
Making Whitelisting-Based Defense Work Against BadUSB

Hessam Mohammadmoradi, Omprakash Gnawali
University of Houston

{hmoradi,gnawali@cs.uh.edu}

CCS Concepts
•Security and privacy → Intrusion/anomaly detec-
tion and malware mitigation;

Keywords
USB Malware; BadUSB; Whitelist

ABSTRACT
Universal serial bus (USB) devices have widespread use in
different computing platforms, including IoT gadgets, but
this popularity makes them attractive targets for exploits
and being used as an attack vector by malicious software.
During recent years, several reports [17] ranked USB-based
malware among top 10 popular malware. This security flaw
can slow down the increasing penetration rate of IoT devices
since most of those devices have USB ports. The research
community and industry has tried to address USB security
problem by implementing authentication protocols to pro-
tect users’ private information and also scanning USB’s stor-
age space for any malicious software using their own reposi-
tory of malware signatures, or simply disallowing use of USB
devices on desktops. The new generation of USB malware
does not hide in storage space, which means they are not
detectable by conventional anti-malware. BadUSB is a mal-
ware recently introduced by security researchers. BadUSB
modifies USB firmware and can attack all the systems which
the infected USB is plugged in. The only applicable solu-
tion against this new generation of malware is whitelisting.
However, generating a unique fingerprint for USB devices
is challenging. In this paper, we propose an accurate USB
feature based fingerprinting approach which helps us to cre-
ate a list of trusted USBs as device whitelist. Our solution
prevents and detects BadUSB and similar attacks by gen-
erating fingerprint from trusted USB devices’ features and
their primary usage. We verified the uniqueness of our gen-
erated fingerprints by analyzing real data which is collected
from USB drives used by students in academic computer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSDE’18, October 18–20, 2018, Rabat, Morocco
c© 2018 ACM. ISBN 978-1-4503-6507-9/18/10. . . $15.00

DOI: https://doi.org/10.1145/3289100.3289121

labs over one year. Our results indicate that our feature
based whitelisting approach with an accuracy of 98.5% can
identify USB whitelist members.

1. INTRODUCTION
Universal Serial Bus (USB) is one of the most popular

communication standards supported by many computing
and IoT devices. Many IoT gadgets allow data copy, firmware
and configuration update using USB port. The main advan-
tages of USB devices are convenience, reliability, and being
powered directly from the USB port. At the same time, this
popularity also makes them one of the most widely avail-
able vectors for malware propagation or host infection. In
fact, USB devices have been successfully used as vector for
many USB attacks. In Microsoft’s security intelligence re-
port published on Dec 2015[17], VBS/Jenxcus, a worm that
gives control of the computer to the attacker and spreads by
infected removable drives, like USB flash drives, has been
positioned in the top 10 reported Malware from Windows
machines all around the world.

Recently Karsten Nohl and Jakob Lell from Security Re-
search Labs announced a new type of USB malware called
BadUSB [22].Their patched firmware can emulate a key-
board, spoof a network card, and even spoof a display. Usu-
ally, anti-malware solutions scan contents stored on USB
devices’ storage space but the firmware is always assumed
to be trusted. One approach to detect infected firmware is
by requiring all USB to have firmware signed by the manu-
facturer and having the host check the firmware certificate.
This solution, however, is hard to implement on the large
number of devices which are already in the market and re-
quires major reengineering in a large number of systems,
spanning devices and OS. Almost all the IoT devices we use
inside homes or offices have a USB port which makes them
potential targets for attackers. To the best of our knowledge,
the practical solution against BadUSB is creating a whitelist
of trusted USB devices. In this approach, all USB devices
are assumed suspicious, except those that have been regis-
tered in the whitelist. Then, a firewall can block unlisted
devices or enforce rigid security constraints on them.

To create a whitelist of trusted devices, each device should
be identified with a unique fingerprint. Current USB whitelist-
ing approaches [6, 16] use features like serial number and
product ID to uniquely label each USB device but our study
shows that serial numbers are not unique. Further, there are
many USB devices such as Webcams and keyboards that do
not provide any serial number. Multiple instances of the
same USB device (e.g. same brand Webcams) share same

product ID and vendor ID which means they are not distin-
guishable by conventional whitelisting solutions.

In this paper, we suggest an approach that successfully
detects and prevents BadUSB attacks using feature-based
whitelisting approach. We generate a unique identifier for
each USB device and build a whitelist of USB devices. Our
key insight comes from how BadUSB attack works – the
malware in the known but infected device changes the pri-
mary service of the device to a different service (For ex-
ample, present a Storage device to the host system as a
Network device). Thus, the device fingerprint, in addition
to ID-related features, should also include the primary ser-
vice of the device. However, this approach requires stronger
(than what can be provided by USB product ID) ID-related
feature first, which can be augmented with primary service
field to detected BadUSB. Combining product ID and ven-
dor ID with other features like firmware version, USB inter-
face, USB Class and driver version generates a more unique
fingerprint for USB devices.

We evaluated our suggested fingerprinting technique over
existing USB devices and our system can uniquely identify
a device with 98.5% accuracy. Our contributions in this
research are:

• Propose an effective feature-based whitelisting against
reflashing attacks like BadUSB and BadAndroid. We
generate unique fingerprints for USB devices that in-
cludes their primary services and use the fingerprint
to allow authorized devices that are not infected by
BadUSB.

• Reveal the unreliability of current USB whitelisting so-
lutions: Current solutions for USB whitelisting rely on
properties such as serial numbers which our investiga-
tion shows are not as unique as they are assumed to be
and are unavailable in USB devices such as keyboards
and Webcams. Besides, BadUSB will not change prop-
erties like serial number or vendorID which means cur-
rent whitelisting approaches will not notice BadUSB
attack on one of the trusted devices.

• Show how to generate unique IDs for USB devices to
enable whitelisting-based defense: We propose finger-
printing technique for USB so that USB devices can be
assigned unique IDs. Our fingerprinting technique can
generate IDs even for USB devices that do not have
serial IDs, e.g., keyboards and Webcams.

• Verify accuracy of the proposed method using real
data: We collected data from USB devices used by
students over one year. We used that data to ver-
ify the accuracy and applicability of our approach to
build effective USB whitelist using features collected
from them.

• Validate effectiveness of our approach via BadAndroid:
BadAndroid is proof of concept implementation pro-
posed by BadUSB inventors. We deployed BadAn-
droid on a cell phone and describe how we can detect
BadAndroid infection.

2. NEW GENERATION OF USB THREATS
New generation of USB based threats are called reflash-

ing attacks in which malicious software is flashed directly

(a) KingStone (b) Alcor

Figure 1: Recovery Tools Allow User to Overwrite Serial
Number

onto the chip of the USB device. In other words, USB drive
keeps working as expected and data can be transmitted to
and from the device but there are some unauthorized actions
silently running in the background. To reflash the USB, at-
tacker can completely delete original firmware and copy his
own developed software or just append his code to exist-
ing firmware. The second approach is very hard to detect.
As an example, a USB mass storage device can act like an
HID (Human Interface Driver) and after connecting to sys-
tem emulate keystrokes and download a keylogger to target
system.

BadUSB which was first disclosed by security researchers
in July 2014[22] is an example of the new generation of USB
threats. BadUSB exploits a major security hole in the design
of USB devices which allowed its inventors to spoof network
card, redirect Internet traffic and install additional malware.
The BadUSB hides on the firmware section of the device
instead of storage space. In more detail, conventional anti-
malware cannot detect BadUSB and even formatting the
device will not remove BadUSB.

BadUSB attack is a specific version of the USB reflashing
attacks [22]. In addition to its actual attack payload the
attack varies within the following scenarios [22]:

• Windows takeover: USB drive emulates keystrokes to
send command to Windows. As long as USB drive
remains connected to the system it can send unautho-
rized commands to operating system.

• Sniff Root Password: Attacker reflashes USB drive
with malfunction software. Once the infected USB
drive is plugged to a machine with Linux operating
system, root password which inserted by user during
screen unlock is sniffed by USB.

• Cellphone Attack: Once infected Android phone is
connected via USB drive, it starts modifying DNS ta-
ble and redirects specific URLs which ask for user’s
financial or personal information (Paypal as an exam-
ple) to IP’s controlled by attacker.

• USB Boot Sector Virus: BadUSB can install malfunc-
tioned BIOS by emulating keystrokes and gain control
of entire operating system on each boot.

2.1 Current Defense Mechanisms
First possible solution is locking USB devices so they will

not accept firmware which is not signed by valid manufac-
turer [7]. If only the manufacturer can issue firmware up-
grades, it will exclude software and contributions from the
open source community to keep the USB ecosystem open.
Ultimately, signed firmware and authentication of firmware

for all USB devices will require major reengineering of a
large of number existing systems and the appetite for such
efforts among the USB device, OS developers, and computer
manufacturers is unclear. Another approach, applicable for
the devices already on the market, to protect USB firmware
is creating a whitelist of USB devices. GData [5] firewall
notifies user once a new device is plugged into system and
asks user to label it as whitelist or blacklist device. Each
USB device has a pair of information about its vendor (Ven-
dorID,ProductID) and GData uses this information to cre-
ate a unique ID for each USB device. Problem with using
VendorID/ProductID pair for uniquely identifying devices is
that similar devices manufactured by the same vendor will
have same vendorID and same product ID.

Another attribute can be used for fingerprinting is serial
number. There are multiple problems regarding serial num-
bers. First of all, 54% of our records from USB devices
used by students do not have serial numbers. Devices like
mouse’s, Webcams and keyboards do not provide valid se-
rial numbers. Even if we limit our problem to devices with
valid serial numbers (USB Mass Storage Devices), still prob-
lem would not be solved. Major USB manufacturers de-
veloped lightweight utilities which update USB firmware.
These tools help costumers to repair their damaged devices.
Figure 1 shows screenshots of two popular ones (Alcor and
Kingstone). We conducted a small survey about current
whitelisting solutions available commercial or as open source
products and tried to find their method of fingerprinting
USB devices. The results have been summarized in table 1.

Based on facts regarding the uniqueness of serial number,
product id and USB class and also table 1, the conclusion
is there is no effective USB whitelisting approach available
right now.

3. DEFENCE

3.1 Attack Model
Our main focus in this paper is about reflashing attacks

on USB devices. In these attacks, the firmware of USB de-
vice will be patched with malicious code. Patched firmware
changes device’s default service and spoofs other services
than original service. For example, a USB mass storage
device pretends to be a keyboard and sends keystrokes to
operating system. We assume a strong adversary : the at-
tacker has physical access to a white-listed USB device and
is able to copy all the device parameters (e.g., those listed on
Table 2) to the USB device to be used to launch the attack.

3.2 Trust Model
In this section, we propose our approach to detect BadUSB

and similar USB flashing attacks. One of the possible solu-
tions against BadUSB is whitelisting, but, uniquely identi-
fying each USB device seems to be a challenging in current
USB whitelisting approaches. We propose a dependable ap-
proach to uniquely identify each USB device, we can create
a list of trusted USB drives and block all other USB devices
or generate an alarm once the connected USB device does
not belong to the whitelist. Large scale organizations can
build their own whitelist of trusted USBs inside the com-
pany. Even if the attacker somehow finds access to trusted
devices, and emulates or spoofs trusted device’s features, in
attacks such as BadUSB which change the device’s original

VendorID/ProductID

USBClass/SubClass

USBHub/USBProtocol

FirmwareRevision/DriverVersion
0

10

20

30

40

50

Nu
m

be
r o

f D
iff

er
en

t U
SB

 D
ev

ic
es

Figure 2: Number of Different Devices with Same Value for
a Specific Feature Subset

interface, this unauthorized change will be detected by our
firewall.

To build the whitelist of trusted devices, a unique iden-
tifier should be assigned to each USB device; but, such a
unique identifier available across whole USB devices does
not exist. In the following sections, we briefly analyze po-
tential nominees to be unique identifiers for USB devices.

3.3 Potential Unique Identifiers
We have collected many features but which ones can be

used to generate unique identifiers? In this section, different
possible candidates have been analyzed.

3.3.1 Serial Number
As we explained in previous sections, serial numbers are

not available in almost half of USB devices and also easy to
spoof.

3.3.2 DeviceInstanceID
Windows generates a unique ID for each connected device

which is called Device Instance ID [3]. A device instance ID
is a system-supplied ID that uniquely identifies a device in
the system. Device instance ID consists of Instance ID and
device ID.

A device instance ID is persistent across system restarts.
According to Microsoft’s official website[3]: ”An instance ID
is a device identification string that distinguishes a device
from other devices of the same type on a computer. An
instance ID contains serial number information if supported
by the underlying bus, or some kind of location information.
A device ID is a string reported by a device’s enumerator”.

DeviceInstanceID is not a wise choice for whitelisting. It
is unique per system but it can not uniquely identify one
device across the whole network. In our collected data al-
most 10% of devices with unique serial numbers have more
than one assigned InstanceIDs. In other words, the same
device reported by at least two different desktops with two
different InstanceIDs which means whitelist of InstanceIDs
will not work over the network of organization’s machines.

3.3.3 Feature Sets
Based on previous sections, it seems separate features can

not uniquely identify USB drives. How about a set of fea-
tures? Set of features together is useful if they can uniquely
identify USB devices.

We selected sets of USB features and counted the num-

Table 1: State of the Art USB Whitelisting Solutions

Name License Features used to generate fingerprint
Solar Wind [6] Commercial Instance ID
GFI [16] Commercial Serial Number , USB Class
Windows Server Firewall [2] Commercial Make, Model & Revision of Device
Symantec Data Loss Prevention [10] Commercial Product ID, Vendor ID & Serial Number
USB Guardian [15] Open Source Serial Number, USB Class, Vendor ID & Product ID
USB Guard [14] Open Source Serial Number
Lumension End Point Security [9] Commercial InstanceID & USB Class
EverStrik USB Whitelisting [4] Commercial Product ID, Vector ID & Serial Number
Guardian - USB Whitelisting Script[11] Open Source Vector ID, Product ID, Device Description

Base Class 51.6%

Communication Device

4.2%

Still Imaging

5.9%

Mass Storage
36.2%

Vendor Specific

2.1%

Figure 3: USB Class Codes Share in Collected Dataset

ber of devices in our dataset which have similar values for
each set; These feature sets have been selected from feature
sets used in current USB whitelisting approaches (Table 1).
Results are shown in figure 2. For example, in figure 2 Ven-
dorID/ProductID subset has an average value of 3 which
means in our dataset for each pair of (VendorID,ProductID)
in average, there are three different devices. The final con-
clusion from figure 2 is that none of the feature sets which
already are being used by other whitelisting approaches can
create a reliable whitelist of USB drives.

Another possible identifier combination is USBClass, US-
BSubClass, USBProtocol. Each USB device defines class
code information which is used by operating system to iden-
tify a device’s functionality and to nominally load a device
driver based on that functionality. The information is con-
tained in three bytes with the names Base Class, SubClass,
and Protocol.

Figure 3 illustrates share of each USB class in total plugged
in USBs in our dataset. The Base class generally used by
general devices are connected to USB port such as keyboard
and monitor. This class is about 51% of total records. Sec-
ond most claimed class is Mass Storage class. Apple and
Samsung companies usually use Imaging and Communica-
tion classes for their USB devices. Figure 3 illustrates that
both of them have the same share in our dataset. There
are also some vendor specific USB devices in our records.
Figure 3 proves thatUSBClass, USBSubClass, USBProtocol
set can not uniquely identify USB devices.

3.4 Proposed Unique Identifier
Our solution to generate a unique fingerprint for each USB

drive is building a model based on all the features collected

from USB devices.
Our early analysis revealed that there are high values of

correlations between multiple pairs of features. To improve
efficiency of the fingerprinting process, from each pair of
highly correlated features, just one feature is selected. After
removing redundant features, final feature vector contains 24
features including DeviceType, VendorID, ProductID, US-
BClass, DriverFileName and USB protocol.

4. BUILDING OUR DATASET
This section elaborates our data collection procedure and

gives summary information about collected dataset. Our
goal in this phase was collecting usage information and de-
vice properties from USB drives used by people; Having that
dataset, we can evaluate the performance of our USB mal-
ware prevention and detection approach.

4.1 Data Collection Procedure
Our monitoring agent is a lightweight Java application

that reads information from Windows registry file and sends
it through the network to our central database server. Win-
dows saves a registry record each time a USB device is
plugged into or plugged out of each USB port [13]. We
installed our application on two different academic labs lo-
cated on two different floors. One of the labs is primarily
used for course related sessions and the other one is used
by students for general purposes. One of the challenges we
had to solve was the inaccuracy of Windows in timestamping
plug in and plug out events. All events recorded in Windows
registry have a timestamp but this timestamp for USB de-
vices is not persistent during restarts. To solve this problem,
our data collection script timestamps all the events before
sending them to database. Sampling frequency for our appli-
cation is one sample per minute which keeps granularity of
samples in reasonable level and also will not degrade perfor-
mance for host systems or lab’s local network (We installed
our application on all the systems and each application sends
data to the server every one minute).

4.2 Collected Features
During data collection phase, we collected a set of features

to uniquely identify and distinguish each USB device. First,
we started by collecting serial numbers. Each USB mass
storage device provides a serial number during its initial
registration on operating system.

Different USB drives have their own communication pro-
tocols and use various operating system services. Our appli-
cation collects USB protocol, driver version, and manufac-
turer ID. We also were interested in measuring length of time

Table 2: Collected Features

Serial Number Device Name Device Description Driver Letter Vendor ID
Firmware Revision Hub Vendor Name Product Name Product ID

Parent ID Service Name Service Description Device Mfg Driver Filename
Power USB Version Driver Description Driver Version USB HUB

InstanceID Safe To Remove USBProtocol IP Protocol Description
Creation Time Last Plug/Unplug Time Username MAC Driver Version

each USB device remains connected, so, each time a USB de-
vice is plugged into a computer, our application sends a plug
in message to the central database server; when that device
is unplugged, again our monitoring application sends a mes-
sage to the server indicating disconnection event. We have
every plug and unplug event in our database and we can cal-
culate total time each device remains connected. Totally we
collected 30 different features about each USB device. Here
are short descriptions for some of more important features.

• Device Type: The device type, according to USB class
code [12]. For instance, we have USB mass storage and
USB input and output devices as most popular types
of USB devices.

• Serial Number: Specifies the serial number of the de-
vice. This attribute is only relevant to mass storage
devices (Flash memory devices, CD/DVD drives, and
USB hard-disks).

• Service Name & Description : All the USB devices
need to register their primary service during enumera-
tion phase. Examples are USB Mass Storage or HID.

• Created Date: Specifies the date/time that the device
was installed. This date/time value represents the first
time, user plugged the device into the USB port.

• Last Plug/Unplug Date: Specifies the last time that
user plugged/unplugged the device.

• VendorID/ProductID: Specifies the VendorID and Pro-
ductID of the device. Using the table of producers IDs
[8], easily we can recognize the manufacturer of each
device.

• USB Class/Subclass/Protocol: Specifies the Class/ Sub-
class/Protocol of the device according to USB specifi-
cations.

• Username:When we have username for each USB record,
we can map each USB device to his owner and use this
map to analyze USB users behavior.

• Device InstanceID: Windows uses device’s serial num-
ber and some other location information to generate
Device InstanceID which is a unique identifier among
devices are connected to the system.

Table 2 contains list of other collected features.

4.3 Monitoring Environment Characteristics
We collected data from academic computer labs. Table 3

shows monitored environment’s characteristics. All of our
results and conclusions are extracted from data collected
during November 2013 till December 2014. All of the sys-
tems were using Window 7 or Windows 8 as their operating

Table 3: Summary of USB Usage Data Collection Environ-
ment.

Number of monitored systems 57
Monitoring Interval Nov 2013 - Dec 2014
Recording Interval 1 minute
Host Operating System Windows 7 & 8
Number of USB Events 8607
Number of Unique USB Devices 596

system. Our application ran on each individual system and
watched USB ports for plug and unplug events. Besides in-
formation about USB device, our application also sends IP
address, MAC address of the machine and hashed version of
logged in user’s username (to preserve user’s privacy we did
not collect usernames). Using machine information we can
track USB devices during data collection period.

After almost 1 year of data collection, we have 8607 records
from diverse range of USB devices such as Mass Storage De-
vices, Keyboards, Webcams and cell phones. After careful
investigation in our database, we counted 596 unique USB
devices.

5. EVALUATION
In this section, we evaluate accuracy of our proposed fin-

gerprinting approach in uniquely identifying USB devices
and distinguishing whitelisted devices from unauthorized ones.
We also run BadAndroid against our whitelisting approach
to evaluate our solution’s effectiveness in protecting systems
against famous BadUSB implementations. In the rest of this
section, identification accuracy means percentage of USB de-
vices among all collected USB devices which receive unique
identifiers based on combining selected feature set.

5.1 Feature Ranking
After manually removing highly correlated features, we

reduced our original feature set to 24 features which are
collected from USB devices. Do we really need all those 24
features to be able to uniquely identify each USB? In this
section, we tried to rank features based on their information
gain value. We used Weka information gain calculator to
measure each feature’s information gain.

As we expected and also illustrated in figure 4, different
features have different importance based on the amount of
information they reveal. General numerical values such as
ProductID, VendorID and FirmwareRevision have larger in-
formation gain compared to categorical values such as De-
viceType. Another interesting insight from figure 4 is UBS
class and subclass values have been ranked in lower positions
which indicates they can not be a reliable source for USB
identification. Figure 5 illustrates the importance of feature
information gain on final identification accuracy. To plot

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Information Gain

ProductID
DeviceName

VendorID
FirmwareRevision

ParentID
DriverVersion

Description
ServiceDescription

ServiceName
DriverFileName

DeviceMfg
USBProtocol

Power
USBClass

DeviceType
USBSubClass

USBVersion
DeviceClass

Figure 4: Information Gain Value Per Feature

0 5 10 15 20
Number of Features

65

70

75

80

85

90

95

100

Co
rr

ec
tly

 C
la

ss
ifi

ed
 In

st
an

ce
s

(%
)

Figure 5: Feature Ranking Impact on Fingerprinting
Uniqueness

10% 25% 50% 75% 90%
Whitelisted USB Devices (%)

97.0

97.5

98.0

98.5

99.0

99.5

100.0

Co
rr

ec
tly

 C
la

ss
ifi

ed
 In

st
an

ce
s

(%
)

Figure 6: Accuracy of Detecting Unauthorized Devices

figure 5, we sorted features based on their information gain
and added the top-ranked feature to selected feature set.
Then, we calculated identification accuracy values based on
the selected feature set, walked through the entire sorted
feature list and added features one by one to previously se-
lected feature set. Our selected feature set finally covers all
the collected USB features. The whole process is illustrated
in algorithm

5.2 Overall Performance Evaluation
To evaluate the accuracy of the proposed solution, we ran-

domly selected a subset of USB devices from our dataset and
labeled them as whitelisted USBs and rest of devices were
tagged unauthorized. We performed five rounds of experi-
ments for each subset size. We used all 24 features in our

whitelisting approach to distinguish whitelisted and unau-
thorized devices. Figure 6 shows number of correctly iden-
tified in each round.

Based on results in figure 6, our solution will distinguish
whitelisted devices from unauthorized ones with an accuracy
of 97.5% in the worst case. Further, the accuracy of our
approach varies in the range of 97.5 % to 98.5% across the
different number of whitelisted devices in our dataset.

5.3 Detecting Bad-Android
Now we describe how we implemented and launched a real

BadUSB attack on our test system and describe how we can
defend against the attack. The inventors of BadUSB imple-
mented BadAndroid as a proof of concept for their attack [1].
BadAndroid script runs inside Android phone and spoofs a
USB-Ethernet adapter from it. Thus, when the phone is
connected to the target machine via USB port, the spoofed
USB network interface becomes available to machine and the
target machine starts using the spoofed network interface.
Thus, the infected device is able to capture network traffic
from target computer. In next step, BadAndroid changes
some DNS replies to redirect IP traffic – the attacker cre-
ates a hosts file on the phone which includes a list of URLs
from which the attacker desires to capture the traffic.

To evaluate performance of our proposed approach, we
first rooted a Samsung Galaxy S2 (SGH I727) cell phone
running Android 4.1.2. Then we installed BusyBox emula-
tor followed by an installation of BadAndroid script. Next,
we use a simple scenario to launch the attack – just con-
nect one infected device to a computer. After connecting
the cellphone to the USB port, it registered itself as Eth-
ernet card and provided false DNS answers to the machine
for our pre-selected URLs (www.paypal.com in our case).
The attack was successful on Windows 10 and Ubuntu 16.4
systems with all security patches installed.

Table 4 shows features we collected before infection and
after infection.

As seen in table 4, ”device type” feature changed from
”UnKnown” to ”Remote NDIS”. After BadUSB infection, at
least one of the Device’s features changed which means its
fingerprint also will change and our approach will detect the
change and block the USB. While state of the art whitelist-
ing approaches (Table 1) can not detect this attack because
the features they use to identify devices (Serial Number,
Vendor ID and Product ID), did not change before and af-
ter the infection. Earlier solutions like GoodUSB also would
not suspect these changes on a device such as cellphones or
other devices that have vendor-specific device description
field.

6. RELATED WORK
Whitelisting always has been one of the safest options

to protect computing systems against malicious software
tools and activities. A lot of research has been conducted
in Phishing detection area to find effective blacklisting and
whitelisting approaches [19, 18, 23]. Phishing attacks are
mostly about stealing user’s financial information such as
credit card information and bank account passwords. For
each user there are few websites which are authorized to
ask for personal credentials and a whitelisting approach per-
fectly works in this situation. The critical point in this type
of whitelisting is feature set which is selected to generate
fingerprints. Features should be able to uniquely identify a

Table 4: Cellphone Features Before and After BadAndroid Infection- Changed features are in bold font

Feature Before Infection After Infection
Device Name SAMSUNG-SGH-I727 SAMSUNG-SGH-I727

Device Description SAMSUNG Mobile USB SAMSUNG Mobile USB
Composite Device Composite Device

Device Type Unknown Remote NDIS
Serial Number 1073dde 1073dde

VendorID 04e8 04e8
ProductID 6863 6863

Firmware Revision 4.00 2.31
USB Class/SubClass/Protocol 00/00/00 e0/01/03

Instance ID USB\ VID04E8 PID6863\1073dde USB\ VID04E8PID6863\1073dde

website and also should not be spoofable by attackers.
Another area that has application for whitelisting is de-

nial of service (DoS) attack protection[28, 18]. In DoS, the
attacker’s goal is disrupting network service by sending over-
whelming requests to target server. One working solution, in
this case, is creating a whitelist of most important clients in
critical service provider’s server and give the highest priority
to whitelist members. Again collected features which used
as whitelist members’ identification should not be spoofable
by attackers.

There are some researchers [25],who analyzed USB-based
software attacks and protection solution. But all of those
research is about old generation of USB malware which are
mainly malicious software hidden in storage space or attacks
to gain unauthorized access to private information. BadUSB
is an effective attack which does not require deep knowledge
which makes it much more dangerous and to the best of our
knowledge, currently, there is no practical effective solution
against it and we are the first group who propose accurate
and reliable solution to detect BadUSB. The new genera-
tion of USB malware recently absorbed attention from re-
search community and there are few approaches trying to
propose prevention solutions against BadUSB[24]. [27, 26]
suggested to restrict interfaces based on USB’s primarily
usage. The authors in [26] used user expectation as a fil-
ter to restrict USB drives access. Each time there is new
USB device attached to the system, they ask the user to
select primary service for that USB based on claimed USB
class of device. They will save the device’s ID and its user
assigned access control. In the future connections, protec-
tion system will not allow the USB to use other interfaces
than authorized ones. The first serious problem with this
approach is USB identification. They did not propose any
solution for uniquely identifying USB devices. Their solu-
tion is not applicable in large scale organization with hun-
dreds of USB drives existing. Another problem is that they
use USB classes to identify legitimate interfaces for USB de-
vices. Based on figure 3, more than 50% of USB devices use
base class code. For example keyboard or mouse. In this
case, the malicious keyboard can claim legitimate interface
and still spoof keystrokes. In addition, there are approxi-
mately 12% of USB devices in our dataset which they have
vendor specific interfaces (mostly cellphones). As the au-
thors of GoodUSB themselves also mentioned in [26], their
solution is not working in the case that vendor specific inter-
face is being used by the device. The fingerprint generated
by our solutions also includes USB class and interface and
if there is a change in these features, the new fingerprint

will not match with original one. In addition to all pre-
viously mentioned problems with access control solutions,
authors at [20] suggested a sniffing attack on the USB bus.
They register their USB as a normal USB device and trans-
parently eavesdrops all the downstream data from the host
to all other devices connected to the BUS. In other words,
this attack does not use any unauthorized interface and ac-
cess control approaches like [26] can not protect the systems
against these kinds of attacks. In our solution, if the de-
vice is not in the whitelist, its access to common BUS is
blocked. In most recent work [21], the authors developed a
defense against keyboard hijacking attacks. The main idea
is people’s typing pattern is different from typing pattern
of such attacks and their system can utilize this difference
to block the access of UWB Malware. This solution has a
problem of false alarm which could be annoying for users.
Also, attackers can mimic user typing patterns.

Our main contribution in this work is proposing a service
based whitelisting approach which is able to assign unique
identifiers to USB drives. All the previously mentioned solu-
tions against BadUSB need to uniquely identify each device.
In addition, our feature set includes interfaces the USB de-
vice asks during enumeration process and if there is a change
in the interfaces, the generated ID will differ from original
one and the infected device will be identified by our firewall.

7. DISCUSSION
Currently, many organizations ban their employees to use

USB devices to avoid problems with this new generation of
malware. Our suggestion is building a whitelist of trusted
USB drives and block the rest of devices. In this case, people
can continue using devices during their daily duties. This is
practical because companies easily can collect trusted USB
device’s features and build such a whitelist.

Our approach can not guarantee to detect all types of re-
flashed whitelisted devices. We generate the fingerprint for
each device based on several features including interfaces
and services the USB device asks for. If an attacker modi-
fies the firmware and after modification, the USB device asks
for new interfaces or services (BadUSB does that), the newly
generated fingerprint will be different from original one and
the whitelist will block the device. But, if the attacker some-
how finds a trusted device and patches the firmware without
changing any of the original interfaces, the malicious device
will not be detected by our system, nor would other solutions
in research or industry.

Interesting fact which can be inferred from 5 is only the

top seven ranked features give us more than 95% identifica-
tion accuracy. In other words, in our final whitelist creation
application we just need to use seven features to build a
whitelist with 95% accuracy. This result seems to be impor-
tant in the cases that we do not have access to all 24 features,
using just 7 of them still provides us resealable accuracy.

8. CONCLUSIONS
The only practical approach against BadUSB is creating

a whitelist of trusted USB devices. In that case, all USB
devices which do not belong to whitelist are blocked or re-
stricted by our application. Creating a whitelist of USB
devices is challenging. In our work, we proposed an effective
approach to create whitelist of USB drives. We evaluated
performance of our technique using real data collected from
USB devices used by students over one year. Our tech-
nique can uniquely identify each USB device with accuracy
of 98.5%. In addition, our solution will detect changes in
device’s primary usage and block the device if it asks for
services other than original ones. We also validated the fea-
sibility of our approach by launching a BadUSB attack from
an infected device to a Windows and Linux host.

9. REFERENCES
[1] Badandroid.

https://opensource.srlabs.de/projects/badusb.
Accessed: 2015-09-24.

[2] Controlling device driver installation. https://technet.
microsoft.com/en-us/library/cc731387(WS.10).aspx.
Accessed: 2016-09-24.

[3] Deviceinstanceid. https://msdn.microsoft.com/en-us/
library/windows/hardware/ff541327.aspx. Accessed:
2016-09-24.

[4] Everstrik device whitelist. http://www.everstrike.
com/usbsecurity/help/device-whitelist.htm. Accessed:
2016-09-24.

[5] Gdata software ag. how to be sicher from usb attacks.
https://www.gdata.at/at-usb-keyboard-guard.
Accessed: 2015-09-24.

[6] How to allow authorized usb access on your network.
http://www.solarwinds.com/log-event-manager/
usb-access.aspx. Accessed: 2016-09-24.

[7] Ironkey secure usb devices. http://www.ironkey.com/
en-US/solutions/protect-against-badusb.html.
Accessed: 2016-06-03.

[8] List of usb id manufacturers.
http://www.linux-usb.org/usb.ids. Accessed:
2016-09-24.

[9] Lumension end point security.
http://bowmantec.com/eng/endpoint-security/.
Accessed: 2016-09-24.

[10] Symantec data loss prevention.
http://www.symantec.com/connect/articles/
create-white-list-usb-disk-dlp-agent. Accessed:
2016-09-24.

[11] Ubuntu-gaurdian.
http://ubuntuforums.org/showthread.php?t=2158605.
Accessed: 2016-09-24.

[12] Usb class codes.
http://www.usb.org/developers/definedclass.
Accessed: 2016-09-24.

[13] Usb device registry entries. http://msdn.microsoft.
com/en-us/library/windows/hardware/jj649944.aspx.
Accessed: 2016-09-24.

[14] Usb guard. https://github.com/dkopecek/usbguard.
Accessed: 2016-09-24.

[15] Usb guardian. http://www.ghacks.net/2010/11/07/
usb-waechter-only-allow-whitelisted-usb-devices-pc-access/.
Accessed: 2016-09-24.

[16] Whitelisting-and-blacklisting.
http://www.gfi.com/products-and-solutions/
network-security-solutions/gfi-endpointsecurity/
specifications/whitelisting-and-blacklisting. Accessed:
2016-09-24.

[17] Microsoft Security Intelligence Report,Vol 20.
Technical report, Microsoft Inc., Dec 2015.

[18] J. Kang and D. Lee. Advanced white list approach for
preventing access to phishing sites. In Convergence
Information Technology, 2007. International
Conference on, pages 491–496. IEEE, 2007.

[19] L. Li, E. Berki, M. Helenius, and S. Ovaska. Towards
a contingency approach with whitelist-and
blacklist-based anti-phishing applications: what do
usability tests indicate? Behaviour & Information
Technology, 33(11):1136–1147, 2014.

[20] M. Neugschwandtner, A. Beitler, and A. Kurmus. A
transparent defense against usb eavesdropping attacks.
In Proceedings of the 9th European Workshop on
System Security, page 6. ACM, 2016.

[21] S. Neuner, A. G. Voyiatzis, S. Fotopoulos, C. Mulliner,
and E. R. Weippl. Usblock: Blocking usb-based
keypress injection attacks. In F. Kerschbaum and
S. Paraboschi, editors, Data and Applications Security
and Privacy XXXII, pages 278–295, Cham, 2018.
Springer International Publishing.

[22] K. Nohl, S. Kribler, and J. Lell. Badusb, oa accessories
that turn evil. In BlackHat Conference Proceedings,
pages 84–89. Security Research Lab, Auguest 2014.

[23] R. Rao and S. Ali. A computer vision technique to
detect phishing attacks. In Communication Systems
and Network Technologies (CSNT), 2015 Fifth
International Conference on, pages 596–601, April
2015.

[24] S. Sikka, U. Srivastva, and R. Sharma. A review of
detection of usb malware. International Journal of
Engineering Science, 14283, 2017.

[25] D. T. Sullivan. Survey of malware threats and
recommendations to improve cybersecurity for
industrial control systems version 1.0. Technical
report, DTIC Document, 2015.

[26] D. J. Tian, A. Bates, and K. Butler. Defending
against malicious usb firmware with goodusb. In
Proceedings of the 31st Annual Computer Security
Applications Conference, pages 261–270. ACM, 2015.

[27] B. Yang, D. Feng, Y. Qin, Y. Zhang, and W. Wang.
Tmsui: A trust management scheme of usb storage
devices for industrial control systems. IACR
Cryptology ePrint Archive, 2015:22, 2015.

[28] M. Yoon. Using whitelisting to mitigate ddos attacks
on critical internet sites. Communications Magazine,
IEEE, 48(7):110–115, 2010.

