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ABSTRACT

As sensor networks mature, there will be an increasing
need for re-usable, dynamically taskable software sys-
tems that support multiple concurrent applications. In
this paper, we consider the problem of energy manage-
ment in such systems, taking Tenet as a case study. Our
work considers energy management under three new
constraints: dynamic multi-hop routing and tasking,
multiple concurrent applications, and reliable end-to-
end data delivery. We present AEM, an energy manage-
ment system that satisfies these constraints. AEM stat-
ically analyzes and infers the traffic profile for the appli-
cation and accordingly tunes the duty-cycling protocol
to provide the best trade-off in latency and data delivery
performance. Furthermore, unlike other duty-cycling
protocols with pre-computed or fixed transmission and
reception time slots, AEM uses elastic schedules that
allows it to adapt to dynamics while enabling bounded
latency of event detection. Our experiments show that
AEM achieves 1-3% duty-cycles, while allowing concur-
rent applications to transmit 100% of the sensor data in
a multi-hop 40-node network testbed.
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tion
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1. INTRODUCTION

As sensor networks mature, we will likely see the emer-
gence of general-purpose sensor network programming
systems which provide high-level programming abstrac-
tions, support the execution of multiple concurrent ap-
plications, and allow applications to dynamically task
and re-task the sensor network. These systems achieve
their generality by implementing a common suite of ser-
vices (routing, transport, task dissemination and exe-
cution, time synchronization) that can be reused by a
variety of applications, thereby greatly simplifying ap-
plication development. Tenet [9] is an instance of such a
system, and has been used for different applications 11}
21].

An important open problem in the context of such
systems is energy management. To our knowledge, no
existing energy management proposal (and there are
many, §[2) has been demonstrated for a programming
system of this kind. The key challenge is preserving the
generality and wide applicability of such a system while
achieving low duty-cycle operation; most existing work
in the area makes one or more assumptions (e.g., about
the workload or the application’s tolerance to latency,
about support for broadcast traffic or lack of support
for end-to-end reliable transport, and so forth).

In this paper, we discuss the design of a radio duty-
cycling approach that we call Application-Informed En-
ergy Management (AEM) (§3). AEM is designed in the
context of the Tenet system, and makes two conceptual
advances. The first is that Tenet’s tasking language per-
mits static analysis of tasks. Static analysis can be used
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Tenet Requirements Supporting Systems

Low Duty-cycle SMAC, B-MAC, LPL, SCP-MAC,
X-MAC, Koala, Dozer, FPS, AEM

Handle network transients | LPL, AEM

Application Informed AEM

Multiple applications FPS, AEM

Time Synchronization LPL, FPS, AEM

Reliable transport Koala, AEM

Figure 1—Summary of Tenet requirements and supporting en-

ergy management technigues in wireless sensor networks.

It scales the number of data schedules in proportion to
the number of concurrent tasks. Moreover, the dura-
tion of radio on-times is variable and elastic, adapting
to load transients and retransmissions. Finally, AEM is
designed to be robust to routing changes, time synchro-
nization transients, and node failure.

Using experiments on a 40 node testbed (7 we show
that AEM can achieve duty-cycles of less than 3%, and
end-to-end latencies of less than 10s, while at the same
time reliably transferring 100% of the generated sen-
sor data, for even very demanding workloads. More-
over, it is highly robust to node failure, adapting grace-
fully to the failure of half the nodes in a large network.
For event-triggered systems that generate minimal data,
AEM achieves near 1% duty-cycle, which represents the
system overhead required to maintain the generality of
the Tenet system. We could have achieved many of our
goals using a widely-available duty-cycling MAC proto-
col such as LPL, but at the expense of high duty-cycles:
we show later in the paper that LPL’s duty-cycles are
15% or higher for the workloads we examine.

Other energy-management proposals such as Koala [20],
Dozer [6], and SCP-MAC [36] achieve lower duty-cycles
than AEM. This is not surprising, since they do so at the
cost of generality, either assuming a specific workload
or specific traffic profile, or lacking support for flexible
tasking and concurrent applications. AEM is meant to
be complementary to such hand-tuned sleep-scheduling
techniques; these should be used where it is necessary to
achieve ultra-low duty cycles and it is possible to lever-
age application knowledge to do so. At the same time, it
is important to have a sleep scheduling component like
AEM in a general-purpose sensing system to support
those application deployments that can live with the
(rather substantial) energy savings that AEM provides,
but want to enjoy the benefits of a readily available,
reusable (and robust) sleep scheduling mechanism.

2. RELATED WORK

Energy management in wireless sensor networks has
seen extensive research interest. Much of this research

focuses on reducing communication energy by duty-cycling

radios, or reducing the volume of information communi-
cated. Since the literature in this area is vast, we focus
only on the most closely relevant pieces of work.

Coordinated sleep scheduling uses synchronized sleep-
wakeup across all nodes, or subsets thereof. S-MAC [35],
T-MAC [31], and SCP-MAC [36], and AppSleep [24]
are examples of systems that, after putting a node to
sleep, use synchronized wakeup or channel polling of-
ten in large groups or the entire network. D-MAC [17],
TinyDB [5], Dozer [6], and FPS [12] on the other hand,
use staggered sleep schedules such that the parent in
a tree routing topology wakes up to receive a packet
from its children. Koala [20] coordinates its sleep sched-
ules for bulk transfer. AEM falls into this class of sys-
tems, but differs in many respects from all of them: it
can support concurrent application tasks, dynamic re-
tasking, tailors its sleep scheduling to application needs,
and supports system services such as task dissemination,
dynamic routing, and time synchronization. Figure [I]
summarizes these differences.

Uncoordinated sleep scheduling establishes sleep sched-
ules without any explicit coordination. In transmitter-
initiated wakeup schemes such as B-MAC [23], X-MAC [4],
and STEM |[25], the transmitter sends long preambles
or a packet train until the receiver is ready to receive
the packet. In the receiver-initiated schemes such as
LPP [20] and RI-MAC |28], the transmitter waits for a
beacon or signal from the receiver to start data trans-
mission. In Section[5]we perform a quantitative compar-
ison with a transmitter-initiated scheme, LPL [23], and
show that AEM can achieve a 6-fold lower duty-cycle.

Application-informed energy management has also been
explored in various contexts. In wireless and mobile net-
works, there are proposals to let the applications con-
figure the power management policies based on their
communication requirement [14) 2]. Re-designing OS
abstractions that permit applications to achieve energy-
efficient I/0 is shown to be highly effective in TinyOS [13].
AEM does not explicitly require applications to spec-
ify energy requirements, using static analysis instead to
infer application workload and to tailor network-wide
radio duty-cycling to the workload.

Complementary to AEM is a body of work that relies
on a second radio or channel to perform sleep-wakeup
coordination. Examples of such hierarchical power man-
agement systems include PAMAS [27], Paging Chan-
nel [1], wake-on-wireless [26], STEM [25], and dual-radio
pathway [22]. In contrast, AEM does not require spe-
cialized hardware to work.

Tangential to AEM is the literature on two other energy-
management topics. First, redundancy control attempts
to save energy, hence maximize the network lifetime, by
turning off nodes that are unnecessary to maintain the
desired communication or sensing fidelity. Examples of
work in this area include SPAN [7], GAF [34]. Second,
energy aware routing focuses on the selection of the most
energy efficient paths for data delivery [33].



Finally, AEM communication schedules are qualita-
tively similar to periodic task execution in real-time
systems [15] but with one key difference: the end of
communication schedule, or communication deadline, is
not fixed.

3. DESIGN

AEM is a collection of mechanisms in the Tenet sens-
ing system that enables flexible radio duty-cycling. It
analyzes application programs to infer application work-
load and schedules radio on-times consistent with that
workload, thereby achieving low duty-cycle and low la-
tency. In this section, we first describe Tenet, then dis-
cuss in detail the design of AEM and its integration with
the Tenet architecture.

3.1 Tenet Overview

Motivated by a property common to many recent sen-
sor network deployments |32l 30, 29, |10l [3], we pro-
posed [9] the Tenet architecture for tiered sensor net-
works. Such networks consist of a lower tier consisting
of battery-powered motes, which enable flexible deploy-
ment of dense instrumentation, and an upper tier con-
taining fewer, relatively less constrained 32-bit nodes
with higher-bandwidth radios, which we call masters.
This paper focuses on mechanisms for achieving energy-
efficient operation in the mote tier.

Tenet places application functionality on the resource
rich master nodes and provides a generic mote tier net-
working subsystem that can be reused for a variety of
applications, without significant loss of overall system
efficiency. This separation of functionality is possible
because Tenet disallows multi-node fusion in the mote
tier. Instead, any and all communication from a master
to a mote takes the form of a task, which is a request to
perform some activity often based on local sensor values.
Any and all communication from a mote is a response
to a task, and motes cannot initiate tasks themselves.

Tasks.

A Tenet task is a linear data-flow program consisting
of tasklets. Motes contain a library of parametrizable
tasklets, implementing such functionality as timers, sen-
sors, thresholding, data compression, and other forms
of simple signal processing. For example, to construct a
task that samples the light sensor every 2 minutes and
sends the samples to its master, we write:

periodic(2 mins)->sample (LIGHT)
-> Send ()

The Tenet scheduler maintains a queue of tasks wait-
ing to use the mote’s micro-controller. The scheduler
operates at the level of tasklets, and knows how to ex-
ecute the task’s tasklets in order. Tenet can execute
multiple tasks concurrently.

Services.

The second major component of Tenet is its collec-
tion of networking and timing services. Its networking
subsystem provides task dissemination from the mas-
ter to the motes, routing from mote to the masters,
and end-to-end reliable transport for applications that
require reliable data delivery. Tenet’s task dissemina-
tion mechanism reliably floods task descriptions in a
manner similar to other TinyOS dissemination mech-
anisms. Its routing subsystem uses any-to-any mesh
routing on the master tier. On the mote tier, it com-
putes paths from motes to the nearest master using ex-
isting tree-routing implementations (MultihopLQI and
CTP). Tenet’s reliable transport service uses end-to-
end acknowledgments, forwarded along the reverse path
from masters to motes, and retransmissions to achieve
100% reliable delivery. Finally, Tenet uses FTSP [1§]
to provide globally synchronized timing service so that
sensor samples can be timestamped for data analysis.

3.2 AEM Goals and Overview

Our design of AEM attempts to achieve the following
list of goals:

e Our most important goal is low duty-cycle operation —
the system must support this in order to ensure net-
work longevity. However, this is not our only goal; we
are interested in designs that achieve the lowest pos-
sible duty-cycles, while still meeting the other goals
listed below. This precludes the use of ultra-low duty-
cycle approaches [36] [20], which fail to meet one or
more of the goals below.

e Our next goal is alignment with Tenet’s design. Tenet
supports re-tasking, concurrent execution of multi-
ple tasks, flexible forms of tasking (periodic or event-
triggered), dynamic routing, end-to-end reliable trans-
port, and time synchronization. We require AEM to
support these features as well, since that would ex-
tend Tenet’s applicability over a wide dynamic range
(capable of supporting high data-rate applications like
structural monitoring [21] and imaging [11], as well as
low-rate applications).

e Our third goal is robustness; that AEM should work
regardless of changes to the topology, arrival or de-
parture of nodes, or transient failures in other system
services such as time synchronization or routing.

e Our fourth goal is low latency; AEM should deliver
events or samples with a delay no greater than the
inter-sample or inter-event time. This requirement is
fairly conservative, and in practice AEM does signifi-
cantly better. However, there is an obvious trade-off
between latency and duty-cycles, and we are inter-



ested in designs that favor lower duty-cycles over la-
tency.

e Our final requirement is transparency. We require
that AEM make minimal or no modifications to ex-
isting parts of Tenet. This preserves the modularity
of the overall system, enabling easy evolution of its
components.

AEM achieves these goals using two conceptual ad-
vances. The first is based on the observation that Tenet’s
simple tasking permits static analysis of tasks at the
master tier. This static analysis can be used to infer
application workload. The second conceptual advance
is to tailor radio duty-cycling to the application work-
load using Tenet’s tasking mechanism and some simple
functionality built into the mote tier.

We use a simple example to illustrate how this works.
In Tenet, when a user wants to collect a light sensor
reading every two minutes from each node in the net-
work, the user presents the following task to the system:

periodic(2 mins)->sample (LIGHT)
-> Send ()

AEM analyzes this task and makes two inferences:
(a) that a response will be generated every two minutes
and (b) that a response will fit entirely into a single
packet with a small payload. These two inferences allow
AEM to determine the duration for which radios on the
motes should be turned on or off. After performing this
analysis, AEM prepends the task with a description of
these parameters:

dataframe (2mins,
->sample (LIGHT)

...)—->periodic(2 mins)
-> Send ()

and disseminates this task into the network. Upon
receiving this task, motes schedule packet transmissions
and radio activity based on the specified duty-cycle pa-
rameters.

Of course, this deceptively simple example hides sig-
nificant detail, which we describe in the next two sec-
tions. In addition to discussing our static task analy-
sis, we also describe how AEM performs robust duty-
cycling, while accommodating re-tasking and concur-
rent task execution.

3.3 Task Static Analysis

A key observation of this paper is that Tenet’s de-
sign permits inspection of application activity at the
master tier. Specifically, in Tenet, we can statically an-
alyze a task just before it is disseminated (and possi-
bly modify it before dissemination) in order to achieve
duty-cycling. Since Tenet’s tasking language is a linear
data-flow language, it is possible to analyze a task and
infer the following three parameters, which can be used
to control radio duty-cycles: (i) the start time when a

task starts executing controls when the motes should
turn on their radio, (ii) the period between two execu-
tions of a repeating task determines how often a mote
should turn its radio on, and (iii) the duration for send-
ing and receiving packets generated in response to the
task determines the minimal amount of time its radio
should remain on.

To compute these parameters, AEM performs a sim-
ple data-flow analysis of the task description, and par-
titions each task description into the following sections:

synchronization -> periodicity

-> data generation and processing

-> packing -> send

The start time is computed by analyzing the synchro-
nization section of the task. Some task descriptions ex-
plicitly specify when task execution should start; for
example, when data collection needs to be synchronized
across all nodes. When this section is missing, AEM
takes the liberty to modify the task description to im-
prove system performance. As we describe later, AEM’s
duty-cycle design ensures that all nodes’ wakeup times
are synchronized, so synchronizing task execution with
these times can result in lower latency.

The periodicity section describes how frequently should
a mote execute the task and potentially generate data,
while the packing section describes how many data items
should be included in the payload. AEM computes the
period for duty-cycling using these sections: if a task
executes every x seconds and packs n samples into a
packet, the period at which packets are generated is
T X n.

As we describe below, if one or more of these sections
are missing from the task description, AEM makes rea-
sonable choices for the missing section(s). Of course, it
is possible to write tasks that do not conform to this
template — for example, a task with multiple synchro-
nization and periodicity sections. In this case, our static
analysis fails and as a result AEM does not perform
duty-cycling. However, we have not come across practi-
cal sensing tasks that would be expressed in this fashion.

We now illustrate how AEM’s static analysis works
for a variety of common task specifications.

Periodic collection: Consider a task that periodically
generates data using the light sensor:
periodic(1s)->sample (LIGHT)->send ()

This task is missing the synchronization and pack-
ing components. Because the task does not specify an
absolute time at which the application should start run-
ning, AEM can synchronize the start times at all nodes
(setting the start time to a future instant, taking dis-
semination latency into account). If the task description
does not specify a packing tasklet, AEM assumes that
each sample is sent in a separate packet and derives the
period from the argument for the periodic() tasklet
only.



One-shot collection: The following task generates one
sample reading:

Sample (LIGHT) ->send ()

As before, since this task does not specify a synchro-
nization component, AEM can modify the task to spec-
ify a synchronized start time. In the absence of a peri-
odic() tasklet, AEM will ensure that the period is set
to 0.

The following task differs from the above only in that
it already specifies a synchronization section:

globaltimewait (0x1234abcd)->sample (LIGHT) ->send ()

AEM does not modify the task description in this
case, and computes other parameters as described above.
Synchronized periodic collection: The following task
requests the motes to sample light every 2 minutes and
send 10 samples at a time.

globaltimewait (0x1234abcd)->periodic(2 mins)
->sample (LIGHT) ->pack(10)->send ()

Following the previous discussion, the start time is
set to 0x1234abced, and the period is set to 20 minutes
because the nodes will send a task response every 20
minutes (10 samples are packed into one packet).
Event-triggered collection: Tenet allows users to
specify event-triggered data collection. For example,
the following task generates a packet if the light readings
exceed a threshold of 10:

periodic(1000ms)->sample (LIGHT)
->threshold (LIGHT, 10)->send()

AEM can not know in advance if the readings will
exceed the threshold so it conservatively assumes that
each sample will exceed the threshold. All the parame-
ters are thus derived in the same way it is derived for a
periodic collection. However, as we describe later, AEM
incurs only a small overhead for this conservative ap-
proach: if, when the radio is turned on, AEM observes
no activity, it quickly turns the radio off. In this way,
even for event-triggered collection, near 1% duty-cycles
are possible.

In general, the freedom to analyze and modify task de-
scriptions presents several optimization opportunities.
For example, AEM can schedule task execution more
precisely, so that data is generated just before the ra-
dio turns on, enabling more efficient use of radio on
time. Similarly, AEM can schedule start times of mul-
tiple tasks so their radio on-times can overlap, reducing
the energy expended in turning the radios on or off. Fi-
nally, it is possible to control network parameters such
as the transport-layer timeout values using the results
of static analysis. We have left these to future work.

3.4 Dutycycling

Control Data [ control frame
schedule schedule [l Data frame
% On
)
9 [oNe}o)
3 off
Time

Figure 2—Radio Dutycycling Frames and Schedules.

The second contribution of our work is a mechanism
for network-wide radio duty-cycling based on the pa-
rameters computed from task analysis, as described above.
Although we have described task analysis for a single
task, the duty-cycling mechanism should allow for con-
current tasks, and accommodate traffic generated by
system services such as routing, dissemination, and time
synchronization.

In AEM, the master nodes use the results of task anal-
ysis to compute and distribute duty-cycling information
to the motes. AEM’s duty-cycling mechanism falls into
the class of schemes that perform scheduled wakeup —
radios are turned on and/or off at pre-determined times.
This is a natural choice, since we are able to infer ap-
plication workload through static analysis.

Before discussing the design of AEM’s scheduled wakeup,

we introduce two terms. A frame is a time interval dur-
ing which the radio at a specific node is on (i.e., capable
of transmission or reception). A schedule consists of a
(usually periodic) sequence of frames.

AEM uses synchronized elastic frames. The start time
of each frame is pre-determined, but its end is not. In-
stead, a frame ends (and the radio is turned off) when no
packets are detected in the channel for a specified period
of time. This approach is robust to topology changes,
does not require pre-computation of frame durations,
and can absorb transient traffic fluctuations while still
achieving low duty-cycles.

Frames and Schedules in AEM .

An AEM master node computes schedules before dis-
seminating them into the network. Each schedule has
three parameters t,[, p. The radio at every node is first
turned on at time ¢, and then again every p seconds.
Thus, at each node, the radio is turned on at t 4+ p,
t + 2p, and so forth; these times mark the beginning
of successive frames. While the radio is on, nodes can
receive and transmit packets. In particular, each node
contends with other nodes (using a CSMA MAC) to
transmit packets. We require no modifications to the
MAC layer.



An important feature in the design of AEM is the
parameter [, called the quiet—timeEI It determines the
amount of time for which the radio stays on after the
last received or transmitted packet. At the end of this
time, the radio is turned off. Thus, in AEM, frame
lengths are not fixed, but are elastic, with a minimum
length of [. Frames adapt to the activity in the chan-
nel, permitting the system to handle load transients or
increases in the number of retransmissions. Load tran-
sients might occur, for example, when a routing change
causes packets to be backed up at a node; after these
routing changes are resolved, the packets can be trans-
mitted during a frame.

Since AEM is required to conform to the Tenet design,
it needs to support the transmission of control traffic in
addition to data traffic resulting from possibly multiple
concurrent tasks. To support control traffic and mul-
tiple concurrent tasks, AEM: a) distinguishes between
two types of schedules, control and data schedules (Fig-
ure ; b) allows multiple schedules to be active at any
given time.

Control traffic is sent during the control schedule and
data traffic is transmitted during the data schedule.
This way, control traffic is isolated from data traffic
since the loss of control traffic can adversely affect sys-
tem performance. The data schedule parameters are de-
rived from task analysis. ¢ is derived from the start time
parameter. The parameter p can simply be computed
from the periodicity parameter derived from task anal-
ysis. However, this has latency implications, especially
for reliable transport protocols that use end-to-end ac-
knowledgments. For this reason, to enable fast end-
to-end retransmissions of data packets, AEM trades-off
some duty-cycle for reduced latency by scheduling data
frames more frequently than the periodicity value would
suggest.

For simplicity, the control schedule is a sequence of
periodic control frames with fixed periodicity, which is
usually statically determined based on control proto-
col parameters. Many control protocols (e.g., routing
and time synchronization) are naturally periodic, but
some others (e.g., Tenet’s task dissemination, which uses
Trickle [16] style exponential timers) are not.

Once schedules are computed, they are disseminated
to nodes using Tenet’s task dissemination mechanism.
There exist specific tasklets that can be used to spec-
ify control and data schedules. A Tenet master node
can generate and disseminate a task description that
contains multiple tasklets specifying the current set of

1AEM's quiet-time is similar to LPL’s off-timer, but has a dif-

ferent function. LPL's off-timer is designed to allow transmission
of back-to-back packets without duty-cycling the radio in between.
In AEM, the quiet-time is used to extend a frame to handle load

transients.

schedules. These can be disseminated even when the
network is already being duty-cycled using a different
set of schedules; thus, in AEM, we can re-schedule duty-
cycling (to, for example, accommodate a new task in-
jected into the system). Using the task dissemination
mechanism for controlling duty-cycling has another ad-
vantage: when a task is deleted from the system, its
corresponding data schedule can also be deleted using
the same mechanism.

AEM schedules are a natural fit for periodic traffic
patterns. AEM schedules also support tasks that send
event-triggered responses (e.g., when a sensor reading
exceeds a certain threshold), with a slight loss of ef-
ficiency. Nodes turn their radios on in synchrony, but
when there are no events, they are turned off after quiet-
time. As we show in our experiments, we are able to
achieve low duty-cycles even with this slight loss of effi-
ciency. However, AEM’s periodic control schedules are
not a perfect match for some control protocols which
use exponential timers to schedule control packet trans-
missions. One example is Tenet’s task dissemination
mechanism. It works well in AEM, at the cost of slightly
higher task dissemination times. However, CTP [8] con-
trol traffic does not work well in AEM; CTP uses ag-
gressive beaconing to quickly detect and repair loops.
We have left the integration of CTP with AEM to fu-
ture work, but we note that CTP was not explicitly
designed to support schedule wakeup schemes.

Finally, as we have discussed before, multiple concur-
rent schedules can be active in the system at any given
time. More precisely, at any time, there will be one ac-
tive control schedule, and zero or more data schedules.
It is therefore possible that two frames belonging to two
different schedules may overlap; while one frame is ac-
tive, the start time for a second frame may occur. AEM
handles this easily by keeping the radio on, and enabling
transmissions for the second frame. These transmissions
contend with any remaining transmissions from the first
frame, and the frame duration is extended until no ac-
tivity is detected.

Performance Implications.

Our design has two interesting performance implica-
tions. First, in this design, node transmissions are syn-
chronized to the beginning of a frame. This increases the
likelihood of packet loss relative to duty-cycling designs
that do not use scheduled wakeup. Data transmissions
are resilient to these packet losses because of link layer
retransmissions. However, broadcast control packets
are affected more significantly because of this synchro-
nization. Losses in control packets can delay routing
convergence, or cause nodes to be de-synchronized. In
AEM, we alleviate the loss of control packets by spread-
ing control transmissions across different successive con-



trol frames. For example, if the routing protocol sends
one beacon every 30s, we set up control frames that
repeat every 15s and allow half the nodes (e.g., those
with even node IDs) to transmit during the first frame
and the other half during the second frame. All nodes
have their radios on during both frames, so they can re-
ceive all transmissions. This technique improves control
traffic reliability at the expense of additional radio on-
time. More generally, the number of additional frames
should adapt to network density, and we have left this
adaptation to future work.

The second performance implication is more subtle,
and arises from our design of elastic frames. Consider a
chain topology A-B-C. Node C might not overhear the
packets transmitted by A to B and as a result it might
put its radio to sleep after quiet-time. When B starts
forwarding the packets to C, its packets are dropped, re-
ducing overall efficiency and delivery ratio. Fortunately,
this scenario happens only occasionally, and there is a
simple solution. In our example, B has to determine
when it should stop transmitting to C. B infers that C’s
radio might already be off if these two conditions are
true:

e The quiet-time has elapsed without B having received
a packet or an acknowledgment from C.

e B did not receive an acknowledgment from C even af-
ter a fixed number (5 in our implementation) of con-
secutive retransmissions.

When these conditions are met, B pauses forwarding
packets to C. The second condition is conservative, since
C’s radio might be on but the link from B to C might
be lossy. Even in this case, it is better to pause forward-
ing until the next data frame since that might allow us
to later resume forwarding on a better link when the
routing protocol recomputes the routes.

Bootstrapping.

When the network starts, all radios are turned on.
A master node, perhaps under the control of the sys-
tem administrator, can disseminate a control schedule
to begin radio duty-cycling. The users utilize the Tenet
tasking mechanism to initiate duty-cycling. Once this
task is disseminated, duty-cycling operation can start.
While a network is in duty-cycled mode, tasks can be
disseminated, as can additional data schedules.

When a node joins the network, it keeps its radio on.
However, at this point it does not know anything about
the schedules active in the network. It will eventually
learn this from Tenet’s task dissemination mechanism.
When it does, and after it is time synchronized with
the rest of the network, the node can start duty-cycling
its radios. Until then, it behaves just as it would if it

were not duty-cycled, with one important exception: it
queues all control packet transmissions, until it over-
hears another control packet transmission (and likewise
for data packets), at which point it attempts to clear the
corresponding queue. This frame inference technique
ensures that it participates correctly in the duty-cycling
schedules, even though it has no explicit knowledge of
the schedules. This conservative approach works even
when a group of topologically contiguous nodes joins the
network, as long as some subset of the nodes are op-
erating consistent schedules or their transmissions are
triggered by transmissions from a master node.

Handling Time Synchronization Failures.

AEM relies on a network time synchronization pro-
tocol, like FTSP [18]. Such protocols suffer from clock
drifts and AEM allows for this by using a small guard
time (2ms, twice the largest synchronization error we
have seen in our network) before transmitting data pack-
ets at the beginning of each frame.

However, network time synchronization can fail in
more pathological ways. If a few FTSP beacons are
lost, a node can become de-synchronized from the rest
of the network. We have seen this occur rarely in our
experiments, but it is important to design AEM to be
robust to such de-synchronizations. When a node is
desynchronized (i.e., FTSP signals a loss of synchro-
nization), AEM puts the node in “recovery” mode. In
this mode, it turns on the radio and keeps it on until
the node is synchronized again. Because the radio is on,
the node can receive all the packets sent by the neigh-
bors, including time synchronization beacons. This al-
lows the time synchronization protocol to improve its es-
timate and stabilize. However, during recovery, a node
might still be in the forwarding path. It can still re-
ceive packets, but cannot transmit unless it knows that
other nodes’ radios are on. To send packets, it uses the
frame inference technique described above: it queues
all control packet transmissions, until it overhears an-
other control packet transmission (and likewise for data
packets), at which point it attempts to clear the cor-
responding queue. This technique generalizes easily to
the case when many nodes are de-synchronized: even-
tually, all nodes will be “clocked” by transmissions from
the master node.

Alternative Schedule Designs.

There are many possible designs for a scheduled wakeup
scheme that satisfy our goals stated earlier, and we de-
signed and implemented two alternatives before settling
on the design we present in this paper.

Staggered Frames: In this design, the transmission
and reception schedules are staggered along the routing
tree in such a way that a parent’s frame overlaps with



that of its children, and the parent waits to receive pack-
ets from all its children before transmitting to its own
parent. This approach (similar to DMAC [17]) is effi-
cient but is fragile. It adapts poorly to network topology
changes — sometimes a single parent change can result
in re-computation and resynchronization of schedules in
half of nodes in the network. Moreover, it requires ad-
ditional control overhead to adapt to such changes.
Fixed Frames: In this design, frame start and end
times are synchronized across the network. Because
the frame setup does not explicitly use any topology
information, this scheme is robust to routing topology
changes. However, this scheme requires an accurate pre-
computation of frame duration (the previous scheme
suffers from this drawback as well).

4. IMPLEMENTATION

We have implemented AEM as a component of Tenet
in TinyOS 2.x. It uses in 2.7 KB of code space and re-
quires 128 bytes of RAM for task and duty-cycling state
maintenance. In addition, AEM also requires RAM for
packet buffers, as we discuss below. We use buffer size
of 6 packets in our experiments. AEM’s schedules can
be configured and altered using the Tenet tasking mech-
anism, as discussed in

While designing AEM, one of our goals was to leverage
as much of the existing Tenet software as possible (§3.2)).
Our implementation is able to achieve this, with two
exceptions noted below. AEM transparently interposes
an asynchronous packet buffer to which MultihopLQI
routing protocol, FTSP time synchronization protocol,
and the Tenet dissemination protocol send their packets.
The AEM module orchestrates the packet egress from
this buffer depending on the duty-cycling state of the
radio. Data packets use a similar but separate queue.
Upon a successful packet enqueue operation, the Tenet
stack progresses as if the packet transmission operation
had been completed in a non-duty-cycled network.

We made three modifications to existing software com-
ponents. First, we increased the end-to-end retransmis-
sion timeout for the Tenet packet transport protocol for
AEM. Such a change is required for any duty-cycling
method which increases packet latency. Second, AEM
required one change in the MultihopLQI forwarding en-
gine to pause transmissions when it guesses that the
receiver’s radio might be turned off ( Finally, we
added frame inference (§3.4) to the base station to time
its transmissions. The alternative would have been to
run a complete instance of AEM at the base station.
Our implementation preserves the transparent bridging
design of the base station.

5. EVALUATION

In this section we evaluate, through experiments con-
ducted on a 40-node testbed, AEM’s ability to achieve
low radio duty-cycle and data delivery latency while pre-
serving all the design requirements of Tenet.

5.1 Methodology

We conducted our experiments on a tiered network
testbed with several Stargate nodes and 40 TelosB motes.
All nodes are located above the false ceiling across mul-
tiple rooms and hallways on a floor (50m by 20m area) of
a large office building. The wireless environment above
the false ceiling is harsh, with some links experiencing
above 30% packet loss rates. All nodes run the Tenet
stack modified to support AEM. In most experiments,
we use a single Tenet master node. We configured the
mote radios to transmit at -8.906 dBm, which results in
a tree with 4-hop depth.

In our experiments, we are interested in measuring
the steady state behavior of AEM. For this reason, each
experiment starts with a 10 minute initialization pe-
riod during which routing paths are established, time is
synchronized, dissemination states are initialized, and
control schedules are set u}fl Measurements start 10
minutes into the experiment, when an application in-
jects a task and the network initiates data schedules.

Our experimental workload is as follows. In most ex-
periments, a fixed fraction f of the nodes are tasked to
generate a sensor reading once every 2 minutes. When
f is small, our setup approximates an event-triggered
workload, and when f is large, a periodic workload. Un-
less otherwise stated, each run of an experiment lasts for
40 minutes, and all experiments are averaged over 3 or
more runs.

In each experiment, the nodes are tasked to use Tenet’s
end-to-end reliable transport mechanism. Thus, in ev-
ery experiment, the delivery ratio is 100%.

During each experiment, we measure:

Duty-cycle: We compute duty-cycle by dividing the to-
tal time the radio is on at each node by the experiment
duration. We are interested both in the average duty-
cycle across all nodes, and (in some cases) the distribu-
tion of duty-cycles.

Latency: We measure the elapsed time between packet
generation at a mote and packet arrival at the master.
As with duty-cycle, we are interested both in average
and distributional performance.

These metrics correspond to two of the goals described
in §3.21 We also have designed experiments to mea-
sure AEM’s adherence to other goals. To demonstrate
AEM’s alignment with Tenet’s design, we conduct ex-
periment with multiple concurrent tasks, and another
with multiple master nodes. To demonstrate its robust-

2Later in this section, we present one experiment that demonstrates
that our AEM implementation correctly adapts to large transients.



ness, we conduct an experiment where half the nodes in
the network are made to fail, showing that AEM recov-
ers. Finally, the transparency goal is achieved by careful
implementation (§4).

5.2 Comparisons

Aside from other approaches to duty-cycling listed in
there is one other plausible duty-cycling approach
that would have satisfied many of our goals. LPIEIiS the
only radio duty-cycling software system available that
is mature and robust enough to support Tenet require-
ments. We integrated LPL into the Tenet stack. In
this section, we also compare AEM against Tenet with
LPL. The goal of this comparison is to test whether an
existing design would have sufficed.

To calibrate AEM’s performance, we compare its duty-
cycle with that of an omniscient scheduler. An omni-
scient scheduler only keeps the radio on for the exact
amount of time necessary to send or receive all the pack-
ets transmitted during an experiment (this includes all
control and data packets as well as retransmissions).
We compute the omniscient scheduler’s duty cycle by
counting all the transmissions and receptions at each
node during an experiment, assigning a nominal average
transmission and reception time (10ms, derived exper-
imentally), and dividing the total time by the experi-
ment duration. AEM itself deviates from this scheduler
because its guard time and its quiet time constitutes
overhead.

5.3 Single Task Performance

We first explore AEM’s performance when the user
executes one task in the network. We vary the fraction
f of nodes that execute the task, presenting a varying
workload to the system. For each fraction f, nodes are
selected uniformly from across the network.

To study the impact of workload on duty-cycle and
latency, we do experiments with six different workloads
with 0% to 100% of the nodes responding to the injected
task. Figure[d]illustrates the control and data schedules
during one of our experiments at three nodes along a
path in the routing tree. AEM achieves low duty-cycle
by turning on the radio only during these schedules.
Notice how frames are aligned, and how some frames are
longer than others, demonstrating elasticity. Finally,
notice how the length of elastic frames increases as we go
up the tree: the duty-cycle adapts to increasing traffic
automatically.

Figure [p| shows that AEM achieves a duty-cycle of
about 1.6% when there is no task response and about
2.7% when all 40 nodes respond to a task with sen-
sor data. This performance is remarkable: when all 40

3We use BoX-MAC-2|[18]included in current TinyOS 2.x version

as a stable implementation of LPL.

nodes respond, the network is generating one packet on
average every 3 seconds, yet the system is able to main-
tain a 2.7% duty-cycle. This performance is within a
factor of 2-3 of the omniscient scheduler. This differ-
ence is not surprising, since most of AEM’s inefficiency
comes from its 70ms quiet-time (the duration of 7 packet
transmissions). This choice is rather conservative, and
we expect to be able to optimize it significantly.

Figure [§] shows the distribution of duty-cycle across
the nodes with AEM when 8 out of 40 nodes respond
to the task. (The results are similar for other fractions
of responding nodes). The distribution is tight, with a
range from 1.6% to 4.9% and a 90th percentile duty-
cycle at 3.7%.

Finally, Figure [6] shows that the data delivery latency
ranges from 5.8s to 13.9s. AEM, with its elastic frames,
tries hard to transmit a packet from sender to base
station within one data frame duration. However, if
a packet needs to be retransmitted, the sender needs to
wait for a transport timeout (15s in our implementation)
and the next data frame (the data frame periodicity is
10s). Retransmitted packets explain why the latency is
higher than the forwarding latency, and also why the la-
tency varies significantly between experiments. Figure|[7]
shows that the latency distribution ranges from 0.4s to
16.5s across the nodes with 90th percentile latency at
11s.

LPL comparison.

Figure[5|shows that LPL duty-cycles are a factor of 6-
9 higher than AEM and a factor of 18-19 higher than the
omniscient scheduler. This is attributable to LPL’s high
system maintenance overhead (15.2% vs 1.6% for AEM
with no data packets to send) dominated by broadcast
traffic which is especially costly for LPL due to long
preambles. This also explains why LPL’s duty-cycle is
relatively insensitive to workload. Figure [3 illustrates
how this problem can result in the radio being turned
on for up to half a second at a time in our experiments.
Finally, Figure |8 shows that, with 8 out of 40 nodes
responding to a task, the duty-cycle for LPL can range
from 11% to 21%, a much larger range than with AEM.
Because of its higher duty-cycle, LPL is able to achieve
much lower latencies than AEM; Figure [7] shows the
latency distribution to be in the 0-5s range.

Thus, AEM meets our duty-cycle and latency design
goals. LPL satisfies most of the other goals, with the ex-
ception of low-duty cycle operation (our primary goal).
In the following experiments, we illustrate AEM’s ad-
herence to our other goals.

5.4 Multiple Task Performance

AEM reacts to a new task insertion (potentially by
different users) by setting up an additional data sched-
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ule to accommodate the traffic generated in response to
the task. To study how AEM adapts to task insertion
and deletion, we conducted the following experiment:
the first task is injected 5 mins after the system initial-
ization, the second task at 15 mins, the second task is
terminated at 25 mins and the first task is terminated
at 35 mins. The first task is a periodic task that gener-
ates sensor readings every 2 mins but filters data locally
so that only 20% of the nodes respond with data. The
second task is also a similar periodic task with the same
data filter but it generates sensor readings every minute.

Figure [9] shows the 1-min windowed average duty-
cycle across the nodes over time. The dutycycle in-
creases with the insertion of the first task, increases fur-
ther with the insertion of the second task, decreases
when the second task is terminated and decreases fur-

Time(minutes)
igure 10—50% of the nodes fail at 20 Figure 11—Distribution of Control and

Length(ms)

Data frame sizes.

ther when the first task is deleted. Thus AEM perfor-
mance adapts to multi-task scenario as expected: higher
duty-cycles with increased number of tasks.

5.5 Tiered Networks

Tenet is designed for tiered networks, so AEM must
support such networks as well. Our design for AEM
required no changes in order to support multiple mas-
ters. We conducted a single-task experiment using the
same 40 nodes, but with two masters. As expected,
the duty-cycle decreases (from 2.7% with one master to
2.4% with two) since the traffic is now spread out over
two trees. However, the decrease is not dramatic, since
nodes in one tree can still overhear some nodes in the
other tree. We see no noticeable change in latency; this
is because the dominant component of latency in AEM



is the transport timeout and the data periodicity, not
the forwarding latency.

5.6 Robustnhess

AEM is, by design, robust to transient loss of de-
synchronization of network time, and to routing dynam-
ics. It is also robust to packet loss (since its schedule
dissemination re-uses Tenet’s task dissemination mech-
anism). In this section, we conduct an experiment to
demonstrate AEM’s robustness to node failure. During
the course of a 40-node single-task experiment, we deac-
tivated 50% of the network nodes. In this experiment,
we used full transmit power, so that the deployment
was dense enough that the rest of the network remained
fully connected. Figure plots the per-min average
duty-cycles across the network as a function of time. As
expected, the duty-cycle increases when the task is first
injected into the system at 10 mins. Between 25 and 30
mins into the experiment, we deactivated 20 nodes. As
the figure shows, AEM continues to work despite this
disruption, and has an average duty-cycle that is about
half of what it was before the node failures, as one might
expect.

5.7 Other experiments

Finally, we briefly discuss several other experiments
that give us insights about AEM’s performance or ex-
plore the sensitivity of our results to parameter settings.

Frame length distribution.

Figure [11] shows the distribution of the length of the
frames during an experiment in which all the motes re-
sponded to a single task. The minimum possible frame
length is 70ms (the value of the quiet-time parameter).
It is interesting to note that many data frames are sig-
nificantly longer than the minimum frame length, illus-
trating that the system adapts when necessary to absorb
retransmissions. Control frames are generally smaller,
since control packets are not retransmitted and their
load does not vary with time.

Performance at a higher density.

In all our experiments, we have conducted experi-
ments with the same radio transmit power setting. To
validate that AEM’s duty-cycle is still low at higher
densities, we conducted an experiment where all the
motes used 0 dBm transmit power, and all were re-
sponding to a single task. At this higher density, we
observed that the average duty-cycle decreased from
2.7% to 2.26%, and the latency from 10.6ms to about
9.2ms. At the higher transmit power, the shallower tree
results in lower duty-cycles (since fewer nodes forward
the packet), and better quality paths cause fewer re-
transmissions resulting in slightly lower latency.
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LPL’'s Parameter Sensitivity.

LPL performance is sensitive to its sleep interval and
channel polling count threshold. In our experiments,
we used a 500ms sleep interval. Figure shows that,
for the workloads we use, 500ms sleep interval gives low
duty-cycles. With a 1000ms sleep interval, the preamble
length overhead outweighs the polling overhead, while
with a 250ms sleep interval, the opposite is the case.

LPL performs a sequence of Clear Channel Assess-
ments to check if the channel is clear. If it detects more
CCA samples than a specified threshold, it assumes the
presence of a transmitter and keeps the radio on to re-
ceive a packet. In our experiments, we used the default
value of 3. A small value can cause many false positives
in channel assessment, causing the node to turn on a ra-
dio more frequently. On the other hand, a larger value
might miss packets, resulting in higher loss rates. With
a threshold of 30, LPL’s average duty-cycle is reduced
from about 19% to about 16%. More experiments might
be needed to find the “optimal” threshold for a given en-
vironment, but we believe that our general conclusion
(that AEM provides lower duty-cycle operation) holds.

6. CONCLUSION

General purpose sensor network programming systems
that provide high level of programming abstraction and
allow dynamic execution of multiple and concurrent ap-
plication have the potential to enable rapid deployment
of sensor network applications. Often the radio duty-
cycling protocols that are designed and optimized for
specific workloads are not extensible to such systems. In
this paper, we have presented AEM, an energy manage-
ment system that duty-cycles the sensor network based
on a static analysis of Tenet applications. The duty-
cycle scheduling is also designed to accommodate tran-
sient and unexpected changes in traffic due to network
dynamics. Our experience with AEM suggests that it is
possible to run a general purpose, interactive, and dy-
namically taskable multi-user networks such as Tenet at
sub 3% duty-cycles for widely varying workloads.
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