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Abstract
In this poster, we present a novel approach to study and

reveal network protocol information from radio activities
instrumentation in wireless sensor network. Recent stud-
ies have analyzed radio activities; however, most of these
studies focus on estimating energy consumption, since radio
chip usually dominates the energy consumption of nodes. In
our work, we analyze radio activities with a different pur-
pose, which aims to reveal network protocols and applica-
tion workloads by an analysis of fine-grained low level ra-
dio activities on the nodes. We design a feature called Ra-
dio Awake Length Counter and use it to classify and reveal
network activity. Results from experiments on a real world
testbed indicate that our approach can achieve up to 97%
accuracy to identify the routing protocols, average 85% ac-
curacy to distinguish application workloads.
1 Introduction

Identifying abnormal node operation and detecting com-
promised nodes in a network has been explored in recent
years[1]. Doing so using radio activities monitoring is one
effective approach [2][4]. Although detection of anomalies
or validation of node activities is useful, we take radio activ-
ities instrumentation one step further by asking: could radio
activities instrumentation be used to understand various as-
pects of network operation? For example, can we tell what
protocol is running in the network, especially when the hard-
ware and software on smart devices are not open source? Our
results from analyzing one-million radio activity points indi-
cate that radio activities and carefully designed features can
not only reveal information about the network protocol but
also useful information about the application workload.
2 Feature Design

We first describe three commonly used features, then
compare them against our proposed feature. The experimen-
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Figure 1: Distribution of RALC of four protocols in three
groups during a 3600s experiment length.

tal results show the feature of radio activities can outper-
form features extracted from energy consumption to reveal
the network information.

• Energy Consumption (EC)
Mean, Variance and Standard Deviation values of en-
ergy consumption within a 10s window.

• Statistics of Awake Nodes (SAN)
Mean, Variance and Standard Deviation values of the
number of awake nodes within a 10s window size.

• Number of Snooped Packets (NSP)
NSP is the number of packets snooped per second in a
sliding window of 10s, with 1s step size. NSP can be
determined by deploying snooper nodes in the network.

• Radio Awake Length Counter (RALC)
We define Radio Awake Length (RAL) as the total time
that a node stayed in awake mode during each awake-
sleep cycles. Based on our experiment observations of
the radio awake length to perform send and receive op-
erations, we use the threshold values 0.025s and 0.10s
to divide the RAL into three ranges. Within 10s dis-
joint window size, we count the total number of RAL in
each of these ranges, and use these three counters as the
RALC. The three counters are named as T1,T2 and T3.
Figure 1 shows each protocol has its unique distribution
of RALC in above three counters.

3 Evaluation
In this section, we describe our results on how accurately

we are able to infer network and application characteristics
using features derived from radio activities instrumentation.
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Figure 2: TPR to identify two sets of protocols using J48
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Figure 3: TPR to distinguish across four protocols using four
classification algorithms, RALC reports highest accuracy.

3.1 Experiment Settings
We evaluate the design of our radio activities instrumenta-

tion and classification accuracy of our proposed RALC fea-
ture by doing extensive experiments on FlockLab [3]. In our
experiments, we consider four different protocols, two col-
lection protocols (CTP and MultihopLQI) and two dissem-
ination protocols (Drip and DHV). The evaluation includes
more than 30 test cases across different topologies, various
application layer packet sizes and transmission intervals.

To evaluate the robustness of our proposed approach
across various algorithms, we use four classify algorithms
(J48, Logistic, LibSVM and NaiveBayes). 90% of samples
are used for training and 10% used for testing. We perform
10-fold cross-validation to compute the accuracy of different
classifiers, the accuracy results are averaged across the 10
folds.
3.2 Identify Routing Protocols

First we evaluate the ability of the four features mentioned
in section 2 to distinguish one protocol from two collec-
tion protocols. The result is shown in figure 2 left part. It
shows RALC outperforms other features by 38% on average.
Similar experiments performed on dissemination is shown in
figure2 right side, RALC is 10% better than SAN feature. In
the second step, we put all four protocols together, figure 3
again confirms RALC has the highest classification accuracy
and most stable performance across 4 features. Experiments
verified RALC achieves more than 90% accuracy to distin-
guish the selected four protocols. RALC achieved similar
results with different topologies, packet transmission rates
and payload sizes.
3.3 Determine Application Workloads

Next, we evaluate the ability of RALC to determine and
distinguish between different application workloads, includ-
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(a) Packet transmission interval 5s,
10s, 20s on CTP.
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(b) 6 combinations of packet size and
routing protocols.

Figure 4: TPR to distinguish application workloads.

ing various application layer packet transmission interval and
packet size. Figure 4(a) shows the True Positive Rate (TPR)
for three different packet transmission intervals. The average
TPR is above 80% with RALC calculated using 10s window
size. When RALC is calculated with 30s window size, the
average TPR increases to 96.5%. Figure 4(b) shows that,
when we put the radio activity data from 2 protocols with
3 packet sizes altogether, RALC is able to distinguish 1 of
the 6 combinations of packet size and routing protocols with
more than 83% accuracy in terms of average TPR.
4 Conclusions

In this poster, we demonstrated that radio activities instru-
mentation can be a powerful tool to study and reveal infor-
mation about the network protocol and application workload.
We designed features for classification and analysis based
on radio activities instrumentation. We found that the fea-
ture called Radio Awake Length Counter is especially versa-
tile in revealing information across protocols and application
workload. Our extensive experimental results performed on
real world testbed suggest that RALC can outperform exist-
ing commonly used features in terms of its ability to reliably
identify network and application characteristics.
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