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Abstract

Time synchronization is an essential service in many sen-
sor network applications. Harsh environment which causes
nodes to fail, go offline, or reboot can challenge many time
synchronization protocols. In this work, we first character-
ize this challenge and use a real time clock in one of the
nodes in the network to improve robustness of time synchro-
nization. Our experiments show that our approach improves
the robustness of state-of-the-art offline time synchronization
protocols.

1 Introduction

In many WSN applications, we analyze sensor data over
space and time. Synchronized and accurate timing is essen-
tial part of those applications. Many inexpensive and low-
power wireless sensor node platforms are not equipped with
GPS time. They rely on time synchronization protocol so all
the sensor nodes in the deployment can use the same time
reference to timestamp their sensor data.

Two classes of time synchronization (or reconstruction)
methods have found wide use in wireless sensor networks.
Online time synchronization protocols [4] designate a node
as a reference time for the network and propagate the refer-
ence time to the entire network to keep the clocks on all the
nodes synchronized to the clock of the reference node. The
main advantage of online methods is their accuracy and the
main disadvantage is their energy consumption overhead.

Offline methods [6, 3], on the other hand, use time recon-
struction at the base station or the server to infer the time at
which sensor samples were taken. The sensor data is sam-
pled using the local clocks. Additional information that can
translate the local clocks to a reference clock is used at the
base station to compute the global time after the data is col-
lected. This method is typically more energy efficient than
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Figure 1. A Bacon sensor node connected to Chronodot

online algorithm but may incur larger errors than online al-
gorithms.

In our work, we develop techniques to improve the ro-
bustness of offline time synchronization protocols by intro-
ducing a node with real-time clock in the network. We use
Phoenix [2] as a case study of how our technique can be in-
corporated into an offline time synchronization schema to
improve its robustness. Phoenix was specifically designed
to be robust to frequent node reboots and base station go-
ing offline and is known to achieve error rate of 6ppm for
99% of measured data. However, Phoenix, and many similar
algorithms, consider the base station as a reliable source of
accurate time and ignore base station failures.

Our approach introduces a node with a real-time clock to
provide reference time to the network. This node is different
from a base station. Separation of functionalities between a
base station and time reference can simplify the software ar-
chitecture and robustness of the timing service. The time ad-
vertised by the reference mote propagated multi-hop across
the network, with appropriate adjustments on each hop. The
sensor nodes then log these global reference times which
provide time anchors during time reconstruction after data
is sent to the base station.

Our main contribution in this work is the design of an
architecture that can tolerate errors caused by base station
absence, reboots, and sensor node reboots. Our second con-
tribution is a testbed-based evaluation of our approach.

2 Time Reconstruction

The time reconstruction algorithm relies on time anchors
logged by the motes. These anchors are time broadcasts re-
ceived by a mote. Each node periodically broadcasts its lo-
cal time to its direct neighbors. The nodes log such received
time broadcasts along with their local time but attempt no
calibration or synchronization online. One of these nodes is
a reference node with a hardware real-time clock.



=
Chronodot Miss Rate %

Phoenix Miss Rate %

4
a—e Phoenix Miss Rate
e—s_Chronodot Miss Rate
10 20 30 0 o o ¢°
Basestation Absence Rate %

Figure 2. Unsynchronized timestamps rate over base sta-
tion absence rate
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Figure 3. Time reconstruction robustness against Leaf
(green) and Reference (Red) mote reboots

Base station periodically (not necessarily with constant
intervals) queries entire network and downloads each node’s
stored records. Using node’s time stamps relations, we can
reconstruct time stamps by finding a path from that local time
to global time. We can use a simple linear model (RTS =
ok LTS + PB) to describe the relation between local (LTS) and
remote (RTS) time stamps [5].

Node reboots are quite common among sensor nodes and
linear relationship among time stamps is only valid in pe-
riods which both LTS and RTS monotonically increasing.
Once we detect a reboot in the collected log, we need to re-
calculate o and P values. First, we need to find segments
have direct relation to global segments. Second, we need to
find o and P values for those segments which do not have
direct link to global segments using segments we discovered
at first phase.

3 Evaluation

In this section, we describe an implementation of our ap-
proach and experimental results from a small deployment.

3.1 Implementation

We use TinyOS and Bacon motes for our implementation.
The Bacon mote uses TI’'s CC430 SoC, which combines a
900MHz radio core (almost equivalent to a CC1101) and an
MSP430MCU. Rather than integrate a real-time clock onto
the mote boad, we use Chronodot [1] hardware module as
a source of accurate real-time clock. Chronodot is a self-
contained real-time clock module with its own power sup-
ply. Thus, the clock can continue to work even when the
mote fails or runs out of power. According to its datasheet, a
single CR1632 can power a Chronodot for up to 8 years. We

connect Chronodot to Bacon mote using a I2C interface. We
wrote a I2C driver to obtain time from Chronodot. Figure 1,
shows a reference node.

3.2 Experiments and Results

We deployed 27 Bacon nodes in our lab with 1 minute
sampling interval and 2 minutes local time broadcasting.
Base station collects data every 10 minutes. We ran the ex-
periment under two different scenarios for 8 hours. In the
first scenario, we used base station as global time reference.
This setting is similar to Phoenix, or other systems, that use
the data collection base station to also provide the reference
time. In the second scenario, we used the reference mote
(with Chronodot) to provide the global time. During the ex-
periments, we introduced Leaf, base station, and reference
node reboots.

Figure 2 shows the fraction of timestamps the time re-
construction algorithm was not able to reconstruct in the two
scenarios. We find that in the second scenario, with the ref-
erence mote, there are fewer unsynchronized time than in
the first scenario even though the base station continuously
broadcasts its time to the network. Second, we observe that
when there are base station outages, our approach can recon-
struct the time more accurately than Phoenix.

Next, we try to understand if our approach is robust
against reboots of the reference mote. During our experi-
ment, we manually rebooted Chronodot equipped node and
reconstructed the timestamps uploaded from one of the Leaf
motes. Figure 3 shows the reconstructed times using our ap-
proach. We observe that the reconstructed timestamps follow
the linear model despite the reboots of the Leaf mote and the
reference mote.

4 Conclusions

In this project, we propose a robust offline time synchro-
nization approach for WSN applications. Our system uses
real time clock to reconstruct time stamps and we showed
our approach is more resistant to failures compare to state
of the art time synchronization algorithms. Our technique
leverages the existence of extremely stable and reliable real
time clock hardware modules to provide robustness and reli-
ability in WSN time synchronization and reconstruction.
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