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Abstract—Increase in size and complexity of web pages has
challenged the efficiency of HTTP. Recent developments to
speed up the web have resulted in two promising protocols,
HTTP/2 (RFC 7540) at the application layer and QUIC (mul-
tiplexed stream transport over UDP). Google servers are using
HTTP/2 and QUIC whereas other major sites like Facebook
and Twitter have begun using HTTP/2. In this paper, we
compare the performance of HTTP/2 vs QUIC+SPDY 3.1
by studying the Web page load times. In the first set of
experiments, we serve synthetic pages (only static objects)
over both protocols in emulated controlled network conditions
and then extend it to real network, both wired and cellular
(2G/3G in India and 3G/4GLTE in US). Further, we conduct
experiments on a set of web pages on the most popular sites
from the Internet (Alexa Rankings) in controlled conditions.
We find QUIC to perform better overall under poor network
conditions (low bandwidth, high latency and high loss), for e.g.
more than 90% of synthetic pages loaded faster with QUIC in
2G compared to 60% in 4GLTE. This is due to the lower
connection establishment latency and improved congestion
control mechanism in QUIC. However, QUIC does not offer
significant advantage when a webpage consists of many small-
sized objects.

1. INTRODUCTION

HTTP/1.1 is an application layer protocol, introduced in
1997 to transfer simple HTML pages over the Internet. The
size and complexity of pages have increased multi-fold since
then [1], [2]. While several modifications in protocols (like
HTTP pipelining, TCP Fast Open), algorithms (data com-
pression techniques), browser implementations and faster
link speeds have helped to speed up the web, the base
protocol has resisted efforts for a major upgrade until very
recently.

In 2012, Google proposed SPDY as an enhancement to
HTTP/1.1 [3]. HTTP/2, which is largely based on SPDY,
was standardized and published as RFC 7540 in May 2015.
HTTP/2 provides several improvements over HTTP/1.1 like
(1) multiplexed streams over a single TCP connection, (2)
binary message framing for more efficient message process-
ing, (3) header compression (HTTP/2 uses HPACK (RFC
7541) [4] compression), (4) server push thus eliminating

the latency due to round trips due to client request, and (5)
request prioritization.

HTTP/2 still has some performance limitations in the
way it is used: head-of-line (HOL) blocking at the client
due to TCP’s in-order delivery and larger connection estab-
lishment time due to TCP’s 3-RTT handshake (with TLS).
Studies suggest that increasing the bandwidth past a point
(∼ 5 Mbps) does not reduce the page load time as the
decrease in delay can [5]. QUIC (Quick UDP Internet Con-
nections) was proposed in 2013 by Google to address these
problems [6], [7]. QUIC’s key features include (1) reduced
connection establishment time (0-RTT) with security com-
parable to HTTPS, (2) improved congestion control - TCP
Cubic + Packet Pacing with Forward Error Correction (FEC)
packets (currently not enabled) to reduce retransmissions
(but [8] indicates that FEC results in poor link utilization),
(3) Connection Migration - QUIC uses connection identifier
(CID) to uniquely identify a connection and eliminates re-
connections in mobile clients during switch-over. QUIC
promises improved multiplexing than HTTP/2 (which also
solves head-of-line (HOL) blocking).

There has been interest in making QUIC part of the
future standardization, thus studying its performance is im-
portant not only for understanding how protocol mecha-
nisms perform in different circumstances but also to inform
the Internet standardization bodies. This study informs the
Internet community about the performance of QUIC so its
design can evolve. Due to similarity in some mechanisms
used by HTTP/2 and QUIC and the interest in borrowing
mechanism [9], the insights from this study may also be
applicable to HTTP/2. The study will also help web design-
ers, network administrators, server and client engineers to
design pages or systems or tweak network configurations to
best utilize the features of QUIC and HTTP/2.

In this work, we compare the performance of QUIC and
HTTP/2 and explain the reason for those differences. The
measurement study is not trivial. The only QUIC server
available is a sample server provided by Google, a basic in-
memory server, and features like FEC are not implemented.
Only a few browsers (Google Chrome, Chromium and
Opera) support both HTTP/2 and QUIC. The page load time
for the a given webpage can be highly variable regardless of
the server, especially under high loss (See Figure 1). The
variations become more prominent when the page consists
of scripts and stylesheets. Further, the measurements for
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Figure 1: High variance in Page Load Time under high loss,
especially for HTTP/2.

complete web sites are specifically representative of network
conditions at that time and the content of webpages. The
results with these pages cannot be reproduced at different
instances of time and for different users, because the number
and size of embedded objects which are crucial in the
performance study change rapidly and are personalized for
sites like cnn.com or amazon.com. Therefore, we had to
design web pages consisting of different combinations of
object sizes and numbers for our experiments in controlled
conditions.

We next review related work (§2) followed by exten-
sive study of QUIC and HTTP/2’s performance in different
scenarios(§3). Finally we conclude and list the limitations
of this work (§4). Throughout the paper, QUIC refers to
QUIC as transport layer and SPDY as the application layer.
Similarly, HTTP/2 means HTTP/2 as application layer over
TCP as transport layer and SPDY means SPDY as applica-
tion layer over TCP as transport layer.

2. RELATED WORK

Studies HTTP SPDY HTTP/2 QUIC
[8], [10] X X X
[11], [12] X X
[13], [14] X X
Our Study X X

TABLE 1: Previous studies comparing HTTP, SPDY, QUIC
and HTTP/2.

QUIC studies: Although QUIC is relatively new, there
have been few performance studies with QUIC. Carlucci et.
al. [8] studied the impact of QUIC on goodput, link uti-
lization and compared page load time for QUIC, SPDY and
HTTP. The authors find that QUIC has better link utiliza-
tion than HTTP (TCP), especially under high loss. Further,
QUIC overall loads pages faster than HTTP and outperforms
SPDY in high loss. However, FEC when enabled does not
provide much benefit and reduces goodput (FEC packets
use 33% of available bandwidth). In our work, we account
for larger parameter space both for network conditions and
composition of synthetic pages and use QUIC version 23
(compared to version 21) which increases the number of
parallel streams from 6 to 110.

Somak Das studied page load times of Alexa’s Top 500
sites [15] over QUIC, SPDY and HTTP/1.1 under different
network configurations of bandwidth and delay [10]. The
author reports that HTTP outperforms QUIC which outper-
forms SPDY on ”very low bandwidth (0.2 Mbps)” link, but
for low bandwidth links (0.3 - 1 Mbps) QUIC is better
than HTTP/1.1. QUIC improves as RTT increases but is
slower on high bandwidth and low-RTT scenarios. QUIC
loads HTTPS sites much faster than HTTP/1.1. For mo-
bile web, experiments are performed over cellular network
traces and an enhanced congestion control protocol (Sprout-
EWMA) is suggested. In our study, we additionally inject
loss into the network to further study QUIC’s performance
in challenging environments. Also, we do an exhaustive
study of performance on synthetic pages, which provides
a better evaluation due to minimal dependency (among
objects) and computation (stylesheets, scripts) compared to
Alexa sites. We also perform comparisons across cellular
networks spanning different technologies (2G, 3G, 4GLTE)
and geographies (the US and India).

Unlike previous studies, we compare QUIC against
HTTP/2, the new Internet Web standard (and likely to be-
come a dominant protocol in the near future) and successor
of SPDY (see the section on HTTP/2 vs SPDY below).

Google claims about 50% of the requests from Chrome
to Google servers are handled over QUIC [16]. It reports
QUIC works better than TCP on low-bandwidth connec-
tions, reducing the page load time for Google home page
almost by a second on 1% of slowest connections. Over 75%
connections have benefited from 0-RTT; even optimized
websites have a 3% improvement in page load time. Accord-
ing to Google, benefits are more prominent in video services
like YouTube (User feedbacks report 30% less buffering).

SPDY Studies: Wang et al. compare HTTP/1.1 and
SPDY [14]. They use Apache’s mod_spdy module for
SPDY and regular Apache for HTTP/1.1. The initial ex-
periments consist of serving synthetic pages with SPDY
and HTTP under different network conditions. They found
that SPDY is better for small objects and many large ob-
jects under low loss. They state that the main contributor
to SPDY’s better performance is due to its multiplexing
over single TCP connection. This reduces total connec-
tion establishment time and results in fewer retransmissions
(concurrent connections in HTTP/1.1 compete and induce
loss), but the same feature prove detrimental under high
loss due to aggressive congestion control mechanism (In
HTTP/1.1, only 1 of 6 TCP connections is affected). Further
they conduct experiments for real web pages (Alexa’s [15]
top 200 websites) using a self-designed module Epload to
emulate page loads to get rid of browser dependencies and
computations. They found that SPDY loads 70% of the
websites faster over different network conditions.

A study has suggested that SPDY is not very beneficial
over HTTPS and HTTP [13]. Their results suggest that
SPDY is only 4.5% faster than HTTPS and 3.4% slower than
HTTP connections. Also the median acceleration of SPDY
over HTTPS was only 1.9%. They identify the main reason
for low improvement of SPDY over HTTP(S) to be domain



Parameters Range High
bandwidth 1Mbps, 100Mbps 100Mbps
round trip time 10ms, 100ms, 200ms ≥100ms
packet loss (%) 0, 1, 2 ≥1
object size 100B, 1K,10K, 100K ≥10K
#objects 2, 8, 16, 64, 128 ≥64

TABLE 2: Factors for controlled experiments.

Type Freq. Core Mem. OS Kernel
Client 1.2 Ghz 8 8 GB 14.04 (64-bit) 3.13.0-45

Server A
(Controlled) 800 Mhz 2 4 GB 14.04 (64-bit) 3.13.0-44

Server B
(Uncontrolled) 2.66 Ghz 4 8 GB 14.04 (64-bit) 3.13.0-44

TABLE 3: Server and Client Machine characteristics

sharding (SPDY works better for a single host website but
most real-world websites download resources from different
domains) and loading dependency of the web resources.
Negative effects of domain sharding on SPDY performance
is also discussed in [17].

Zaki et al. [18] compare SPDY with HTTP over 42
websites in Accra, Abu Dhabi, Bremen and New York.
They report that SPDY performs better than HTTP in low-
bandwidth networks (e.g. Accra).

HTTP/2 vs. SPDY: A comparison between raw HTTPS,
HTTP/2 and SPDY/3.1 is discussed in [11]. They used Http-
Watch [19] with Firefox to run simple page load tests on
Google’s UK homepage (https://www.google.co.uk/). They
find that HTTP/2 packets have significantly small header
size compared to SPDY because of HPACK header com-
pression in HTTP/2. SPDY in turn has smaller header com-
pared to HTTPS (HTTPS does not use header compression).
The response body size of HTTPS is largest followed by
HTTP/2 followed by SPDY. The larger response body of
HTTP/2 compared to SPDY is a result of padding in data
frames for greater security. The number of connections
established are same for HTTP/2 and SPDY, in both cases
fewer than with HTTPS. The page loads with HTTP/2 is
faster than SPDY while HTTPS lags far behind due to
larger connection establishment time. HTTP/2 outperforms
SPDY due to smaller GET requests (HPACK compression)
over asymmetric links. Other than the pointers discussed in
[11], [12] states that HTTP/2 also benefits from multi-host
multiplexing, improved prioritization and faster encrypted
connections (ALPN extension instead of NPN).

To the best of our knowledge, this paper is the first work
comparing QUIC with HTTP/2.

3. PERFORMANCE EVALUATION

3.1. Experimental Setup

We compare QUIC and HTTP/2 under controlled and
uncontrolled environments. Table 2 provides the complete
list of web page composition and network conditions
for controlled experiments. To emulate different network

Start Elapsed Time Page Load 

HTML 

   CSS 

     JS 

Image 

Parse CSS Tag Parse JS Tag Parse Image Tag 

Network Activity Computation Activity Dependency 

Figure 2: Different steps in a typical web page load. Repro-
duced partly from [14].
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Figure 4: PLT(QUIC)/PLT(HTTP/2) for different combina-
tions of loss and RTT.

conditions, we use Netem [20].

We use QUIC server (version 23) provided by Google.
OpenLiteSpeed (version 1.3.9) [21] is used for handling
HTTP/2 (draft-17) requests. We select OpenLiteSpeed be-
cause its HTTP/2 server is written in C++ (same as QUIC
toy server) and supports the latest HTTP/2 draft-17. For each
page load, we perform the experiment five times and take the
median value to account for variance in measurements. Table
3 lists the client and server machine configurations. For
controlled experiments, Server A and client machine were
connected through a router. For uncontrolled experiments
(both wired and mobile networks), a publicly accessible
Server B was used. Chromium Browser v41.0.2272.76 is
used as client for all experiments. Our goal is to compare
the protocol performance within (not across) controlled and
uncontrolled environment, so the difference in characteris-
tics of the two servers does not impact the conclusions from
this study.

To measure page load time, we developed an extension
for Chromium client. The extension measures the total time
spent solely in network activity by adding the time differ-
ence between the receipt of last byte and queuing time of
all resources. We consider longest interval if loading time of
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Figure 3: PLT(QUIC)/PLT(HTTP/2) for varying object sizes and number of objects

Configuration 1 2 3 4 5 6 7 8 9
Loss% 0 0 0 1 1 1 2 2 2
RTT (ms) 10 100 200 10 100 200 10 100 200

TABLE 4: The nine configurations used in the controlled
environment experiments comparing the protocols.

multiple resources overlap. The extension only sums up the
time taken in loading resources and discards the time taken
for script execution. This helps to mitigate the variance in
page load time to some extent. Fig. 2 depicts a typical
download of a web page. The page load time (PLT) in
this scenario is the time spent to download HTML, CSS
and Image; JS download time does not contribute to the
total page load time in this example. PLT also does not
include the time taken to execute CSS, JS and some portion
of HTML. The extension issues a xmlHTTPRequest to the
Apache server running on same machine (client) which
writes the measurements to a file. Metric:. We use the
performance metric PLT(QUIC)/PLT(HTTP/2) to compare
the protocols, where PLT stands for Page Load Time. If the
page load is faster with QUIC than with HTTP/2, the ratio
will be smaller than 1.0.

3.2. Synthetic Pages over Controlled Environment

We conduct experiments over the complete parameter
space provided in Table 2 and the configurations listed in
Table 4. We organize the main results from the performance
comparison so we can understand the impact of these two
factors on the page load times:

Impact of Page Content on QUIC’s Performance:
The number of objects and the size of objects affect the
performance of protocols. Modern webpages have evolved
to not only contain a range of object sizes but also a large
range in terms of number of objects per page. Hence, we
evaluate the protocols over a range of object sizes and the
number of objects. Figs. 3(a), (b) and (c) show that as the
number of objects increase (especially if the object size is
small), HTTP/2 starts to outperform QUIC in terms of speed.
However QUIC improves relatively over HTTP/2 as objects
become larger and loss is introduced (see figs. 3 (b) and

3 (c) ). The most suitable explanation for this condition is
the head of line blocking experienced by HTTP/2 plus and
efficient congestion control in QUIC.

Impact of Network Characteristics on QUIC’s Per-
formance: QUIC is designed for fast connection estab-
lishment and combating lossy networks. Consider the fig-
ure 4(b). The first group represents perfect conditions for
HTTP/2 - high bandwidth, 0 loss. As expected HTTP/2
performs better than QUIC. But when loss is introduced,
QUIC performs better than HTTP/2 as shown in the second
and third group of bar plots. One question arises - Why
does the performance of QUIC not improve when RTT is in-
creased to 200ms (first group) even though QUIC has 0-RTT
connection establishment? Here is a possible explanation -
Though the 0-RTT connection establishment adds to QUIC’s
performance, it is prominent only on pages with a few small-
sized objects (See graphs for 2, 8 and 16 objects in figs. 3
(a), 3 (b) and 3 (c) ). On pages with large-sized objects,
time spent in establishing connection is a tiny fraction of
the time in loading the objects. QUIC performs better than
HTTP/2 in lower bandwidth conditions. In contrast to figure
4(b), in figure 4(a), even the first bar group representing no
network loss is less than 1.

Summary of results over the complete parameter space:
Through extensive experiments, we find that QUIC beats
HTTP/2 under the following conditions:

1) the bandwidth decreases. QUIC is faster in 78% cases
for 100Mbps link compared to 85% for 1Mbps. This
is a marginal victory for QUIC as compared to other
scenarios.

2) the size of the objects increase. For pages consisting
of large objects (10KB and 100KB), QUIC performs
better in 96% cases (95% for 100Mbps connection and
97.7% for 1Mbps connection.)

3) loss is injected into the network. Overall QUIC is faster
in 82% of cases when loss is introduced (80% for 100
Mbps and 85% for 1 Mbps connection).

HTTP/2 loads a page faster when page consists of a large
number of small-sized objects and there is minimal loss
(∼0%) in the network. Logically this condition should have
been ideal for QUIC as this page composition can exploit
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Figure 5: Load time of resources. Configuration : 1Mbps,
#Objects 128, Object Size 1KB, loss 0%, delay 200ms

the far more efficient multiplexing available in QUIC. To
understand this contradictory behavior, we conducted ex-
periments with web page consisting of 128 objects of one
kilobyte under 1Mbps connection with a delay of 200ms and
loss of 0%. As can be seen from figures 5 (a) and (b), for
QUIC, the actual resource load time (time between request
of resource to receipt of last byte) is very small compared
to HTTP/2, whereas the total time to fetch each object once
it is parsed in html is larger for many objects. One possible
reason for this is that the QUIC toy server is not optimized
to be used efficiently with Chromium browser.

To summarize, QUIC is faster (1.2-4.5X) when pages
consist of few small-sized objects. QUIC also performs
better when the page consists of large-sized objects. QUIC
can achieve faster page loads in poor network conditions
of lower bandwidth, high delay and lossy network. How-
ever, Page load with QUIC is slower (1.1-3.2X) when page
consists of many small-sized objects.

3.3. Synthetic Pages over Wired Networks

We repeat the experiments over wired network on UH
Campus LAN. HTTP/2 and QUIC servers run on publicly
accessible machine. The difference from controlled envi-
ronment is that bandwidth, loss and delay in this case are
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Figure 6: Performance of synthetic pages with QUIC and HTTP/2
under different cellular networks with clients in India and the US.

what is available on the live campus network. During the
experiments, the network had a Median Bandwidth of 51
Mbps, Median Delay of 31 ms, and Median Loss of 0%. We
find that the results from these experiments are similar to
the results from controlled experiments under configurations
1 and 2 (0 loss and 10ms and 100ms latency).

3.4. Synthetic Pages over Cellular networks in the
US and India

We run experiments with four different settings:

1) Client runs in India with Airtel 2G data enabled. We
observed a network datarate of 170 Kbps and a delay
of 334 ms.

2) Client runs in India with Airtel 3G data enabled. We
observed a network datarate of 7.78 Mbps and a delay
of 153 ms.

3) Client runs in the US with TMobile 3G data enabled.
We observed a network datarate of 3.54 Mbps, loss of
0.048%, and a delay of 94ms.

4) Client runs in the US with TMobile 4GLTE data en-
abled. We observed a network datarate of 19.16 Mbps,
loss of 0%, and a delay of 32ms

Figure 6 shows that more than 90% of pages have lower
page load times with QUIC than with HTTP/2 when ac-
cessed from India. Compared to this only 60% of pages are
faster over QUIC when client is in the US (low delay, high
bandwidth, low loss). Also QUIC performs better in poor
network conditions (2G in India and 3G in US) compared
to their higher-speed counterparts (3G in India and 4GLTE
in the US). This reaffirms, using real-world studies in two
different countries, the earlier result of QUIC performing
better in high RTT and lossy network.
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3.5. Complete Websites over Controlled Environ-
ment

Finally, we conduct our experiments on complex web
pages consisting of images, stylesheets and scripts. We
download top 200 sites from Alexa top sites [15]. From
within this set, we selected 15 sites with small (≤20) and
other 15 with large (80-100) number of objects. Experiments
are performed over four configurations (1, 3, 7 and 9 as
shown in Table 4) with loss and delay varying from low to
high.

Figure 7 shows that the maximum value of
PLT(QUIC)/PLT(HTTP/2) drops to 1.6 from 3.2 (in syn-
thetic pages). This is because the script execution time
effectively serializes the loading of multiple objects on a
page as the objects to be fetched are computed by the
script. Also contrary to assumption, even dense pages (large
number of objects) load faster over QUIC. The reason for
this is that average page size is 2.5 MB and average object
size is 25.39 KB (QUIC works better with large objects).

4. CONCLUSIONS

QUIC (stream multiplexed transport over UDP) was
developed to speed up Web page loading, features 0-RTT
connection, improved congestion control and multiplex-
ing without head-of-line (HOL) blocking. Our experiments
over controlled environment suggest that QUIC loads pages
quicker than HTTP/2 under poor network conditions charac-
terized by low-bandwidth, high delay and high loss. QUIC
performance also improves with increase in object size.
Increase in the number of embedded objects impacts QUIC’s
performance due to inefficient browser queuing. Our ex-
periments over uncontrolled conditions (wired and cellular
networks in the US and in India) confirm these observations.
Experiments over complete web sites show performance
gain with QUIC even for large number of embedded objects
due to their large size.

Limitations: First, the only available QUIC server,
which we used in this study, is not production-ready com-
pared to OpenLiteSpeed’s HTTP/2. Second, we do not quan-
titatively evaluate the effect of dependencies and computa-
tion on loading of embedded objects for complete web sites.
Third, we did not conduct experiments on dynamic pages
that are dependent on server processing.
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