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ABSTRACT

We examine the ability of networks formed by mobile sensor

nodes to diffuse information in the case when communication

is only possible during opportunistic encounters. Our setting

assumes that mobile nodes are continuously sensing the world

and acquiring new information. We form an abstract model

of this situation and show by theoretical analysis, simulation,

and real mobility data that the diffusion of information in

this setting cannot be as efficient as when we allow arbitrary

contact patterns between the nodes with the same overall

contact statistics. This establishes a fundamental asymptotic

limitation on the information diffusion capacity of such op-

portunistic mobile sensor networks — the encounter patterns

arising out of physical motions in a geometric space are not

ideal for information diffusion.
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1 INTRODUCTION

In this paper we study mobile sensor nodes, called agents,

sharing information through opportunistic encounters with

each other during their motion. Such nodes form an ad hoc

mobile network in which communication is possible only

when two agents are in sufficient proximity — no other global

communication infrastructure is presumed available. Our goal

is to understand what are the capabilities and limits of such

networks to diffuse information or, more precisely, to quantify

how much of the information sensed by each mobile node can

ultimately be delivered to every other node. To make this

fundamental question tractable, we make certain assumptions

that make our model at the same time simple and realistic

but also different from prior models used in estimating the

capacity of mobile networks:

• Every mobile agent is a sensor and is continuously

acquiring information about the world. Unlike gossip

models where the information (secret) is known in

advance to one or more agents [16], in our setting new

information enters the system continuously, effectively

guaranteeing that perfect diffusion is impossible in

most cases.

• When two agents communicate, they may share any

information observed directly by them, as well as in-

formation conveyed to them by other agents during

earlier encounters. While such an assumption may be

unrealistic in certain settings (e.g. continuous video

acquisition), in many practical situations information

can be encoded compactly enough for such complete

exchanges to occur (e.g. for scalar measurements like

temperature, etc.).

• Communication happens in discrete events between

pairs of agents. Here we assume that only one pair

of agents communicates at a time — this assumption

is not fundamental, but is convenient for theoretical

analysis. We will extend the model to broadcast com-

munication in real trace analysis.

To make the problem more amenable to discrete analysis,

we lump all the information collected by a mobile agent be-

tween two successive encounters with other agents into what
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we call an information packet. Agents always communicate in

entire information packets and we use such packet counts to

measure the ability of our mobile sensor networks to diffuse

information.

Clearly it is the temporal pattern of encounter events

between the mobile agents that gates the capability of the

system to spread information around as well as the speed with

which this happens. For our analysis we assume that, as the

mobile agents move along their trajectories, a finite number of

encounter events occur, and then the system reaches its final

state and stops. Ideally, we would like every agent to know

in the end all the information packets generated by all the

other agents, but this is clearly infeasible — as information

collected in the very recent past may have no opportunity

to diffuse to far away agents when the system is near or

reaches its final state. Nevertheless, it is this gold standard

we would like to use to measure the capability of a mobile

sensor network to diffuse information.

In our setting the physical motions of the mobile agents

determine the encounter patterns. In general, higher mobile

agent density and higher speeds will lead to more frequent

encounter events and therefore the information diffuses more

rapidly [5]. In [4], the authors present a nice scheme for fitting

mobile ad hoc networks and disruption tolerant networks into

a continuum, according to the density and speed criteria just

mentioned. Their high-level classification, however, leaves

open the question of how the actual patterns of encounters

and communications affect the ability of the network to

diffuse information, even if the first-order communication

statistics are fixed (e.g. how many times each particular pair

of nodes communicates). This is exactly the question we

propose to initiate a study of in this paper: the connection

and dependencies between (1) mobility patterns of the agents

in a geometric sense, (2) encounter and communication events

among the agents as enabled by the mobility, and (3) the

capacity of the agent network to diffuse sensor information.

From a theoretical point of view it makes sense to first look

at a simple and uniform communication setting: we assume

that we have n mobile agents and that each of the
(
n
2

)
distinct

pairs of agents communicates exactly once during the course

of the scenario we are interested in. Thus each agent has

n− 1 encounters and generates a total of n packets of sensor

data. The ideal is that in the end each agent knows all n2

information packets generated by all n agents, and therefore

we hope for at most n3 (information packet, agent) pair

deliveries. Specifically, if S is the total number of successful

deliveries, we look at S/n3 as a measure of the capacity of

the network to diffuse information. We examine a number of

different scenario classes:

(1) Combinatorial setting. In these scenarios we allow

the time ordering of the events to be an arbitrary per-

mutation of
(
n
2

)
pairwise communications, which means

there is no geometric constraint (e.g. two agents may

communicate using phone or internet, even if they are

very far from each other). Since this is a huge space

with much variability according to the specific pattern,

we focus on an average case analysis, where we con-

sider each of the
(
n
2

)
! temporal event permutations as

equally likely. We show that in the random combina-

torial setting, the capacity asymptotically tends to 1

(as n→∞) and the variance is low — in other words,

with high probability, all the information packets get

delivered to all agents except for a vanishingly small

fraction.

(2) Geometric setting. These are the true scenarios we

are after analyzing. Here each mobile agent follows a

path in the plane and encounters only occur when two

agents are at the same point at the same time. We

analyze a simple setting where each agent moves along

an infinite straight line in the plane, and the motions

of the agents are coordinated so as to guarantee that

communications happen at all arrangement vertices.

Again, we define an appropriate notion of a random

arrangement and look at average case capacity, to

factor out variability due to geometric reasons. We

show that in the random geometric case, there is a

hard asymptotic upper bound κ < 1 on the capacity.

So no matter how large the network gets, some fraction

of the information will not get through.

We also find that the separation between combinatorial

setting and geometric line arrangement case is more

generally true for arbitrary but “reasonable” geometric

motions in the plane (e.g. for bounded degree algebraic

motions, or piecewise linear motions with bounded

number of waypoints). This implies the number of

realizable communication patterns in such geometric

settings is still a vanishingly small fraction of those

possible in the combinatorial setting.

(3) Realistic setting. We examine GPS traces of real

vehicles under a slightly relaxed communication model

— we assume two vehicles can exchange information

if they are within a fixed communication range [3].

We show that in the realistic setting the performance

is close to the idealized geometric setting: for any

fixed-size time window, the capacity is asymptotically

bounded by some constant κ < 1, while κ increases for

bigger time window.
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2 RELATED WORK

• Setting. There is a vast body of prior work character-

izing the limits of information delivery in wireless and

mobile ad hoc networks [1, 8, 9, 13, 14]. These studies

try to understand how fast and how efficiently infor-

mation available at the beginning of time on some or

all nodes can propagate to the rest of the network. We

instead study the problem of information dissemination

in a different setting: mobile ad hoc sensor networks.

Given that the nodes are continuously acquiring new

information through sensing, we try to understand how

quickly and what fraction of the total information (in

space and time) propagates to the rest of the network.

• Routing algorithm. We use a gossip protocol to

study the information delivery limits in combinatorial

networks. The gossip communication models, some-

times also called epidemic protocols, are widely used

in social networks [16]. Some gossip protocols com-

pute aggregates [12], while others exchange informa-

tion without processing it [10]. We focus on the latter

class of gossip protocols. Gossip algorithms can be

used in static networks [6], intermittently connected

networks [19], or mobile ad hoc networks [17]. These

gossip protocols are one of many classes of protocols

one could use to disseminate information: proactive and

reactive protocols [11], data muling [7], and VANET

routing [18]. We analyze a generalized version of such

protocols in the context of mobile nodes that continu-

ously generate new information to be shared with rest

of the network.

• Mobility model. Most analysis of information deliv-

ery in mobile ad hoc networks uses some variation of

the random waypoint model [2]. Random waypoint has

properties that make it amenable to analysis, while

it may not be the best model to use when trying to

understand the limits of information delivery [20]. Our

analysis in combinatorial networks allows us to under-

stand upper bounds on information diffusion while our

geometric analysis focuses on low-complexity geometric

motions which more realistically model the motions

of vehicles on roads, etc. Thus, we complement prior

work by analyzing information delivery in new network

and mobility models.

• Information delivery bounds. In gossip setting,

nodes require Θ(n2) message exchanges for network-

wide information dissemination. With m mobile nodes,

the average number of exchanges for convergence within

ε of the true result drops to Θ(n2 log ε−1/m) [17]. These

analyses describe the bounds on number of message

exchanges, which can be a proxy for convergence time

or information delivery latency. We ask a different

question — given unlimited time for convergence or

information delivery, what is the achievable bound on

the fraction of nodes that will receive the information

continuously generated by all the nodes in the mobile

ad hoc network?

3 THEORETICAL UNDERPINNINGS

In this section, we introduce two communication models:

combinatorial and geometric settings, and develop theoretical

results for information diffusion in these networks.

3.1 Combinatorial setting

Suppose there are n nodes, each representing a mobile agent

in the network. All nodes continuously acquire information

and communicate everything they know when a communica-

tion event happens. In the combinatorial setting, we assume

that each pair of nodes communicates exactly once. The or-

dering of these communications is random, so that each of

the
(
n
2

)
! possible orderings of the communications between

the nodes is equally likely.

As described in Section 1, we lump all the information

collected by a node between two successive encounters with

other nodes into an information packet. Each node has n−
1 encounters and generates a total of n packets of data.

Note that the last information packet cannot be delivered

to any other node because the data is collected after all

encounters. Thus, more precisely, we only consider the first

n− 1 information packets for every node, and measure the

diffusion of n(n− 1) information items in the network.

Furthermore, when two nodes i and j encounter, they

share all information packets they have. Note that if the latest

information packet node i generated just before this encounter

can be delivered to some other node k, using subsequent inter-

node communications, then the latest information packet

node j generated just before this encounter can also be

delivered to node k along the same path. Thus, we can further

merge these two information packets into one item, denoted

as information packet {i, j} (unordered pair, see Figure 1).

As a result, there are n nodes and
(
n
2

)
information packets in

total, and therefore in the end we can expect at most n
(
n
2

)
information item deliveries. We then define the following

notion to measure the ability of mobile sensor networks to

diffuse information:

Definition 3.1. Given an ordering of all
(
n
2

)
pairwise com-

munications between n nodes, the information packet {i, j}
can reach node k if there exists a sequence of nodes {m−1 = i,

m0 = j, m1, . . ., mh−1, mh = k}, or {m−1 = j, m0 = i,

m1, . . ., mh−1, mh = k} such that all successive pairs
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Figure 1: An arrangement of 5 lines. All information acquired is lumped into packets (pairs of segments with

same color) at arrangement vertices. Information packet at v4,5 can reach line �3 in 2 hops (v4,5 → v2,4 → v2,3),

but it cannot reach line �1.

{m−1,m0}, {m0,m1}, . . ., {mh−1,mh} appear as a sub-

sequence in the ordering of all
(
n
2

)
pairwise communica-

tions. If S is the total number of reachable ({i, j}, k) pairs

(1 ≤ i < j ≤ n, 1 ≤ k ≤ n), then the capacity is S

n(n2)
.

Theorem 3.2. In the combinatorial setting, the capacity

is 1−O(log2n/n) with high probability.

Proof. We partition the sequence of all
(
n
2

)
pairwise com-

munications into groups of size s = �n log n�. For any node

i (1 ≤ i ≤ n), the probability that i does not appear in one

group is

((
n−1
2 )
s )

((
n
2)
s )

=
s−1∏
i=0

(n−1
2 )−i

(n2)−i

<
s−1∏
i=0

(n−1
2 )
(n2)

=
(
1− 2

n

)s
≤ (

1− 2
n

)n logn

< e−2 logn

= 1
n2

The probability that all n nodes appear in one group is at

least

P

(
n⋂

i=1

{node i appears in the group}
)

= 1− P

(
n⋃

i=1

{node i does not appear in the group}
)

≥ 1−
n∑

i=1

P (node i does not appear in the group)

> 1−
n∑

i=1

1
n2

= 1− 1
n

which means every node has been touched with high prob-

ability. Thus, each group can be considered as one round

in the gossip algorithm, where every node communicates to

some random partner [16].

In the original form of gossip algorithm, a secret can be

diffused to all n nodes in O(log n) rounds with high probabil-

ity. So, each information packet {i, j} from communication

pairs before the last O(log n) groups can be delivered to all

nodes in the end with probability at least

P

(
O(logn)⋂

i=1

{i -th to last group is a gossip round}
)

= 1− P

(
O(logn)⋃

i=1

{i -th to last group is not a gossip round}
)

≥ 1−
O(logn)∑

i=1

P (i -th to last group is not a gossip round)

> 1−
O(logn)∑

i=1

1
n

= 1−O
(
logn

n

)
that all the last O(log n) groups are gossip rounds. Therefore,

the capacity is at least

n
((

n
2

)− sO(log n)
)

n
(
n
2

) = 1−O

(
log2n

n

)

with high probability. �

Corollary 3.3. In the combinatorial setting, the variance

of capacity is O(log2n/n).

Proof. Let X be the capacity in a random combinatorial

network. Since X ≤ 1, we have

Var (X) = E (X2)− (E (X))2

≤ 1−
(
1−O

(
log2n

n

))2
= O

(
log2n

n

)
�
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We next look at a more refined measure of how the in-

formation packets get to their destinations: minimum hop

count, which is defined as the minimum number of times the

information packet has to be transferred from one node to

another along any path to the destination (e.g. if the short-

est sequence of pairwise communications from {i, j} to k is

{i, j} → {j, p} → {p, q} → {q, k}, then the minimum hop

count for ({i, j}, k) is 3).
Theorem 3.4. In the combinatorial setting, 2/3 of the

information packet deliveries need at most 1 hop.

Proof. Given an information packet {i, j} and a node k,

{i, j} can reach k in 0 hops if and only if k = i or k = j.

So, the number of reachable ({i, j}, k) pairs with 0 hops is

2
(
n
2

)
. Suppose {i, j} can reach k in 1 hop where i, j, k are

all distinct, then either node i takes the information packet

{i, j} directly to the encounter at {i, k}, or node j takes the

information packet {i, j} directly to the encounter at {j, k}.
So, we can ignore all other n − 3 nodes and only consider

the combinatorial network for nodes i, j and k. Note that

for any ordering of pairwise communications {i, j}, {j, k}
and {k, i}, exactly 2 pairs from ({i, j}, k), ({j, k}, i) and

({k, i}, j) are reachable: only the information packet from the

last communication pair cannot reach the third node. Thus,

the number of reachable ({i, j}, k) pairs with 1 hop is 2
(
n
3

)
.

Therefore,
2
(
n
2

)
+ 2
(
n
3

)
n
(
n
2

) >
2

3

of the information packet deliveries need at most 1 hop. �

3.2 Geometric setting

In the geometric setting, since the ordering of all pairwise

communications is constrained by the physical motions of

the nodes, only certain communication patterns are possible.

In this section, we consider a simple line arrangement model

and analyze information diffusion.

We assume that each node moves along an infinite straight

line in the plane, and all n lines L = {�1, �2, . . ., �n} form an

arrangement in general position. Two nodes only encounter

each other if they are at the same point at the same time.

To make the setting as conducive to diffusion as possible,

we coordinate the motions of all nodes by sweeping the ar-

rangement from left to right with a vertical line in the plane.

During the sweeping procedure, all nodes move according

to the intersections of their lines and the sweep line. These

coordinated motions guarantee that encounters occur at all(
n
2

)
arrangement vertices, and thus each pair of nodes com-

municates exactly once.

By analogy with the combinatorial setting, we lump the

information acquired by all nodes into information packets

{i, j} at arrangement vertices vi,j = �i ∩ �j . Geometrically,

we say a vertex vi,j can reach a line �k if there exists an

x-monotone path (directed from left to right) from vi,j to

some vertex vk,h (1 ≤ h ≤ n) on line �k. This means the

information packet {i, j} can be delivered to node k, using

subsequent inter-node communications. The minimum hop

count for a reachable (vi,j , �k) pair is equal to the number of

times the packet changes lines along the min-link path from

vi,j to �k.

To define a random line, we take a point (a, b) randomly

sampled from region (a−, a+) × (b−, b+), and then dualize

this point to the line y = ax+ b. A random arrangement of

n lines is obtained by repeating this i.i.d. process n times.

Here a− < a+ and b− < b+ are arbitrary real numbers. Note

that since we sweep the arrangement from left to right, a

and b can also be considered as the speed and position (at

time x = 0) of the node, which are randomly sampled from

their respective ranges.

Theorem 3.5. In the geometric setting, the average ca-

pacity is bounded by κ ≤ 5/6.

Proof. For any a− < s < a+, let

Rs =
{
(x, y) | x > 0, b− + a−x < y < b− + sx

}
We first claim that a vertex v in region Rs cannot reach a line

� with a slope higher than s (see Figure 2). Otherwise, there

must exist another line �′ below v with a slope higher than

the slope of �, which takes the information packet at vertex

v to line �. However, such a line �′ must have a y-intercept

less than b−, which is out of the range of b.

We next compute the probability P (s) that v appears in

Rs. Let

v =

(
b1 − b2
a2 − a1

,
a2b1 − a1b2
a2 − a1

)

be the intersection of two random lines y = a1x + b1 and

y = a2x+b2. Assuming a1 < a2, from x > 0 and y < b−+sx,

we have

b1 > b2 and a1 >
a2(b1 − b−) + s(b2 − b1)

b2 − b−

Since a2 > a1 > a2(b1−b−)+s(b2−b1)

b2−b− , we also have a2 < s. So,

all random variables need to satisfy:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b− < b2 < b+

b2 < b1 < b+

a− < a2 < s

max
(
a−, a2(b1−b−)+s(b2−b1)

b2−b−

)
< a1 < a2

41



Figure 2: Vertex v in region Rs cannot reach line � with a slope higher than s.

P (s) = P (s | a1 < a2) + P (s | a1 > a2)

= 2 P (s | a1 < a2)

= 2

(a+−a−)2(b+−b−)2

∫ b+

b−
∫ b+

b2

∫ s

a−(
a2 −max

(
a−, a2(b1−b−)+s(b2−b1)

b2−b−

))
da2 db1 db2

= 2

(a+−a−)2(b+−b−)2

∫ b+

b−
∫ b+

b2(∫ a−(b2−b−)+s(b1−b2)

b1−b−
a−

(
a2 − a−

)
da2 +

∫ s
a−(b2−b−)+s(b1−b2)

b1−b−

(
a2 − a2(b1−b−)+s(b2−b1)

b2−b−

)
da2

)

db1 db2

= 2

(a+−a−)2(b+−b−)2

∫ b+

b−
∫ b+

b2

(s−a−)
2
(b1−b2)

2(b1−b−)
db1 db2

= (s−a−)
2

(a+−a−)2(b+−b−)2

∫ b+

b−
(
b+ − b2−

(b2 − b−)(ln(b+ − b−)− ln(b2 − b−))
)
db2

= (s−a−)
2

4(
a

+

−a−
)2

Let P ′(s) = dP (s)/ds be the probability density at slope

s. Since the probability that line � has a slope higher than s

is a+−s
a+−a− , the probability for such a non-reachable (v, �) pair

is

∫ a+

a−
P ′(s)

a+ − s

a+ − a−
ds =

∫ a+

a−

(s− a−)(a+ − s)

2(a+ − a−)3
ds =

1

12

Symmetrically, a vertex in region

{
(x, y) | x > 0, b+ + sx < y < b+ + a+x

}

cannot reach a line � with a slope lower than s. The probability

for such a non-reachable (v, �) pair is also 1/12. Therefore,

κ ≤ 1− 2× 1/12 = 5/6

�

Note that the asymptotic bound κ < 1 does not hold

for every arrangement of lines. However, the probability for

such set of constructions in the geometric setting is only

vanishingly small.

Theorem 3.6. There exists arrangements of lines with

capacity 1−O(1/n).

Proof. Given an arbitrary arrangement of n− 2 lines, we

add at the very right (after all line intersections) a collector

line with highest slope a+, followed by a distributor line with

lowest slope a−. As a result, all intersections between the

first n−2 lines can reach all n lines by following the collector,

and then the distributor. Therefore, the capacity is at least

n
(
n−2
2

)
n
(
n
2

) ≥ 1− 4

n
= 1−O

(
1

n

)

Finally, it is easy to normalize the y-intercept of all lines to

the sampling range by mapping y = aix+ bi to

y = aix+
bi −min bi

max bi −min bi
(b+ − b−) + b−

�

Corollary 3.7. The fraction of combinatorial patterns

that can be realized in the geometric setting is O(log2n/n).

42



Figure 3: In the geometric setting, the min-link path takes at most 2 hops.

Proof. Let X be the capacity in a random combinatorial

network, and p be the fraction of combinatorial patterns

realizable in the geometric setting. Since

E (X) ≤ κ× p+ 1× (1− p)

we have

p ≤ 1− E (X)

1− κ
= O

(
log2n

n

)
�

Theorem 3.8. In the line arrangement model, if vertex

vi,j can reach line �k, then there exists a path from vi,j to �k
with at most 2 hops.

Proof. Suppose on the contrary �k is reachable from vi,j ,

and their min-link path takes at least 3 hops (see Figure 3).

First, �k cannot intersect �i or �j to the right of vi,j , otherwise

it only takes 1 hop from vi,j to �k.

Assuming the slope of �k is positive, consider the min-link

path from vi,j to �k: it must reach some vertex vk,p on �k
from another line �p. The slope of �p must be higher than

�k, otherwise we would reach �k before �p. Also, �p cannot

intersect �i or �j to the right of vi,j , otherwise it only takes 2

hops from vi,j to �k. Therefore, �p must intersect �i between

vi,k and vi,j , and also intersect �j between vj,k and vi,j .

Similarly, to reach vertex vk,p from line �p, the path must

first reach some vertex vp,q on line �p from another line �q.

The slope of �q must be higher than �p, otherwise we would

reach �p before �q. However, in this case, we can travel along

�q directly to reach �k at vertex vk,q (without using �p), which

gives a shorter path — a contradiction. �

4 EXPERIMENTAL VALIDATION

In this section, we validate results in theoretical settings,

extend the model beyond linear motions, and examine the

performance in realistic setting.

4.1 Algorithm

We first present an algorithm to compute the network capacity

and minimum hop counts for reachable (vi,j , �k) pairs. The

input here is a sequence of pairwise communications, so

the algorithm works for both combinatorial and geometric

settings.

For network capacity, we need to find all reachable (vi,j , �k)

pairs. Let S(vi,j) = {�k | (vi,j , �k) is reachable}. We first find

the next encounter vi,p after vi,j for node i, and also the next

encounter vq,j after vi,j for node j. Then, we can compute

S(vi,j) recursively by S(vi,j) = {�i, �j} ∪ S(vi,p) ∪ S(vq,j).

By using dynamic programming, we can find all reachable

(vi,j , �k) pairs in O(n3) time.

For minimum hop counts, we need to record additional

information on the path directions. Given a vertex vi,j and a

path �k, we define f
(1)
k (i, j) as the minimum hop count from

vi,j to �k with path direction along �i, and f
(2)
k (i, j) as the

minimum hop count from vi,j to �k with path direction along

�j . Then, we can compute f
(1)
k (i, j) and f

(2)
k (i, j) recursively

as follows:
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f
(1)
k (i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 , if i = k

1 , if j = k

f
(2)
k (j, i) , if i > j

min
(
f
(1)
k (i, p), 1 + f

(2)
k (q, j)

)
, otherwise

f
(2)
k (i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 , if j = k

1 , if i = k

f
(1)
k (j, i) , if i > j

min
(
f
(2)
k (q, j), 1 + f

(1)
k (i, p)

)
, otherwise

Finally, the minimum hop count from vi,j to �k is fk(i, j)

= min {f (1)
k (i, j), f

(2)
k (i, j)}. Therefore, we can compute all

values for fk(i, j) in O(n3) time.

4.2 Theoretical settings

We next verify theoretical results in Section 3. We generate

random networks in different settings, and use the above

algorithm to measure information diffusion. The experiment

results are shown in Figure 4(a) and Table 1.

For network capacity, in the combinatorial setting, as we

increase the network size n, the capacity converges to 1

(Theorem 3.2). In contrast, in the geometric setting, the

capacity is bounded by κ = 0.822 < 5/6 (Theorem 3.5). Thus

there is a clear gap between the two settings.

For minimum hop counts, in both settings, 2/3 of the

information packet deliveries need only 1 hop (Theorem 3.4).

In the geometric setting, the minimum hop count is at most

2 (Theorem 3.8). In the combinatorial setting, the min-link

path can take 3 or more hops, while 2 hops are enough for

most connectivity.

4.3 Beyond linear motions

The Definition 3.1 of network capacity can be easily gen-

eralized to the case when we allow each pair of nodes to

encounter zero or multiple times. Given n node trajectories

{�1, �2, . . . , �n} withm pairwise intersections {v1, v2, . . . , vm},
we define the capacity as S/nm, where S is the total num-

ber of reachable (v, �) pairs. In this setting, the capacity of

combinatorial networks (sequence of random pairwise com-

munications) in Theorem 3.2 becomes 1−O(nlog2n/m). The

notions in the algorithm in Section 4.1 can also be slightly

modified to distinguish multiple encounters “vi,j” for each

pair of nodes.

Now we extend the line arrangement model to more general

geometric motions. In Figure 4(b), we examine mobile nodes

following algebraic motions, where each node moves according

to a polynomial curve

y =

d∑
i=0

aix
i

with some bounded degree d and random coefficients {ai}.
The intersections between curves are computed using polyno-

mial roots from companion matrix eigenvalues. Figure 4(c)

considers an alternative geometric model based on piecewise

linear motions, where each node trajectory is defined as an

x-monotone path with k waypoints. More precisely, each path

starts with a line with random slope and interception, and

then the slope is randomly resampled after traveling along

the line for a random length. This i.i.d. resampling process

repeats k − 1 times, forming a trace with k piecewise linear

segments.

In both scenarios, we see that there exists some asymp-

totic upper bound κ < 1 on the capacity for every geometric

network, while the constant κ increases as the degree d or

number of waypoints k gets larger. Thus the gap we have

established between combinatorial setting and geometric line

arrangement case still holds true for these more general geo-

metric motions. This also shows that the number of realizable

communication patterns in such geometric settings is still a

vanishingly small fraction of those possible in the combinato-

rial setting.

The proof of Theorem 3.5 can also be generalized to the

piecewise linear model. In Figure 2, for any vertex v in region

Rs, it cannot reach a path in which each of the k line segments

has a slope higher than s. Therefore, the capacity

κ ≤ 1− 2

∫ a+

a−
P ′k(s)

(
a+ − s

a+ − a−

)k

ds

where Pk(s) is the probability that v appears in Rs with

model complexity k. This explains why for any constant k

we would expect a bounded capacity κ < 1, while as k →∞,(
a+−s

a+−a−

)k
→ 0 and thus κ→ 1.

4.4 Realistic setting

In this section, we test information diffusion on a real mobility

dataset from CRAWDAD [15]. It contains GPS coordinates

of taxis collected in San Francisco Bay Area.

4.4.1 Broadcast communication. In real mobility traces, it

is possible for multiple nodes to communicate simultaneously

(e.g. group meeting) — in the geometric line arrangement

model this corresponds to the degenerate case of concurrent

lines. Consider nodes a, b, and c encounter at the same

time, if we convert this event into a sequence of pairwise

communications {ab, bc, ca} (i.e. slightly perturb the lines),

then both (ab, c) and (bc, a) are reachable, but (ca, b) is not.

To make these three pairs equivalent, we can add another copy

of ab in the end (so the new sequence becomes {ab, bc, ca, ab}),
then (ca, b) is also reachable in 1 hop. In general, if there

is a group of k nodes that communicates simultaneously at

time t, we first create
(
k
2

)
“real” vertices (send information

packets before time t), and then add another copy of
(
k
2

)
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Figure 4: Network capacity.

“virtual” vertices (receive information packets after time t).

Note that the delivery of all information packets outside

this group is not affected by this construction. Therefore,

we can convert broadcast communication model to pairwise

communication model, and use the generalized algorithm in

Section 4.3 to analyze information diffusion. Here we only

count information packet deliveries from “real” vertices to

node trajectories. The “virtual” vertices are only used for

routing in the network.

4.4.2 Real world mobility. The dataset contains taxi traces

collected in a 4-hour time window (8 am – 12 noon, Sunday

morning) in San Francisco, California. We assume that two

taxis can communicate if they are within 50 meters of each

other. There are 371 taxis with 10428 communication events

during that period.

In the realistic setting, we may compare the size of the

time window to the degree of algebraic curves or number

of waypoints in the geometric setting, which bounds how

many times each pair of nodes can encounter during that

period. So, for any fixed-size time window, we expect the

capacity to be asymptotically bounded by some constant

κ < 1. Figure 4(d) shows that, in each time window, the
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Table 1: Distribution of minimum hop counts in combinatorial/geometric settings (1000 nodes) and realistic

setting (371 taxis).

Setting \ Capacity \ Hop 0 1 2 3 4 ≥ 5 Total

Combinatorial setting 0.002 0.665 0.306 0.015 0.003 0.002 0.993

Geometric setting 0.002 0.665 0.155 0.822

Algebraic motions (d = 128) 0.002 0.862 0.089 0.002 10−4 10−5 0.955

Piecewise linear motions (k = 128) 0.002 0.876 0.107 10−4 10−5 10−5 0.985

Realistic setting (4 hours) 0.005 0.174 0.561 0.107 0.020 0.009 0.876

capacity roughly converges after there are more than 200

taxis in the network. We also see that the constant κ increases

for bigger time window, as node trajectories become more

complex and lead to more encounters in a longer time period

(similar to curves of higher degree or polylines with more

waypoints).

Finally, in Table 1 we see that 56.1% of the information

packet deliveries require 2 hops. Since in this 4-hour period,

there are only 9018 unique pairs of taxis encountered, rather

than
(
371
2

)
= 68625 pairs, so we would expect longer delivery

paths (in terms of hop count).

4.5 Optimistic capacity

As we have seen previously, random combinatorial contact

patterns do not have realizations via reasonable geometric

motions. In the realistic setting, assuming we allow some

taxis to move under “unreasonable” geometric motions, what

happens to the capacity in this optimistic scenario?

In the real world, it is a common phenomenon that a large

fraction of encounters only happens in a small number of

places (e.g. airport). So, we propose the following model to

optimize diffusion via planned mobility. We partition the

2D map into grids of size L, and select the top N grids

where encounters most likely occur. For each selected grid,

we assume that there exists a super taxi which can instantly

appear and exchange information during each real taxi-taxi

encounter in that grid. But we do not create new encounter

events between the super taxi and real taxis. The super

taxi has a role analogous to the collector/distributor lines in

Theorem 3.6, within its local grid area.

Table 2 shows that, with small grid size L, it is hard to

increase the capacity as communications are still constrained

by more reasonable physical motions. The capacity is higher

with larger grids, because two taxis far apart can exchange

information through a super taxi, as long as they communi-

cate to some other taxis within the same local grid. When

L = 106, there is only one global super taxi in the network,

and the capacity reaches a maximum κ = 0.949. But of

course it is impractical to imagine a physical mechanism to

diffuse information instantly over such a large geographical

area. This further confirms our gap result that separates

combinatorial and geometric contact patterns.

5 CONCLUSION

In this paper we have initiated an investigation of the ca-

pability of mobile sensor nodes to diffuse information based

on opportunistic encounters. Our main objective has been

to understand how contact patterns with the same overall

statistics differ in the ability to diffuse information. We have

established a gap between arbitrary combinatorial patterns

and those that arise out of physical motions in a geometric

space.

In the theory section, we have proved fundamental bounds

on the network capacity for random combinatorial patterns

and geometric line arrangement setting. These are two ideal

cases and in the experiment section, we have validated on

more practical motion models and also built a chain that

connects two theoretical models to explain how geometry

affects information diffusion along this chain: i.e. geometric

lines (Section 3.2, simplest model) → algebraic / piecewise

linear motions (Section 4.3, more realistic theory models)

→ real 2D GPS traces (Section 4.4) → optimistic assisted

diffusion (Section 4.5, adding “unreasonable” motions with-

out geometric constraint) → random combinatorial patterns

(Section 3.1, completely no geometric constraint).

In conclusion, we list a few issues that need further work:

• In the geometric settings, we showed κ < 1 for the

straight lines and polylines models, where convex re-

gions in the plane of positive area get some non-vanishing

fraction of the arrangement vertices and a non-vanishing

slope interval captures some fraction of the slopes of

the random lines. We hope to have similar proofs for

algebraic curves of higher degree, as well as motions in

higher dimensions.

• During opportunistic encounters, we allow nodes to ex-

change all information they have. In the worst case, two

nodes can exchange Θ(n2) packets at a time (consider
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Table 2: Optimistic capacity in realistic setting (371 taxis, 4 hours).

Grid size (L in meters) 200 200 200 200 200 500 500 500 500 500

Super taxis (N) 1 10 50 100 500 1 5 10 50 100

Capacity 0.876 0.877 0.880 0.881 0.881 0.885 0.890 0.892 0.894 0.895

Grid size (L in meters) 103 103 103 103 104 104 104 105 105 106

Super taxis (N) 1 5 10 50 1 5 10 1 2 1

Capacity 0.890 0.895 0.897 0.897 0.916 0.928 0.928 0.947 0.948 0.949

a line to intersect with other n− 1 lines after all their(
n−1
2

)
intersections). However, in the combinatorial set-

ting it is sufficient for each node to keep only the latest

O(nlog2n) packets, which is almost linear. On the other

hand, limiting the number of packets exchange would

only degrade performance in the geometric setting,

and thus increase the gap. The problem with sublinear

memory size is still open to investigation.
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