motelab-arbutus that yield very different
performance levels. The delivery ratios range from 99.84% with sink 46 to about
51% with sink 90. Across the experiments, there is a distinct correlation between
higher delivery ratio and higher END.



END Range Delivery Ratio Goodput [pkt/sec] Path Length Cost Delay [sec]

mean σ mean mean σ mean σ mean σ

[0, 0.5) (B) 0.66 0.15 0.6e-2 5.0 1.5 10.9 3.4 241.7 240.4

[0.5, 0.9) (A-) 0.9967 4e-3 8.8e-2 2.9 0.5 8.9 5.5 1.3 1.5

[0.9, 1] (A+) 0.9996 2e-4 9.3e-2 2.9 0.5 3.3 0.6 0.2 0.1

[0.5, 1] (A) 0.9975 3.6e-3 8.9e-2 2.9 0.5 7.3 5.3 1.0 1.3

Table 5. Results from the experiment set motelab-arbutus. Performance of Arbutus
at IPI=10s averaged over different END ranges.
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Fig. 3. With both CTP and Arbutus, the
END metric generally correlates with the
delivery rate, and the performance di-
chotomy shown in Figure 1 is confirmed.
Low END values correspond to a less pre-
dictable performance.
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put. In general, the better the END, the
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Figure 3 shows the delivery ratio vs. the END metric for the experiments
in motelab-ctp and motelab-arbutus. Qualitatively, we observe a correlation be-
tween the END metric and the delivery ratio for both CTP and Arbutus; this
confirms that the performance variations across different experiments may be
traced back to changes in the network topology. With a lower END, the best
possible achievable performance is also lower, as reflected in the protocol perfor-
mance.

Table 4 and Table 5 summarize the results from the experiments in motelab-
ctp and motelab-arbutus. We note that the dichotomy between Class A and
Class B that was evident in Figure 1 is also visible in these results. We can use
the END metric to classify the topologies according to the expected achievable
performance. The END also correlates to various degrees with other metrics such
as goodput, cost, and delay.

The END metric helps us understand the protocol performance in the context
of the network topology over which an experiment is run. With the END metric,



we can precisely identify the cases where a low protocol performance is due to
an adverse network topology.

3.3 Explaining Protocol Performance

The END metric can help explain the reasons behind the achieved protocol per-
formance. For example, in Class B topologies Arbutus performs more efficiently
than CTP due to the use of different retransmission strategies: Arbutus employs
unconstrained retransmissions (compared to 32 times for CTP) and limits packet
loss at the price of delay, as shown in Table 5. In Class A topologies, CTP and
Arbutus perform more similarly and achieve high delivery ratio. We expect this
result considering the abundance of high quality key links in Class A topologies.

Figure 5 shows the packet loss and the corresponding END with a specific
sink placement (node 22) in MoteLab. Each datapoint represents the packet loss
and the value of the END metric over one of 50 experiments. There is a clear
negative correlation between the END and the packet loss.

In Class B topologies, a high delivery ratio comes with a high cost because
a large number of retransmissions is needed to deliver packets over unstable
key links. In Class A, however, a high delivery ratio does not imply a high cost
because the key links in Class A topologies have a high PRR and generally
require a single transmission.

3.4 Comparisons across Testbeds

The END metric enables a direct comparison of results obtained from different
testbeds thereby overcoming the biggest shortcomings in testbed experimenta-
tion – the inability to directly compare the results from different testbeds. The
results obtained on different testbeds are directly comparable if the END metrics
across those experiments are similar.

In one experiment run on the Tutornet testbed, CTP achieved a delivery
of 99.9% with an END of 0.89. Both CTP and Arbutus performed similarly in
the MoteLab runs from motelab-ctp and motelab-arbutus when the END was
in that same ballpark. Because the END values across these experiments on
two different testbeds are similar, we know that the network topologies during
these experiments were similar, and these two performance results are directly
comparable. Thus, the END metric tells us when the topologies on two testbeds
are similar and gives us a way to directly compare the results from two testbeds.

3.5 Comparisons over Time

Even if the sink placement and the network layout are fixed, protocol perfor-
mance can still change over time due to the temporal changes in the link qualities
in the network. Figure 5 shows that a testbed can have a time-varying topology
that yields a time-varying performance. The performance peaks correspond to
END maxima, while the performance lows map to END minima. We conjecture



that this is due to the high impact of transitional links with this particular sink
assignment: transitional links are more likely to get stuck in bad fading spots
at night than they are during the day, when they can leverage induced fading
effects [11].

This example shows that the END can also be employed for a systematic
evaluation of a single protocol over time.
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Fig. 6. Experiment sets motelab-ctp and
motelab-arbutus: Balanced Delivery vs.
END.

3.6 Directionality and Outliers

The quality of the links to the sink’s neighbors, to a large extent, determines
the performance of a collection protocol. A link can have bidirectional loss,
dominantly outbound loss, and dominantly inbound loss. The nodes cannot send
data to the sink if the links from these neighbors of the sink have high bi-
directional or inbound losses, while acknowledgments and control packets from
the sink tend to get dropped with high outbound loss.

Figure 6, shows the BD vs. the END for each of the motelab-ctp and motelab-
arbutus experiments. We observe that the outbound losses are common in Class
B topologies. Both protocols suffer significant outbound losses in those topolo-
gies. Because it contains several mechanisms to boost reliability, Arbutus per-
forms significantly better than CTP with Class B topologies. Figure 6 shows that
a near-zero BD always corresponds to a high END and therefore to high delivery
ratios. We also found that near-zero BD are rare, suggesting that most links were
unstable and asymmetric during our experiments. Strong dominantly inbound
losses were never observed in our experiments. The corresponding topologies
would result in near-zero packet delivery.

Moderate inbound loss (BD> 0) typically indicates the presence of connectiv-
ity outliers. If the END is very high (typically > 0.8), a positive BD is indicative



of the presence of leaf connectivity outliers, i.e., nodes with poor downstream
links that are attached to the collection tree as leaf nodes. These leaf outliers
result in a positive BD in Figure 6. The positive BD allows us to determine that
the dominant cause of CTP’s poor performance is downstream loss. Thus, the
BD metric enhances the performance analysis by adding directionality to the
overall topology information captured by END.
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3.7 Applicability to Simulation

Even an accurate qualitative description of a simulation setup makes it difficult
to quickly determine the impact of the simulation environment on the protocol
performance. Instead, the END metric can be used to succinctly capture the
topology information used in simulations. Figure 7 shows the values of the END
and the delivery ratio obtained by running CTP on 50 different network topolo-
gies (each consisting of 100 nodes) within the Castalia simulation environment
[12][7]. For each network, the END and the delivery ratio were averaged over 50
simulation runs. Similarly to the testbed experiments, the END metric and the
delivery ratio from the simulations show a significant degree of correlation. In
this specific case, low END values correspond to relatively high average delivery
ratios because in the simulations the channel remains constant across retransmis-
sions. Because the END metric succinctly captures the property of the topology
instantiated during the simulation, it allows us to understand the impact of the
topology on the protocol performance in simulation.



3.8 Applicability Beyond Collection

The definition of the END given in equation (2) presupposes a many-to-one
traffic pattern. This formulation is specific to collection, but the framework is
more generally applicable. For example, in the case of point-to-point routing,
the Expected Path Delivery (EPD) given in equation (1) can be employed to
gauge the expected performance on a route between two nodes. Figure 8 shows
the results of a TOSSIM simulation of TYMO, a TinyOS implementation of
the Dynamic MANET On-demand (DYMO) routing protocol [13]. Each circle
represents one simulation run, and each run has a different set of link dynamics.
These simulation results show that the EPD correlates well with the measured
path delivery, and two performance classes can be identified as was the case with
the testbed experiments in Figure 3.

3.9 Limitations

Though the END and the BD are protocol-independent in their definition, their
calculation leverages the protocol’s control traffic. There is arguably some resid-
ual dependence on the protocol, mainly because we need to leverage the proto-
col’s traffic to measure connectivity. Measuring the accuracy of the computed
PRR would require the injection of additional traffic, which would affect the
protocol’s performance and perturb the results. This is a fundamental limitation
of our framework that is due to the need to measure the network as we use it
[14]. Another limitation lies in the fact that the END is averaged over the dura-
tion of each experiment. In networks where bimodal links dominate, or in long
experiments, a time-dependent formulation of the END is in order and will be
addressed in our future work.

4 Related Work

The impact of the network topology on protocols has been studied in the context
of wired networks, with a specific focus on the Internet. Early studies considered
the node degree distribution and the neighborhood size [15]. In [16], network
topology is characterized with three metrics: the expansion (average number
of nodes within a given hop count), the resilience (minimum cut-set size for a
balanced bipartition of the network), and the distortion (which captures how
path lengths are affected by link failures). Our study, however, is specific to
wireless sensor networks, whose low-power communication hardware underscores
the probabilistic nature of wireless links [4] and makes it impossible to treat them
as Boolean objects (as in wired networks).

Recently, the lack of a wireless lexicon to describe the complexities of real-
world wireless networks has been pointed out, and there have been a few efforts
on the definition of link-level parameters that capture the vagaries of the be-
havior of low-end wireless network. In [17], a measure of link bimodality (the β
factor) is defined, and its impact on protocol performance is characterized. In



[18], a measure of inter-link cross-correlation (the κ factor) is proposed. A re-
lated effort is the development of the Stanford Wireless Analysis Tool (SWAT)
[19], a software tool for the collection of network measurements. In these studies,
network measurements are taken by injecting special traffic patterns: broadcast
traffic in [17] and a round-robin of packet bursts in [18]). Our effort can be viewed
as complementary to these studies, because (1) we focus on a network-wide met-
ric as opposed to a link-level metric, and (2) we perform passive measurements
directly from the broadcast control traffic injected by the protocol under test
as it is running. Our approach is particularly valuable for unstable topologies
that show different behaviors at different times. Initially, we also attempted to
measure the network before and/or after running the protocol, and for unstable
topologies the Expected Network Delivery often appeared to be uncorrelated
from the various performance dimensions.

Similarly to the CTP work [1] and to the aforementioned studies, we capi-
talize on remote-access testbeds and their backchannels to gain a thorough un-
derstanding of the reasons for packet loss. Similarly to the Visibility framework
[20], our approach makes it easier to diagnose the causes of failures. Differently
from that framework, however, our approach is unobtrusive because it does not
require any changes to the protocol under test. Similarly to [14], we note that
testbed conditions vary so rapidly that even back-to-back experiments are not
guaranteed to share the same conditions, which is why we measure the PRR
from a protocol’s control traffic while the protocol is running.

While in [20] visibility is pursued from within the protocol, the achievement
of visibility through passive inspection by way of a sniffer network is the focus
of [21], [22], and [23]. We believe that coupling our method with passive inspec-
tion techniques would greatly benefit the overall system visibility that passive
inspection strives for.

This work is informed with a deep awareness of the vagaries of wireless prop-
agation [4], in particular the existence of the transitional region of connectivity
[24][25] and the temporal properties of wireless links [8].

5 Conclusion

The wide range of protocol performance levels across different topologies suggests
that just looking at the performance results with no regard to the topology only
gives an incomplete picture of the protocol performance. The END is a signifi-
cant step towards a systematic methodology for the comparison of experimental
results across protocols, time, and testbeds. We showed that the END exposes
specific features of the network topology that can significantly affect the network
performance.

The effectiveness of our approach in describing the state of the network dur-
ing an experiment suggests that it is possible to succinctly represent the net-
work topology in the context of the design goals of a protocol. We primarily
focused on collection protocols, but also showed that our methodology applies
to point-to-point routing. We underscored its added value in the context of



testbed experiments, and we showed that our framework is also applicable to
the characterization of simulation scenarios.

Acknowledgements

This work was partially supported by the European Commission under the
SCAMPI Project (ICT grant agreement 258414), the Stanford Army High Per-
formance Computing Research Center (grant W911NF-07-2-0027), and the Na-
tional Competence Center in Research on Mobile Information and Communica-
tion Systems (NCCR-MICS) (Swiss National Science Foundation grant number
51NF40-130758/1).

References

1. O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection Tree Proto-
col. In 7th ACM Conference on Embedded Networked Sensor Systems (SenSys’09),
Berkeley, CA, November 2009.

2. M. Bathula, M. Ramezanali, I. Pradhan, N. Patel, and J. Gotschall. A sensor
network system for measuring traffic in short-term construction work zones. In
The 5th IEEE/ACM International Conference on Distributed Computing in Sensor
Systems (DCOSS’09), Marina Del Rey, CA, June 2009.

3. J. Ko, T. Gao, and A. Terzis. Empirical Study of a Medical Sensor Application in
an Urban Emergency Department. In 4th Intl Conference on Body Area Networks
(BodyNets 09), Los Angeles, CA, April 2009.

4. K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. An Empirical Study of Low-
Power Wireless. ACM Transactions on Sensor Networks (To appear), 2010.

5. D. Puccinelli and M. Haenggi. Reliable Data Delivery in Large-Scale Low-Power
Sensor Networks. ACM Transactions on Sensor Networks, Jul. 2010.

6. G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: a Wireless Sensor
Network Testbed. In 4th International Symposium on Information Processing in
Sensor Networks (IPSN’05), Los Angeles, CA, April 2005.

7. Castalia - A Simulator for WSNs. http://castalia.npc.nicta.com.au.
8. A. Cerpa, J. Wong, M. Potkonjak, and D. Estrin. Temporal Properties of Low

Power Wireless Links: Modeling and Implications on Multi-Hop Routing. In
ACM/IEEE Fourth International Symposium on Information Processing in Sensor
Networks (IPSN’05), Los Angeles, CA, April 2005.

9. E. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271, 1959.

10. P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and Scalable Sim-
ulation of Entire TinyOS Applications. In 1st ACM Conference on Embedded
Networked Sensor Systems (SenSys’03), Los Angeles, CA, USA, November 2003.

11. D. Puccinelli and M. Haenggi. Spatial Diversity Benefits by Means of Induced
Fading. In Third IEEE International Conference on Sensor and Ad Hoc Commu-
nications and Networks (SECON’06), Reston, VA, USA, September 2006.

12. U.Colesanti and S. Santini. A Performance Evaluation Of The Collection Tree
Protocol Based On Its Implementation For The Castalia Wireless Sensor Networks
Simulator. Technical report, ETH Zurich.



13. I. Chakeres, E. Royer, and C. Perkins. Dynamic MANET On-demand Routing Pro-
tocol. IETF Internet Draft – work in progress draft-ietf-manet-dymo-00, February
2005.

14. O. Gnawali, L. Guibas, and P. Levis. A Case for Evaluating Sensor Network
Protocols Concurrently. In The Fifth ACM International Workshop on Wireless
Network Testbeds, Experimental evaluation and Characterization (WINTECH’10),
Chicago, IL, USA, September 2010.

15. M. Faloutsos, P. Faloutsos, and C. Faloutsos. What does the Internet look like?
Empirical Laws of the Internet Topology. In SIGCOMM’99, Cambridge, MA, USA,
September 1999.

16. P. Radoslavov, H. Tangmunarunkit, H. Yu, R. Govindan, S. Shenker, and D. Estrin.
On Characterizing Network Topologies and Analyzing Their Impact on Protocol
Design. Technical Report 00-731, University of Southern California, February 2000.

17. K. Srinivasan, M. Kazandjieva, S. Agarwal, and P. Levis. The Beta-Factor: Improv-
ing Bimodal Wireless Networks. In 6th ACM Conference on Embedded Networked
Sensor Systems (SenSys’07), Raleigh, NC, November 2008.

18. K. Srinivasan, M. Jain, J. Choi, T. Azim, and E. Kim. The Kappa Factor: Inferring
Protocol Performance Using Inter-link Reception Correlation. Technical Report
09-02, Stanford University, 2009.

19. K. Srinivasan, M. Kazandjieva, M. Jain, E. Kim, and P. Levis. SWAT: Know Your
Network. In 8th International Conference on Information Processing in Sensor
Networks (IPSN’09), San Francisco, CA, 2009.

20. M. Wachs, J. Choi, J. Lee, K. Srinivasan, Z. Chen, M. Jain, and P. Levis. Visi-
bility: A New Metric for Protocol Design. In 5th ACM Conference on Embedded
Networked Sensor Systems (SenSys’07), Sydney, Australia, November 2007.

21. M. Ringwald, K. Roemer, and A. Vialetti. Passive Inspection of Sensor Networks.
In 3rd IEEE International Conference on Distributed Computing in Sensor Systems
(DCOSS ’07), Santa Fe, NM, June 2007.

22. K. Roemer and M. Ringwald. Increasing the Visibility of Sensor Networks with
Passive Distributed Assertions. In Workshop on Real-World Wireless Sensor Net-
works (REALWSN’08), Glasgow, UK, April 2008.

23. K. Roemer and J. Ma. Pda: Passive distributed assertions for sensor networks.
In 8th International Conference on Information Processing in Sensor Networks
(IPSN’09), San Francisco, CA, USA, April 2009. IEEE Computer Society.

24. A. Woo, T. Tong, and D. Culler. Taming the Underlying Challenges of Reliable
Multihop Routing in Sensor Networks. In 1st ACM Conference on Embedded
Networked Sensor Systems (SenSys’03), Los Angeles, CA, November 2003.

25. M. Zuniga and B. Krishnamachari. An Analysis of Unreliability and Asymmetry
in Low-Power Wireless Links. ACM Transactions on Sensor Networks, 3(2):1–30,
2007.


