
Data Stashing: Energy-Efficient Information Delivery to
Mobile Sinks through Trajectory Prediction

HyungJune Lee1, Martin Wicke2, Branislav Kusy3,
Omprakash Gnawali1, and Leonidas Guibas1

1Stanford University, Stanford, CA, USA
2University of California, Berkeley, CA, USA

3CSIRO ICT Centre, Brisbane, Australia
abbado@stanford.edu, wicke@eecs.berkeley.edu, branislav.kusy@gmail.com

{gnawali,guibas}@cs.stanford.edu

ABSTRACT
In this paper, we present a routing scheme that exploits
knowledge about the behavior of mobile sinks within a net-
work of data sources to minimize energy consumption and
network congestion. For delay-tolerant network applications,
we propose to route data not to the sink directly, but to send
it instead to a relay node along an announced or predicted
path of the mobile node that is close to the data source. The
relay node will stash the information until the mobile node
passes by and picks up the data. We use linear programming
to find optimal relay nodes that minimize the number of nec-
essary transmissions while guaranteeing robustness against
link and node failures, as well as trajectory uncertainty.

We show that this technique can drastically reduce the
number of transmissions necessary to deliver data to mobile
sinks. We derive mobility and association models from real-
world data traces and evaluate our data stashing technique
in simulations. We examine the influence of uncertainty in
the trajectory prediction on the performance and robustness
of the routing scheme.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer- Com-
munication Networks; C.4 [Computer Systems Organi-
zation]: Performance of Systems

General Terms
Algorithms, Design, Measurement, Performance

Keywords
Mobile Data Delivery, Trajectory Prediction, Mobility Pat-
tern, Network Optimization, Sensor Networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’10, April 12–16, 2010, Stockholm, Sweden.
Copyright 2010 ACM 978-1-60558-955-8/10/04 ...$10.00.

1. INTRODUCTION
Classic multi-hop wireless routing protocols compute the

shortest path (in hops or metrics such as ETX [8]) between
sources and destinations in a network. Since the shortest
path minimizes the number of necessary transmissions, this
strategy minimizes not only delay but also energy use.

In the presence of mobility, however, the shortest path
computed at one point in time is not necessarily the shortest
possible path connecting the source and the sink. A shorter
path might be available, if the nodes move closer to each
other in the future. An optimal routing strategy can be
devised if the trajectory of the mobile nodes is known.

In this paper, we study the problem of sending informa-
tion from the nodes in a sensor network to multiple mobile
sinks moving in the same space as the network. Given some
information about each sink’s trajectory, we aim to mini-
mize the expected routing cost to the sink. We assume that
the information sources and sensor network nodes are static
(not mobile), while data sinks (humans or vehicles) move
inside the area covered by the sensor network. Finally, we
assume that applications tolerate a packet delivery delay in
the order of the average network traversal time for mobile
nodes, e.g., a few minutes. This is often the case in sensor
networks that accumulate measurements until an observer
takes a reading [34]. Examples of such data delivery patterns
can also be found in applications that sense information in
places where people work or live and deliver it to user mobile
devices, enabling more intelligent living environments.

We solve the problem of data delivery to multiple mobile
sinks by stashing data along the anticipated trajectory of
the sink, instead of routing the data directly to the sink at
its current position. If we can accurately predict that the
mobile sinks pass near a particular sensor node at some point
in time, we can stash data on this stashing node. As each
mobile sink passes this node, it can pick up the data.

We use linear programming (LP) to find, for each data
source, the optimal stashing node to which to send the data.
We develop this optimization to take into account multiple
mobile sinks requesting the same information, as well as con-
siderations about robustness in the presence of uncertainty
about the trajectories of the mobile sinks. Our linear pro-
gramming formulation requires some information about the
future trajectory of mobile sinks. In some applications, sinks
know their future trajectory through the network and can
announce it to the network when requesting information.
Even if the future trajectory is unknown, many applications

are deployed in environments that constrain motion patterns
of sinks to roads, trails, or hallways. Our algorithm aims to
exploit such structure without explicitly representing it.

We predict the motions of mobile sinks by using asso-
ciation data and a history of trajectories. We present a
method for representing trajectories, learning typical tra-
jectories from observations, as well as predicting likely tra-
jectories given observed partial trajectories. The prediction
algorithm can be used by the mobile sink (or its closest relay
node) to supply information about its future trajectory to
the network. We characterize the trajectories as sequences
of node associations, and use multiple sequence alignment
techniques to compute similarity on partial sequences. Us-
ing this similarity metric, we compute clusters representing
typical trajectories through the network. For efficiency, we
find a compact probabilistic representation for the clusters
which we use to efficiently find likely future trajectories dur-
ing prediction.

We evaluate our probabilistic trajectory model used for
prediction on data taken from the DieselNet traces [4]. We
use simulation experiments to validate our approach by com-
paring our technique against direct routing in terms of rout-
ing efficiency and robustness. We show that one benefit of
our technique is better load balancing and more even uti-
lization of network resources, such as energy.

In summary, our contributions are the following:

• We present data stashing, a data delivery scheme that
routes data to mobile sinks, but lets each sensor node
decide where on a set of possible trajectories it wants
to stash its data, to be picked up whenever the mobile
sink passes the stashing node.

• We introduce a network-centric representation for tra-
jectories. In this representation, a trajectory is rep-
resented as a sequence of associated nodes, giving us
all the information we need for data delivery, while
abstracting from unnecessary and possibly misleading
spatial information. We also develop useful similarity
measures for this motion representation which allows
us to perform clustering.

• We propose a probabilistic representation for sets of
similar (but potentially partial) trajectories. This rep-
resentation can be used to compactly describe a cluster
of trajectories, and efficiently find the best-matching
cluster given a partial trajectory.

2. RELATED WORK
There is a large body of research in routing protocols de-

signed to deliver packets to mobile sinks in wireless networks.
Some of these protocols assume little about the network and
the mobility pattern of the mobile sinks and perform net-
work discovery pro-actively or on-demand. Classic protocols
such as DSR [14] and AODV [33], which were originally de-
signed for wireless ad hoc networks, and sometimes used
in mobile routing, fall into this category. In the wireless
sensor network context, protocols such as SEAD [16] and
TTDD [41] construct energy-efficient routing paths without
knowledge of the mobility patterns of the sink. However,
in some scenarios, the mobile sinks move in a pattern that
can be predicted to a certain extent. This observation in-
spires the second category of routing research, in which we
make assumptions about the trajectory of the mobile sink.

The routing protocols can then exploit these patterns to ef-
ficiently deliver packets to the mobile sink. This category
of routing protocols, of which ours is one example, typi-
cally consists of two components: mobility pattern analy-
sis/learning followed by path computation and packet deliv-
ery.

Mobility patterns have been studied using GPS data, or
association data from cellular networks or wireless LANs. In
the case of GPS, since the raw GPS data contain many out-
liers, most of the previous research approaches [3, 9, 18] fil-
ter out the noisy and unreasonable measurements first, and
then identify the possible goal locations from the filtered
GPS positions, and construct prediction models. Ashbrook
and Starner [3] find significant places where a user spent
over a threshold amount of time, and cluster them into lo-
cations with the k-means clustering algorithm. Finally, a
Markov model is applied for each location, and used for pre-
dicting the next goal location. Froehlich and Krumm [9,
18] obtain the end-to-end routes from the raw GPS data,
and use a Bayesian model and a trip similarity clustering
algorithm to predict the next goal location. Further, Liao
et al. [25, 26] and Yin et al. [42] not only extract signif-
icant places from filtered GPS data, but also try to asso-
ciate the places with activities that a person can undertake
in each different place. Their work is the first to suggest
exploiting high-level context (i.e., user’s activities) to de-
tect the goal place for a mobile user with higher fidelity.
Similarly, in cellular networks, some previous work [5, 20,
21, 32] uses cell identifiers to identify significant locations,
and constructs prediction models by clustering algorithms.
In wireless LAN networks, a long-term large-scale measure-
ment study of user-access point (AP) association at Dart-
mouth [17] has inspired work in mobility prediction. It has
been noted that wireless users’ locations can be predicted
with up to 72% accuracy using an order-2 Markov predic-
tor [37] for users with long trace lengths. Further analysis of
the same dataset has suggested the feasibility of predicting
the trajectory of a mobile user in space and time [36]. Us-
ing a different dataset, Ghosh et al. [11] describe techniques
to predict a user’s location with respect to social hubs such
as buildings and classrooms, rather than individual wireless
AP’s.

There has been previous work on exploiting predicted mo-
bility to improve the efficiency of routing to sinks with pre-
dictable trajectories. Our previous work on mobility graphs
allows the network to predict future relay nodes [19]. In-
formation potentials for the predicted nodes are computed
while the old route is still valid, enabling an instantaneous
switch to the new relay node. Chakrabarti et al. [6] proposed
a protocol in which the sensor nodes keep statistics of sink
visits and transmit information only when the mobile sink
is within transmission range. Our work does not assume
that the trajectory of a mobile node takes it within single-
hop transmission range of each sensor in the network. Most
closely related to our work is recent work on the proactive
scheme in TwinRoute [40]. Based on the sink arrival statis-
tics, a subset of nodes elect themselves as storage nodes and
initiate routing tree construction as roots. The sensor net-
work forwards data to these storage nodes so that packets
can be relayed to the mobile sink. Although our work fits
in this general framework, we employ different methods to
overcome shortcomings of this approach. We use cluster-
ing to improve the accuracy of trajectory prediction. We

compute routes that are globally optimal, while explicitly
accounting for multiple mobile sinks. Our objective is to
deliver packets to the sink with the least network overhead,
while assuming no data freshness requirement.

There is a large body of work on routing to mobile sinks
with trajectories that can be programmed to optimize data
forwarding efficiency [10, 28, 29]. Our work does not assume
a programmable trajectory of the mobile sinks. Researchers
have also formulated computing energy-efficient routes in
sensor networks as an optimization problem [7, 24, 27]. Our
work also frames routing as an optimization problem. How-
ever, in our LP formulation a number of stashing nodes or
the sinks themselves can be feasible destinations, while also
taking into account link reliability and the probabilistic na-
ture of the predicted trajectories of the mobile sinks.

3. OVERVIEW
The main objective of this paper is to develop a routing

scheme that delivers data to mobile sinks through a wire-
less mesh sensor network. We exploit knowledge about the
mobility of the sinks to lower the cost and increase the re-
liability of data transmission. We will use the terms mobile
sink and mobile node interchangeably in the rest of this pa-
per.

In particular, we solve the following problem: One (or
several) mobile sink moves through a network, collecting
sensor data from nodes in the network. Traditionally, we
would either send all data directly to the current position
of the mobile sink (that is, to a node that is close to the
mobile sink, which will relay the information to the mobile
sink), or not send any data at all, and wait for the mobile
sink to collect the data as it passes each of the sensor nodes.
The latter option is often infeasible if we cannot control the
movement of the mobile node, or if moving within radio
range of each desired sensor is not an option. We choose
a compromise between the two extremes. Using knowledge
about the trajectory of the mobile node, sensors route data
to a set of stashing nodes that store information along the
likely trajectories of the mobile node.

At the core of our method is an optimization procedure
that for each sensor chooses a set of stashing nodes that
guarantee (with high probability) that a mobile node will
receive the sensor’s data. See Fig. 1 for an illustration. The
optimization procedure is described in detail in Sec. 6.

We assume some knowledge about the possible trajecto-
ries that a mobile node can take. This information either
comes from the mobile node itself, or is deduced from ob-
servations of motion patterns of sinks in the network. We
represent trajectories as strings of associated mesh network
nodes. We define a distance on the space of trajectories and
use clustering to find representative trajectories. Algorithms
for trajectory representation and clustering are described in
Sec. 4, and prediction is in Sec. 5.

Our evaluation in Sec. 7 shows that exploiting knowledge
of sinks’ motion can greatly decrease transmission costs and
energy use. However, we do require sensor nodes to have
some storage capacity, and we assume that the data deliv-
ered to the mobile sink is delay-tolerant. The sink will col-
lect the data throughout its journey through the network,
possibly introducing some delay in data availability to the
sink.

A

B

Figure 1: Given a set of trajectories, we select an
optimal set of stashing nodes for each sensor node.
This set minimizes transmission cost, but ensures
that no matter which trajectory is used by each mo-
bile node, the data will be collected.

3.1 Protocol
In order to clarify the process of trajectory prediction,

stashing node selection, and routing, we give a high-level
description of the protocol used to negotiate data stashing
for a mobile sink. The protocol assumes that a mobile sink
enters the network and requests data from a set of sensor
nodes.

1. Trajectory prediction. When a mobile sink joins
the network, it beacons in regular intervals. Sensor
nodes in range reply with their IDs and the sink selects
the node whose reply was received with the strongest
signal as its relay node. As the sink moves through
the network, this yields a string of relay node IDs. We
use this string to predict a set of likely trajectories that
most closely match the recorded prefix in the database
of historical trajectories acquired in an off-line learning
phase, as described in Sec. 5. If the trajectory or set of
likely trajectories is known, this step can be skipped.

2. Data request and trajectory announcement.
The mobile sink announces the set of likely trajectories
to the network. The set of trajectories is encoded and
broadcast to the whole network. This message can also
contain a set of sensor nodes whose data are interesting
to the mobile node.

3. Stashing node selection. Upon receiving a sink’s
request for data and a set of likely trajectories, each
sensor node computes a set of stashing nodes that cover
the likely trajectories and minimize the routing cost
required to send the data to the stashing nodes. The
optimization procedure is described in Sec. 6.

4. Data stashing. Sensor nodes forward data to the
stashing nodes, for future delivery to mobile sinks.

5. Data collection. As the mobile node moves through
the network, it regularly beacons to announce its po-
sition. If a stashing node receives a beacon, it starts
transmitting the data stashed at this node to the mo-
bile node.

This protocol is easily extensible to multiple mobile sinks.
We disambiguate between the sinks based on their unique
IDs and discuss scenarios with multiple mobile sinks in Sec. 7.

Note that we assume an underlying point-to-point routing
protocol such as S4 [30], however, we make no assumptions
on the properties of this protocol.

In the following sections, we present the components of
our system. First, we discuss how we represent trajectories,
including a similarity measure on trajectories that allows
us to meaningfully cluster trajectories in Sec. 4. In Sec. 5,
we describe how we predict trajectories using a database of
recorded trajectories (step 1 in Sec. 3.1). Finally, we present
the optimization process for selecting stashing nodes (step 3
in Sec. 3.1) in Sec. 6, before we evaluate results in Sec. 7.

4. TRAJECTORIES AND CLUSTERS
In most scenarios, mobile sinks travel along a fairly lim-

ited set of trajectories. Oftentimes, this is due to obstacles
present in the environment: buildings, bridges, roads, and
walkways constrain the possible trajectories. Even without
any environmental restrictions, there are usually few inter-
esting start- and endpoints for any given journey, and sinks
often follow short(-est) paths, greatly limiting the set of pos-
sible trajectories.

It therefore makes sense to find and exploit the structure
that is present in the likely trajectories through a network.
We will do so by clustering similar trajectories, thus creating
a database of historical trajectories, arranged in clusters of
similar trajectories in the off-line learning phase. In order
to perform practical clustering on trajectories, we require a
trajectory representation, a similarity measure, and a com-
pact representation of a cluster of sequences. The following
sections describe these concepts in turn.

4.1 Trajectory Representation
In the following, we will represent a single trajectory through

the network not in terms of spatial position, but in terms of
the best-connected sensor node at any given time.

Let us consider a mobile sink moving through the network
on a given spatial trajectory. Sending periodic beacons and
listening for replies, the mobile node can record the nodes in
radio range at each beacon time. In each of these sets, we can
determine the best-connected node, for example, by mea-
suring signal strength on the acknowledgment or the beacon
packet. This is the node that the mobile node would asso-
ciate with to send or receive data. We represent trajectories
through the network as a sequence of best-connected nodes:

T = N1N2N3 . . . Nk.

We only record changes in the best-connected node, i. e.
Ni 6= Ni+1. For example, given “s s a a a r r r a n
n g h h h h a a e e e e y y o o”, the correspond-
ing trajectory is represented as T = s a r a n g h a e
y o.

Note that due to imperfect links and radio signal strength
fluctuations in dynamic environments, two node sequences
recorded from the same spatial trajectory are not necessarily
identical, or even of the same length. To compensate for
noisy fluctuations in capturing similar trajectory patterns,
we borrow a similarity measure from computational biology
where functional, structural, or evolutionary relationships
between sequences encoding biological macromolecules have
been thoroughly investigated.

4.2 Similarity Measure
We use a variant of the longest common subsequence met-

ric known from string theory and a variant of the Smith-
Waterman algorithm [35] to calculate this similarity mea-
sure between two sequences.

Informally, to compute the similarity between two sequences
TA = A1 . . . AnA and TB = B1 . . . BnB , we count how many
nodes we have to insert, delete, or substitute in TA to obtain
TB .

We define the partial match function FAB(i, j), which
computes the similarity between the prefixes of length i and
j of TA and TB , A1 . . . Ai and B1 . . . Bj . FAB can be defined
recursively:

FAB(i, 0) = 0 for 0 ≤ i ≤ nA,

FAB(0, j) = 0 for 0 ≤ j ≤ nB , (1)

FAB(i, j) = max
ˆ
FAB(i− 1, j − 1) + s(Ai, Bj),

FAB(i− 1, j) + d,

FAB(i, j − 1) + d,

0
˜
,

where the similarity for insertion or deletion operations, d,
as well as the similarity function on individual nodes are free
parameters. In our experiments, we use d = 0, meaning we
see no similarity in deletion or insertion operations, and we
set s(A, A) = 1 and s(A, B) = 0 ∀A 6= B. With these pa-
rameters, FAB(nA, nB) is the length of the longest common
subsequence in the two sequences.

We often need to compare several partial trajectories A to
a significantly longer complete trajectory B. As it is defined
above, FAB(nA, nB) will be lower the shorter A is, even if
(in the matching part of B) there is a perfect match. To
compensate for differences in length of A or B, we normal-
ize the similarity measure by dividing by the length of the
shorter sequence:

S(A, B) =
FAB(nA, nB)

min(nA, nB)
.

4.3 Cluster Representation
Based on the pairwise similarities between all pairs of se-

quences, we apply a hierarchical clustering method for clas-
sifying each mobility trajectory into a certain number of
characteristic mobility pattern clusters. We use the average
linkage metric which uses the average similarity between
objects in two clusters to determine whether clusters are
merged. For a more detailed description of the hierarchical
clustering method, we refer to [15].

Each cluster consists of a number of similar sequences.
During the prediction stage of our algorithm, we will be
presented with a partial trajectory T and asked to find the
most likely cluster for this trajectory. While it would be pos-
sible to compute average linkage for T and each cluster, this
would entail computing the similarity between T and each
trajectory in the database. To avoid limiting the size of our
database, we instead propose a probabilistic representation
for each cluster, so that we can efficiently query for the best
matching cluster.

We create a representation for our clusters in two steps:
for each cluster, we first align all its sequences and then
create a probabilistic summary of the aligned sequences.

z a y u r s m a

z u r s t a

a r s l t

m t u z y q p b v m

t z q b q m

m q b v n

…

a l o r t z t b o r t

l o z t r z

o z b o t

Clustering

- a - - r s l t

z a y u r s m - a

z - - u r s - t a

m t u z y q p b v m

- t - z - q - b q m

m - - - - q - b v n

…

a l o r t z t b o r t

- l o - - z t - - r z

- - o - - z - b o - t

Alignment

Figure 2: Clustering and alignment procedures.

4.3.1 Multiple Sequence Alignment
Given a set of sequences, multiple sequence alignment al-

gorithms compute how the sequences should be lined up in
order to maximize overlap. Our algorithm for computing
the similarity between two sequences essentially computes a
sequence alignment for these two sequences. In the general
case, however, multiple sequence alignment is an NP-hard
problem [39]. Heuristic alignment methods are widely used
for DNA or protein alignments in bioinformatics [31]. We
use a modified version of ClustalW, one of the most popular
alignment tools [38].

The ClustalW algorithm starts by aligning the most simi-
lar sequences, and progressively adds more distant sequences
one by one. This iterative procedure yields a good alignment
of all sequences. We have changed the alphabet of twenty
amino acids or four DNA base pairs used in computational
biology to the set of node IDs more suitable for our situation.
We also use an unweighted substitution matrix, making each
substitution equally likely. The computation complexity of
ClustalW algorithm is O(N2L2) where N is the number of
sequences and L is the sequence length [2]. To construct
a cluster profile database, the aligned trajectory sequences
need to be stored with storage cost O(NL).

The output of the algorithm is aligned sequences that have
the same length. Gaps in the aligned sequences are marked
with a special gap symbol (see Fig. 2). We compute a prob-
abilistic representation from these aligned sequences within
a cluster.

4.3.2 Probabilistic Cluster Representation
Given the set of aligned sequences of length n, we con-

struct a probabilistic representation for the cluster, which
we call the cluster profile. A profile is a sequence of prob-
ability distributions P = P1 . . . Pn. At each position i, the
probability distribution Pi(A) denotes the probability that
node A appears in position i. This representation can also
be considered a 0th order Markov model of the set of aligned
sequences.

The cluster profiles allow us to efficiently find the most
likely cluster given a partial test sequence. See Fig. 2 for

an illustration of clustering and alignment for profile gener-
ation, and Fig. 3 for a profile example.

5. MOBILITY PREDICTION
If the future trajectory of a mobile sink is unknown, our

system tries to predict its behavior by comparing it to his-
torical data. We show that even limited information about
the future relay nodes can significantly improve routing per-
formance in terms of transmission cost and load balancing.

Specifically, we are given a partial trajectory TM = N1 . . . NnM

recorded after the mobile sink enters the network. We would
like to compute a set of trajectories through the network
that are likely continuations of the recorded partial trajec-
tory. In our experiments, we compute the cluster that TM

most likely belongs to, and use all elements in that cluster
as our set of likely trajectories. For each of the returned
sequences, we have to find the most likely position of the
last node of our partial trajectory TM , so that we can avoid
stashing data to nodes that have already been visited by the
mobile node. In the next two sections, we describe how we
compute the closest cluster (Sec. 5.1), and how we compute
the current position of the mobile node within the returned
set of sequences (Sec. 5.2).

5.1 Cluster matching
Computing the similarity between a trajectory and a prob-

abilistic trajectory profile is very similar to computing the
similarity between two trajectories. In fact, the recursive
definition (1) can be used unaltered, except that the par-
tial match function FTP now operates on a trajectory T =
N1 . . . NnT and a profile P = P1 . . . PnP . We need to change
the definition of the per-node similarity function s(Ni, Pj) to
reflect the likelihood of Ni given the probability distribution
Pj . We choose

s(Ni, Pj) =


ePj(Ni) Pj(Ni) > 0,

f otherwise.

with the parameter values of d = −1, e = 8, and f = −1
which have proven effective in our setting. The parame-
ters in the Smith-Waterman algorithm can be tuned to the
problem, e. g., denser deployments incur higher variability of
relay nodes, thus the parameters need to allow for additional
mismatches and insertions/deletions.

5.2 Alignment
Once we have found the best-matching cluster, we need to

align the partial trajectory with the sequences in the cluster
in order to find the part of the trajectories that will be visited
by the mobile node. All sequences in the cluster are aligned
to each other and the cluster profile using multiple sequence
alignment as described in Sec. 4.3.1. It is therefore sufficient
to find an alignment of the partial trajectory T to the profile
P . In particular, we are interested in the position J that the
last node in the partial trajectory, NnT , is matched to in the
profile P .

Note that the Smith-Waterman algorithm implicitly aligns
two sequences in order to compute their similarity. We can
make this alignment explicit: after we compute FTP (i, j),
the best-matching position of the last node in T , NnT , is
given by J = argmaxj FTP (nT , j).

If the matched cluster contains the set of expanded tra-
jectories {T1 . . . Tk}, all of which have been aligned to be

m t u z y q p b v m

- t - z - q - b q m

m - - - - q - b v n

Cluster Profile Database

€

P1(m) =1, P2(t) =1, ..., P9(v) = 2 /3, P10(m) = 2 /3

€

P9(q) =1/3, P10(n) =1/3

m t z q

Test Sequence

Predicted trajectory nodes
= { {p, b, v, m},
 {b, v, n},
 {b, q, m} }

Figure 3: Sequence alignment of a partial trajectory
with a cluster profile.

of length n as described in Sec. 4.3.1, then the set of tra-
jectories that needs to be considered by the data stashing
optimization is {T1[J, n] . . . Tk[J, n]}. See Fig. 3 for an illus-
tration.

6. OPTIMIZATION
Contrary to traditional routing schemes, data delivery by

stashing does not route to the current position or in fact,
to any single future position of a mobile node. Instead, we
route to all possible trajectories of one or several mobile
nodes. To this end, we choose a set of nodes that covers all
trajectories, but at the same time is as cheap to route to as
possible.

We formulate the problem of data delivery from a data
source to stashing nodes along a set of trajectories as a linear
programming relaxation of a binary integer program. The
proposed scheme finds, for each data source, the optimal
stashing nodes to which to send the data. Each sensor node
can compute the solution to its particular routing problem
independent of the other nodes. In the following, we will as-
sume that a node A is asked to route data to one or several
mobile nodes which travel along a set of possible trajecto-
ries {T1 . . . Tm}. The output of the optimization is a set of
stashing nodes R = {R1 . . . Rk}.

To set up our linear program, let us first define an indi-
cator function I(N) indicating whether our data source has
chosen N to be part of its set of stashing nodes:

I(N) =


1 N ∈ R,
0 otherwise.

Based on this definition, we can write the objective func-
tion to minimize as

f =
X
N

I(N)C(A, N), (2)

where C(·, ·) denotes the routing cost between two nodes.
In our experiments, we use the expected number of trans-
missions on a link as the routing cost for that hop, and the
cost for a path is the sum of the per-hop costs.

In order to make sure that the data can be retrieved
by the mobile sinks, there must be at least one stashing
node on each of the trajectories. Given the trajectories

Figure 4: Typical trajectories of moving buses in
UMass from the DieselNet dataset. When a bus
is associated with a nearby access point, the access
point is shown with a marker.

Ti = Bi
1 . . . Bi

ni
, we can write this condition as a single linear

constraint per trajectory Ti:X
0<j≤ni

I(Bi
j) ≥ 1 (3)

Using these definitions, our problem is to find a set R that
minimizes (2) subject to the constraints (3). This problem
can be solved by a linear program (LP) if we ignore the in-
tegrality constraints. In our case, since the variable I(N) is
either zero or one, we are dealing with the special case of
binary integer programming, which we solve using the bint-
prog optimization toolbox in MATLAB and AMPL/Gurobi.

7. EVALUATION
First we validate our trajectory clustering algorithm using

real-world mobility data traces from UMass DieselNet [4]
(shown in Fig. 4). The traces consist of time series of wireless
access point (AP) IDs that wireless cards installed in buses
connect to. There are 34 buses, 4198 access points, and 789
bus trips in the dataset, covering an area in and around the
UMass campus.

We also test our algorithms in a simulated network de-
ployed in downtown San Francisco. The network consists of
716 sensor nodes in an 830 × 790 m2 area (see Fig. 5). We
generated 20 different trajectories, a subset of which we show
in Fig. 6. Each vehicle moves at a random speed ofN (30, 52)
km/h and broadcasts beacons at 1 Hz. To derive radio sig-
nal strengths for transmitted packets, we use a combined
path-loss and shadowing model with a path-loss exponent
of 3, a reference loss of 46.67 dB, and an additive Gaussian
noise of N (0, 52) in dB. These parameters have been derived
from measurements in urban environments [13]. We model
interference effects using the CPM model [22] in TinyOS 2.1
[1] with meyer-light noise traces.

We implemented our routing algorithm in the TinyOS
TOSSIM simulator [23] using idealized static shortest-path
routing. In our scenario, it is often the case that we route
several packets along similar paths. We use multicast to
reduce redundant packet transmissions. We ran all of the
experiments 10 times, and draw mean values with standard
deviation error bars wherever applicable.

(a) Connectivity graph over 716 sensor
nodes where links are shown for PRR >
75%.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance (m)

P
R

R

(b) Wireless connectivity characteristic
in simulation.

Figure 5: Wireless mesh sensor networks in down-
town San Francisco for simulation. 716 sensor nodes
are distributed over 830× 790 m2.

We evaluate routing in terms of routing cost, packet de-
livery, and load balance metrics, and compare our optimiza-
tion scheme (Stash) to two other protocols: a point-to-point
proactive distance-vector routing protocol (Direct) where
each sensor node delivers its data to the currently connected
relay node of each mobile sink, and the idealized stashing
scheme that is given the perfect set of future locations for
all sinks (Stash(opt)). The Direct protocol compares per-
formance of our optimization scheme to traditional data de-
livery methods. The Stash(opt) scheme serves as an upper
bound on what our algorithm could achieve, given perfect
prediction. Note that this is not only a theoretical bound; it
is achieved if the trajectories of nodes are known in advance
— for example because the mobile sink announces them.

Our evaluation shows that Stash has lower control over-
head than Direct. Both Stash and Direct require flooding
that reaches the entire network to announce the presence
and paths to the mobile sink. However, there is a key dif-
ference: Direct scheme requires continuous flooding to an-
nounce each mobile sink’s current relays, while in the Stash
scheme, the mobile sinks need to announce the anticipated
trajectory node IDs only once. In our 716 node topology, it
took 682 packet transmission to disseminate one packet from
a mobile user to the entire network using Drip dissemina-
tion algorithm in TinyOS 2.x. In our simulation setting, the
Direct method requires one position update every 2 seconds
for the sink speed of 30 km/h. This position update needs to

be disseminated throughout the network. Hence, the control
overhead of Direct for this setting is 341 packet transmission
per second. On the other hand, in Stash, the encoded set
of trajectory nodes can be disseminated throughout the net-
work with a total of 7502 packet transmissions per mobile
sink. 1 Thus, the control overhead of Direct exceeds that
of Stash after 22 seconds of operation and continuously in-
creases at 341 packet transmissions per second while the
overhead for Direct remains constant.

When we evaluate the routing cost, we count how many
packets were used to deliver data from sensor nodes to des-
tination nodes, after sensors learn the identity of the correct
relay or possible relay candidates. In the evaluation below,
we demonstrate that even without considering the control
cost, our Stash scheme requires far fewer data packets than
the Direct scheme.

In all of our experiments, we measure whether packets ar-
rive at the stashing node (or in the direct routing case, at
the current relay node), we do not take into account packet
loss on the last hop, from the stashing or relay node to the
mobile node. Since this affects Stash and Direct equally, it
does not change the comparative analysis, however, it might
lower the overall reliability of both methods. Consequently,
we only count a packet as delivered if it is stashed at a node
that is visited by the mobile node, i. e., if the stashing node
is the best-connected sensor node to the mobile node at any
point in time. In reality, even if the stashing node is never
selected as the best-connected node, it might still be within
range. While this would slightly increase the reliability of
data stashing, we do not believe it would change the quali-
tative results.

Note that the protocols use global knowledge of the net-
work and deliver data to mobile sinks along shortest routes.
A specialized protocol like S4 [30] might be a better choice
for the dynamic routing environment in sensor networks. To
understand the implications of using scalable routing proto-
col such as S4 to route packets to the stashing nodes, we
ran the S4 protocol in TOSSIM on the same topology with
20 beacon nodes in which we ran Stash. We computed the
cost of the paths selected by S4 to route packets from the
sensor nodes to the stashing nodes. The result shows that
the routing cost of Stash using S4 is 1.27 times higher than if
using an ideal shortest path routing. We do not expect this
change in routing algorithm to lead to significantly different
results of our comparative evaluation.

We demonstrate that given even limited information about
future trajectories of sinks, optimization of routing paths
leads to significant improvements in routing performance.

7.1 Clustering and Trajectory Prediction
We tested the hierarchical clustering algorithm described

in Sec. 4 on the DieselNet dataset. The algorithm clustered
the set of 789 bus trips into 23 clusters. Even though we
have no ground truth to compare these clusters against, we
visually evaluated the clusters and found them of good qual-
ity.

To make sure that our prediction would work in real-world
settings, we use the clusters we found in the DieselNet traces
to predict likely trajectories for a partial trajectory (which
was not part of the training data). Since there is no net-

1The size of the encoded trajectory requires 11 packets due
to 110 byte payload limit in TinyOS packets. Thus, it takes
7502(= 682× 11) packet transmissions per mobile sink.

Figure 6: Moving paths of mobile vehicles. Each vehicle moves at a speed of N (30, 52) in km/h. We generate
20 different moving paths including the opposite direction as well. All of 20 vehicles are moving over the
networks while communicating with sensor nodes as in Fig. 5(a).

1 5 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L

fr
ac

ti
o

n
 o

f
co

rr
ec

t
st

as
h

ed
 p

ac
ke

ts

Stash
Stash(opt)

Figure 7: Fraction of packets stashed on nodes that
are actually visited by the mobile node depending
on number of nodes L used for prediction in the
DieselNet dataset.

work data available, we assume that nodes are connected
by perfect links, and that routing cost between two nodes is
proportional to the Euclidean distance between them. While
these idealized assumptions do not allow us to draw conclu-
sions about network-related quality metrics, they help us
evaluate the quality of our prediction algorithm in the con-
text of data stashing. Using the predicted trajectories, and
the cost metric described above, we select stashing nodes
for ten randomly chosen data sources in the network, and
measure what percentage of packets the mobile sink is able
to retrieve. The results in Fig. 7 show that our prediction
method results in excellent stashing node selections for real-
world data.

7.2 Network Performance
We evaluated our network optimization scheme against

the direct point-to-point and perfect stashing algorithms us-
ing the simulated network. In these experiments, all 716
sensor nodes are transmitting data to 1 – 20 mobile sinks.
Given the moving paths of mobile vehicles as shown in Fig. 6,

we constructed trajectory clusters and their profiles. The
average length of a cluster profile is 513.

We first analyze how the number of mobile sinks affects
the performance of these algorithms. Even though the per-
formance of all algorithms degrades as the number of sinks
increases, stashing algorithms are affected less, because they
exploit overlaps in the different trajectories (see Fig. 8).
This effectively prevents network congestion. In fact, data
stashing requires only 19% of packets to deliver the same
data, compared to direct routing. Consequently, congestion
in the network causes direct routing to drop a significant
number of packets while stashing algorithms deliver above
80% of the packets even for 20 sinks (see Fig. 8(b)). The
Stash routing algorithm uses up to 30 retransmissions just
like the state-of-the-art collection protocol CTP [12]. Note
that the performance of stashing algorithms also decreases
due to increased network congestion, but at a much lower
pace.

The performance of the predictive stashing scheme is close
to the upper bound set by perfect prediction, suggesting
that even limited knowledge of the future trajectory can
significantly improve routing performance.

We also evaluate how the length of predicted trajectories
affects performance. If the trajectory prediction is very un-
certain far in the future, or if there are some constraints on
permissible packet delivery delay, it might be preferable not
to use the full predicted trajectories, but only allow stash-
ing at the first W nodes. The results of these experiments
are summarized in Fig. 9. Intuitively, longer trajectories
give the network optimization more choice to select future
stashing nodes. Consequently, sensors are more likely to find
stashing nodes close to their own location, decreasing rout-
ing cost and congestion. Note that our optimization scheme
can only counterbalance the effects of imperfect trajectory
prediction if it is given enough choice. In our experiments,
the break-even point is at W = 10. Achieving high reliabil-
ity and efficiency of data delivery to the sinks, however, has
its cost in increased delay. As W increases, it is more likely
that the stashing nodes are located far in the future along
the sink’s trajectory.

There is another interesting tradeoff between transmis-
sion cost and computation cost depending on W . As W

1 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3
x 10

5

of mobile sinks

o

f
p

ac
ke

ts
 s

en
t

Stash
Stash(opt)
Direct

(a) Routing cost

1 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of mobile sinks

p
ac

ke
t

d
el

iv
er

y
ra

ti
o

Stash
Stash(opt)
Direct

(b) Reliability. Shown are mean, error bars
are standard deviation

Figure 8: Routing cost and delivery reliability de-
pending on the number of mobile sinks.

increases, each sensor node receives a larger number of an-
ticipated trajectory nodes from mobile sinks, and needs to
solve a more complex linear program. In practice, especially
in large networks where we would expect very long trajec-
tories, one would set a limit of W ≈ 100.

The prediction algorithm uses the first L nodes of the sink
trajectory to predict the rest. Fig. 10 shows the performance
of data stashing (we use packet reception ratio as a proxy)
as a function of L. Too little information about the trajec-
tory leads to worse performance as prediction quality suffers.
However, waiting for more information is only useful up to
a point: waiting for information also results in fewer choices
for stashing, since some of the trajectory has already been
visited. In our setting, L = 20 appears optimal.

To evaluate the feasibility of efficiently computing the
stashing nodes through optimization on the sensor node
platform, we measured the running time for solving the bi-
nary integer program described in Sec. 6. The results for
different platforms are shown in Fig. 11: we tested the per-
formance on a Dell Precision 390 PC with Ubuntu Linux and
a 2.4 GHz Core 2 Duo processor, and an embedded platform:
a fit-PC2 with Ubuntu Linux and Intel Atom Z530 1.6GHz.
We also tested two solvers: the bintprog optimization tool-
box in MATLAB and the AMPL/Gurobi solver. The so-

1 10 25 50 75 100 125 150 175
0

0.5

1

1.5

2

2.5

3
x 10

5

W

o

f
p

ac
ke

ts
 s

en
t

Stash
Stash(opt)
Direct

(a) Routing cost

1 10 25 50 75 100 125 150 175
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W

p
ac

ke
t

d
el

iv
er

y
ra

ti
o

Stash
Stash(opt)
Direct

(b) Packet delivery ratio to mobile sinks, rep-
resenting the mean value and error bars of
standard deviation

Figure 9: Routing cost and delivery reliability de-
pending on the number of predicted trajectory
nodes W for 10 mobile sinks.

lution time for the optimization problem each node has to
solve is less than 500 ms on an embedded platform.

A strength of data stashing is implicit load-balancing.
Fig. 12 shows that data stashing spreads packet transmis-
sions more evenly, as opposed to the tree-like routing pat-
terns seen in direct routing to the current position of the
mobile sink.

We have also tested the robustness of our data stashing
scheme against differences in the speed of mobile users. Be-
cause the trajectory matching algorithm implicitly compen-
sates for speed differences, changes in the speed of mobile
users do not affect reliability. After training with a speed of
30 km/h, varying the speed between 30 and 90 km/h in the
testing phase has no significant impact on reliability, which
remains above 80% for 30, 50 km/h and above 70% above
for 70, 90 km/h as shown in Fig. 13.

Finally, we evaluate the storage requirements that data
stashing algorithms impose on sensor nodes (see Fig. 14).
It is likely that data stashing requires more storage than
direct routing schemes; the node stashing most data needs to
store around 200 packets in our scenario. Such peaks occur
at “favorite” stashing locations, such as the intersection of
several trajectories. In our opinion, data storage is generally

1 5 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L

p
ac

ke
t

d
el

iv
er

y
ra

ti
o

Stash
Stash(opt)
Direct

Figure 10: Packet delivery reliability depending on
number of nodes L used for prediction. Shown is
data for 10 mobile sinks, with mean value and error
bars showing standard deviation.

1 2 4 6 8 10
0

50

100

150

200

250

300

350

400

450

500

of mobile sinks

ru
n

n
in

g
 t

im
e

(m
s)

MATLAB (pc)
Gurobi (pc)
Gurobi (emb)

Figure 11: Running time for a sensor node to solve
an optimization problem for stashing in each plat-
form/tool depending on the number of mobile sinks.

less problematic than radio transmission in sensor networks,
making this a good trade-off.

8. CONCLUSION
Energy concerns are extraordinarily important for prac-

tical deployments of sensor networks. Radio transmission
consumes a large part of the limited energy resources of sen-
sor nodes. We have presented a data delivery protocol that
exploits knowledge of the mobility of sinks querying the sen-
sor network to reduce transmission cost. We focused on
the common case that the sensor data is delay-tolerant. In-
stead of directly transmitting to the mobile sink, data can
be stashed along the sink’s trajectory, where it will be picked
up when the mobile sink passes.

Our experiments indicate that our scheme significantly
decreases the total transmission cost for providing the re-
quested information to mobile sinks. We also show that we
can provide much better load-balancing, avoiding collisions
and consuming energy resources evenly throughout the net-
work, leading to longer overall network lifetime. More im-
portantly, we demonstrate that given limited information

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

maximum # of packets sent by node

fr
ac

ti
o

n
 o

f
se

n
so

r
n

o
d

es

Stash
Stash(opt)
Direct

Figure 12: Fraction of nodes sending less than a
certain number of packets (for 10 mobile sinks case).

30 50 70 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

moving speed (km/h)

p
ac

ke
t

d
el

iv
er

y
ra

ti
o

Stash
Stash(opt)

Figure 13: Packet delivery reliability depending on
speed of mobile users. Shown is data for 10 mobile
sinks, mean value and error bars showing standard
deviation.

about future trajectories of sinks, optimization of routing
paths leads to significant improvements in routing perfor-
mance. Our proposed method provides not only a mobile
routing protocol, but rather a way to improve any existing
protocol by learning and exploiting mobility patterns.

Currently, we only select stashing nodes once and do not
monitor the progress of the mobile sinks as they move through
the network. In scenarios where prediction is more difficult,
recomputing the set of stashing nodes and correcting pre-
diction errors by re-stashing at newly predicted nodes could
significantly increase robustness.

Although our method can take into account multiple mo-
bile sinks without problems, there is currently no protocol
that accounts for the possibility of announcing several sinks
at once. This straightforward extension of our method would
be useful in several scenarios.

The trajectory clustering algorithm is currently executed
in an off-line learning phase. However, our proposed scheme
does not necessarily require a separate off-line phase. As
each mobile device keeps updating its own trajectory model,
each mobile node can predict its own anticipated trajectory
using a local model. If the network size is very large, it
may not be feasible to maintain huge databases of mobility
trajectories in a mobile device. In the future, we anticipate

100 200 300 400 500 600 700
0

20

40

60

80

100

120

140

160

180

node ID

o

f
st

as
h

ed
 p

ac
ke

ts

Figure 14: Storage overhead over the sensor nodes
for 10 mobile sinks.

working on distributed or hierarchical computation and stor-
age of the mobility models.

Interesting directions for algorithmic improvements include
a more sophisticated clustering method that explicitly repre-
sents partial trajectories and is able to partition long trajec-
tories into short pieces that can be clustered more efficiently.
A multi-tier or hierarchical approach to deal with extremely
large networks is another avenue for future work.

9. ACKNOWLEDGMENTS
The authors would like to thank Prof. Serafim Batzoglou

and Chuong (Tom) Do for useful discussions and comments.
We gratefully acknowledge the support of NSF grants ITR
0205671, CNS 0619926, CNS 0626151, and ARO grants W911NF-
06-1-0275, W911NF-07-2-0027, as well as a fellowship from
the Samsung Scholarship.

10. REFERENCES
[1] TinyOS 2.1.0. http://www.tinyos.net/tinyos-2.1.0/.

[2] A. Agrawal and S. K. Khaitan. A new heuristic for
multiple sequence alignment. In Proceedings of the
IEEE International Conference Electro/Information
Technology, 2008.

[3] D. Ashbrook and T. Starner. Using gps to learn
significant locations and predict movement across
multiple users. Personal and Ubiquitous Computing,
Jan 2003.

[4] N. Banerjee, M. D. Corner, D. Towsley, and B. N.
Levine. Relays, base stations, and meshes: enhancing
mobile networks with infrastructure. In MobiCom ’08:
Proceedings of the 14th ACM international conference
on Mobile computing and networking, pages 81–91,
New York, NY, USA, 2008. ACM.

[5] M. Bayir, M. Demirbas, and N. Eagle. Mobility
profiler: A framework for discovering mobile user
profiles (technical report version). cse.buffalo.edu,
2008.

[6] A. Chakrabarti, A. Sabharwal, and B. Aazhang. Using
predictable observer mobility for power efficient design
of sensor networks. In IPSN ’03: Proceedings of the
2nd International Workshop on Information
Processing in Sensor Networks, Palo Alto, CA, USA,
2003.

[7] J.-H. Chang and L. Tassiulas. Maximum lifetime
routing in wireless sensor networks. IEEE/ACM
Trans. Netw., 12(4):609–619, 2004.

[8] D. S. J. De Couto, D. Aguayo, J. Bicket, and
R. Morris. A high-throughput path metric for
multi-hop wireless routing. In MobiCom ’03:
Proceedings of the 9th annual international conference
on Mobile computing and networking, pages 134–146,
New York, NY, USA, 2003. ACM.

[9] J. Froehlich and J. Krumm. Route prediction from
trip observations. SAE SP, Jan 2008.

[10] S. Gandham, M. Dawande, R. Prakash, and
Subbarayan. Energy efficient schemes for wireless
sensor networks with multiple mobile base stations. In
GlobeCom ’03: Proceedings of the Global
Communications Conference, San Francisco, CA,
USA, 2003.

[11] J. Ghosh, M. Beal, H. Ngo, and C. Qiao. On profiling
mobility and predicting locations of campus-wide
wireless network users. Technical Report: State
University of New York at Buffalo, Jan 2005.

[12] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection Tree Protocol. In Proceedings of
the 7th ACM Conference on Embedded Networked
Sensor Systems (SenSys’09), November 2009.

[13] A. Goldsmith. Wireless Communications. Cambridge
University Press, New York, NY, USA, 2005.

[14] D. Johnson, D. Maltz, and J. Broch. DSR: The
dynamic source routing protocol for multihop wireless
ad hoc networks. In Ad Hoc Networking, 2001.

[15] S. Johnson. Hierarchical clustering schemes.
Psychometrika, 32(3):241–254, September 1967.

[16] H. S. Kim, T. F. Abdelzaher, and W. H. Kwon.
Minimum-energy asynchronous dissemination to
mobile sinks in wireless sensor networks. In SenSys
’03: Proceedings of the 1st international conference on
Embedded networked sensor systems, pages 193–204,
New York, NY, USA, 2003. ACM.

[17] D. Kotz, T. Henderson, and I. Abyzov. CRAWDAD
data set dartmouth/campus (v. 2004-12-18).
Downloaded from
http://www.crawdad.org/dartmouth/campus, Dec.
2004.

[18] J. Krumm. Real time destination prediction based on
efficient routes. Society of Automotive Engineers
(SAE) 2006 World Congress, Jan 2006.

[19] B. Kusy, H. Lee, M. Wicke, N. Milosavljevic, and
L. Guibas. Predictive qos routing to mobile sinks in
wireless sensor networks. In IPSN ’09: Proceedings of
the 2009 International Conference on Information
Processing in Sensor Networks, pages 109–120,
Washington, DC, USA, 2009. IEEE Computer Society.

[20] K. Laasonen. Clustering and prediction of mobile user
routes from cellular data. LECTURE NOTES IN
COMPUTER SCIENCE, Jan 2005.

[21] K. Laasonen, M. Raento, and H. Toivonen. Adaptive
on-device location recognition. LECTURE NOTES IN
COMPUTER SCIENCE, Jan 2004.

[22] H. Lee, A. Cerpa, and P. Levis. Improving wireless
simulation through noise modeling. In IPSN ’07:
Proceedings of the 6th international conference on

Information processing in sensor networks, pages
21–30, New York, NY, USA, 2007. ACM Press.

[23] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:
Simulating large wireless sensor networks of tinyos
motes. In Proceedings of the First ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2003.

[24] Y. Li, J. Harms, and R. Holte. Optimal
traffic-oblivious energy-aware routing for multihop
wireless networks. In INFOCOM ’06: Proceedings of
the 26th Conference on Computer Communications,
Barcelona, Spain, 2006.

[25] L. Liao, D. Fox, and H. Kautz. Extracting places and
activities from gps traces using hierarchical
conditional random fields. The International Journal
of Robotics Research, Jan 2007.

[26] L. Liao, D. Patterson, D. Fox, and H. Kautz. Learning
and inferring transportation routines. Artificial
Intelligence, Jan 2007.

[27] L. Lin, N. B. Shroff, and R. Srikant. Asymptotically
optimal energy-aware routing for multihop wireless
networks with renewable energy sources. IEEE/ACM
Trans. Netw., 15(5):1021–1034, 2007.

[28] J. Luo and J.-P. Hubaux. Joint mobility and routing
for lifetime elongation in wireless sensor networks. In
INFOCOM ’05: Proceedings of the 25th Conference on
Computer Communications, Miami, FL, USA, 2005.

[29] J. Luo, J. Panchard, M. Piorkowski, M. Grossglauser,
and J.-P. Hubaux. Mobiroute: Routing towards a
mobile sink for improving lifetime in sensor networks.
In DCOSS ’06: Proceedings of the International
Conference on Distributed Computing in Sensor
Systems, San Francisco, CA, USA, 2006.

[30] Y. Mao, F. Wang, L. Qiu, S. S. Lam, and J. M. Smith.
S4: Small state and small stretch routing protocol for
large wireless sensor networks. In 4th Symposium on
Networked Systems Design and Implementation (NSDI
2007), 2007.

[31] C. Notredame. Recent progress in multiple sequence
alignment: a survey. Pharmacogenomics, 3(1):131–144,
January 2002.

[32] P. Nurmi and J. Koolwaaij. Identifying meaningful
locations. Mobile and Ubiquitous Systems: Networking
& Services, 2006 Third Annual International
Conference on, pages 1 – 8, Jul 2006.

[33] C. E. Perkins, E. M. Belding-Royer, and S. Das. Ad
hoc on demand distance vector (AODV) routing.
IETF Internet draft, draft-ietf-manet-aodv-09.txt,
November 2001 (Work in Progress).

[34] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data
mules: Modeling a three-tier architecture for sparse
sensor networks. In IEEE SNPA Workshop, pages
30–41, 2003.

[35] T. F. Smith and M. S. Waterman. Identification of
common molecular subsequences. Journal of Molecular
Biology, 147(1):195–197, March 1981.

[36] L. Song, U. Deshpande, U. Kozat, D. Kotz, and
R. Jain. Predictability of wlan mobility and its effects
on bandwidth provisioning. INFOCOM 2006. 25th
IEEE International Conference on Computer
Communications. Proceedings, pages 1 – 13, Apr 2006.

[37] L. Song, D. Kotz, R. Jain, and X. He. Evaluating
location predictors with extensive wi-fi mobility data.

INFOCOM 2004. Twenty-third AnnualJoint
Conference of the IEEE Computer and
Communications Societies, 2:1414 – 1424 vol.2, Feb
2004.

[38] J. D. Thompson, D. G. Higgins, and T. J. Gibson.
Clustal w: improving the sensitivity of progressive
multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight
matrix choice. Nucleic Acids Res, 22(22):4673–4680,
November 1994.

[39] L. Wang and T. Jiang. On the complexity of multiple
sequence alignment. Journal of Computational
Biology, 1(4):337–348, 1994.

[40] R. Wohlers, N. Trigoni, R. Zhang, and S. Ellwood.
Twinroute: Energy-efficient data collection in fixed
sensor networks with mobile sinks. In MDM ’09:
Proceedings of the 2009 Tenth International
Conference on Mobile Data Management: Systems,
Services and Middleware, pages 192–201, Washington,
DC, USA, 2009. IEEE Computer Society.

[41] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A
two-tier data dissemination model for large-scale
wireless sensor networks. In MobiCom ’02:
Proceedings of the 8th annual international conference
on Mobile computing and networking, pages 148–159,
New York, NY, USA, 2002. ACM.

[42] J. Yin, Q. Yang, D. Shen, and Z.-N. Li. Activity
recognition via user-trace segmentation. Transactions
on Sensor Networks (TOSN), 4(4), Aug 2008.

	Introduction
	Related Work
	Overview
	Protocol

	Trajectories and Clusters
	Trajectory Representation
	Similarity Measure
	Cluster Representation
	Multiple Sequence Alignment
	Probabilistic Cluster Representation

	Mobility Prediction
	Cluster matching
	Alignment

	Optimization
	Evaluation
	Clustering and Trajectory Prediction
	Network Performance

	Conclusion
	Acknowledgments
	References

