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Abstract. In this paper, we present a novel approach to study and re-
veal network and protocol information from energy instrumentation in
wireless sensor network. Unlike prior approaches which focused on an-
alyzing the aggregate statistics of energy efficiency of a network or a
protocol, our approach aims at revealing network protocols, application
workloads, and topology information by fine-grained energy instrumenta-
tion on the nodes. We design a set of features based on various aspects of
energy data and use those features to classify and reveal network activity.
Results from experiments on three testbeds indicate that our approach
can achieve up to 97% accuracy to identify the routing protocols, and
infer the network topology with 98% accuracy.

Keywords: Power Measurements; Wireless Sensor Networks; Protocols;

1 Introduction

Energy instrumentation has a long history of research in wireless sensor network.
Energy efficient protocols and applications are one of the objectives of Wireless
Sensor Network (WSN) research. Energy instrumentation and analysis allows us
to determine if the proposed protocol is better than the state-of-the-art. Vari-
ous hardware-based energy instrumentation, simulation based study of energy
footprint, and using radio activity as a proxy for energy has found widespread
adoption in the community.

In this paper, we argue that despite the long history of energy instrumen-
tation in WSN, we have not fully understood the implications of energy instru-
mentation in WSNs. Other communities have found that instrumentation of any
type must be performed with care. Otherwise, there can be privacy and secu-
rity implications. Existing work has indicated that power measurements can also
act as side channel with the potential to compromise private information about
the users [9]. We study these issues and implications in the context of sensor
networks: could the energy instrumentation we collect in almost every sensor
network deployment serve as side a channel to reveal unintended information?
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We motivate the possibilities with one example from real-world devices. Mon-
ster powercontrol is a commercially available smart plug. We measure the power
used by the plugs to reveal four properties of the system without any source
code. First, we can tell the power state (On/Off) of plug outlet from the energy
draw. Second, the current draw gives hints about the periodic communication
between the plug and base station. Third, we can verify that the devices query
the base station for new commands rather than the base station pushing mes-
sages to the devices: the periodic current crests continue even when we turn off
the base station. Fourth, the current draw can also give hints about the wireless
connectivity between the user devices and the base station.

We evaluate the design of our energy instrumentation and classification ac-
curacy of the features based on energy data by doing extensive experiments on
three WSN testbeds. Our results from analyzing four-million energy data and ra-
dio activity points, indicate that energy instrumentation and carefully designed
features can not only reveal information about the network protocol but also
some information about the application and the workload.

In this paper, we make three contributions:

– Design of classification features based on energy data with the goal of re-
vealing protocol, network, and application information.

– Experimental evaluation of those features on three testbeds across multiple
protocols, network topologies, and application workloads. We find that clas-
sification with those features can identify the routing protocol with more
than 97% accuracy and application workloads with 85% accuracy.

– Demonstrate how we revealed the routing topology in the network, including
next hop for each node, with just energy instrumentation, with 98% accuracy.

2 Related Work

In this section, we will give an overview of research related to energy measure-
ment, profiling, and their applications in sensor networks and beyond.
Energy Instrumentation: Energy consumption is a significant concern in the
design and development of WSN, hence, much progress and various measurement
methods have been designed to measure the energy used by the nodes. Flock-
Lab [8] has power meters attached to motes so the researchers could understand
energy footprint of their protocols and applications. LEAP2 [11] provides un-
precedented capabilities for directly observing energy usage for wireless sensor
nodes in real-time, with microsecond-scale time resolution enables power profil-
ing for each hardware subsystem. Researchers proposed a software based on-line
code-level energy estimation model, the mechanism uses the current draw of each
component during different period and aggregate them together to produce the
total energy consumption [4].
Applications of Energy Measurement: While the primary reason for en-
ergy measurement is to understand the energy used by a sensor network system,
researchers have found other use for energy data. Power Trace Testing is pre-
sented in [14], which designed a methodology to automatically investigate the
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correctness of a WSN system by utilizing non-intrusive power measurement. In
the testcase the system was able to detect an unexpected use of hardware com-
ponent, which is not as scheduled. Dunkels et al. [3] use power state tracking
to estimate the wireless network power consumption on network-level. Their ap-
proach even can break down the power consumption into individual activities
on each node, enable the power profiling the pre-activity energy cost.
Revealing Privacy and Security Information: Researchers proposed a tech-
nique that use link-layer header data to infer network topology, de-anonymize
servers present in anonymized network, to break their anonymization[10]. Re-
searchers demonstrated even without priori-knowledge of household activities, it
is still possible to extract complex usage patterns and privacy information from
the household smart meter [9].

3 Features Design

In this section, we describe two novel features that we designed to reveal infor-
mation about the network.
Radio Awake Length Counter (RALC): We define Radio Awake Length
(RAL) as the total time that a node stayed in awake mode during each awake-
sleep cycles. The RAL is not a fixed value, it depends on the packet size, the time
before a node receives acknowledgment, etc. We used the threshold values 25ms,
and half of the LPL settings 100ms to divide the RAL into three categories
corresponding to a node only performing CCA check, receiving packets and
transmitting packets, respectively. We name these three ranges as T1,T2 and T3

as defined below, where T presents the RAL of each time:

T1 : T ≤ 25ms (1)

T2 : 25ms < T ≤ 100ms (2)

T3 : 100ms < T (3)

Within 10s disjoint window size, we count the amount of RAL in each of
these ranges, and use these three counters are the feature, named Radio Awake
Length Counter, i.e., RALC = [m1, m2, m3] , where m1 is the number of RALs
that satisfy the predicate T1. m2 and m3 are defined analogously. On Indriya and
Twonet without energy meters, we measure RAL using software instrumentation.
Radio Awake Overlap Counter (RAOC): When a node successfully trans-
mits a packet, the intersection of their radio awake time must not be empty.
We count the times of two nodes have their radio awake time overlapped during
a given period of time, and call it Radio Awake Overlap Counter. We use this
feature to help us to infer the network topology in section 5.2.

4 Instrumentation Design

Protocols: A Collection Protocol is designed to reliably collect the data packets
generated from every node in the network. In our experiments, we use Collection
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Tree Protocol (CTP) [5] and MultiHopLQI (LQI) [13]. A Dissemination Protocol
is designed to reliably deliver data packet from the base station to every node
in the network. In our experiments, we use Drip [12] and DHV [1].
Testbed and Motes: We instrument the power uses and radio chips activi-
ties on three testbeds. FlockLab provides high-resolution power measurement
profiling and precise time synchronization on 30 nodes. Indriya [2] has over 100
wireless sensor nodes. Twonet [7] is a testbed with 100 dual-radio nodes, which
can operate in 2.4 GHz and 900 MHz. We set the Twonet nodes to run on 900
MHz to verify that our proposed approach works with 900 MHz as well. We use
TinyOS for our experiments.
Low Power Listening (LPL): When using LPL, the node wakes up period-
ically to perform Clear Channel Assessment (CCA) to save energy. The node
stays awake until the packet is received if it detects any preamble on the wireless
medium. Otherwise it turns off its radio and switches back to sleep mode to save
energy. In this study, we set LPL sleep interval to 200ms.
Experiment Configurations: Each experiment runs for an hour. Though it is
impossible to ensure exactly the same workload across collection and dissemina-
tion protocols, we tried out best to make the workload similar across protocols
by matching the packet sending interval, using the similar payload size with
same sink node for all of the four experiments in each set.
Classifier Training: We use a 10s disjoint window to extract the RALC. Hence,
for an one hour experiment, we have 360 feature vectors. In each set, four ex-
periments generate 1440 feature vectors. We test four classifiers, J48, Logistic,
Bagging and NaiveBayes. These are implemented in Weka [6], which has a col-
lection of machine learning algorithms for data mining tasks. We also perform
10-fold cross-validation.

5 Experiment Settings and Evaluations

In this section we describe results on how accurately we are able to infer network
and application aspects using features derived from energy instrumentation.

5.1 Identify Routing Protocols

Classify Network Protocols: We plot the classification accuracy results by
using RALC across three testbeds in figure 1(a). The first group in figure shows
all of four algorithms on FlockLab can achieve similar accuracy, and the average
accuracy to classify the network protocol from RALC is more than 90%. The 2nd
and 3rd group in figure 1(a) show the classification accuracy of using software
measured RALC on Indriya and Twonet, where the average accuracy above 97%
and 98%, respectively. This experiment show two highlights of RALC: It gives
a robust results over the four classifiers. It generates a stable accuracy results
over three testbeds, with different network layout and different radio bands.

To test the performance of RALC with external Wi-Fi interference, we repeat
same experiments using two different channels, which one is overlapped with Wi-
Fi, the other one is not. The results show the feature RALC can tolerant Wi-Fi
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(a) Classification accuracy using RALC
across three testbeds.
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native network protocols.

Fig. 1: comparison of accuracy by using different features over 4 algorithms.

interference and achieve similar classifier accuracy. We also evaluate RALC by
training it on sample sets from one experiment configuration and then testing
it on data from another experiment configuration. We have 7 such cases and
RALC’s accuracy was between 82-97%.

The reason why RALC gives a high classification results is because it can
capture the unique patterns between the protocols. The control messages of
each protocol is designed uniquely, e.g. the time interval between transmit control
packets and number of control packets. While the workloads from the application
layer are the same, using RALC makes it feasible to distinguish the protocols
by looking at the patterns in radio activities triggered by transmit and receive
packets, including data packets and control packets.
Cluster Analysis of Alternating Protocols: Next, we evaluate the effective-
ness of RALC for clustering two protocols running during different periods. We
switch back and forth between CTP and DHV protocols during a one-hour exper-
iment. We use a general non-parametric cluster algorithm, MeanShift to cluster
the RALC from the measurements. In figure 1(b), yellow and green backgrounds
show the periods with correct clustering, while red shows the mis-clustered pe-
riod. Out of 360 snapshots, only 18 of them were mis-clustered; thus, the percent-
age of correctly clustered snapshots is 95%. All of mis-clustered periods happen
right after CTP starts. During the warm up period of CTP, the nodes exchange
a lot of control packets to setup routing paths compared to the stable period.
This causes the algorithm to mis-cluster CTP as DHV. This experiment shows
that RALC can correctly identify the protocols running during different periods,
and can also detect the moment when the protocol changes. Because RALC can
capture the change in control overhead caused by a protocol switch. Hence, we
expect our proposed approach can also cluster three or more protocols.

5.2 Infer Network Topology

Next, we study the effectiveness of RAOC in revealing information about the
network topology and routing path for each node.
Parent Node and Routing Path: The RAOC across two nodes can be used
to estimate the parent-child relationship across the network running multi-hop
collection protocol . We remove the radio overlap length that are too short
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(b) Inferred Topology
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(c) Actual Topology

Fig. 2: Use RAOC to find the parent node for each node, and reveal the topology
of whole network. Red circles indicate the node with wrong parent node.
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Fig. 3: The detected sink node by only using RALC compare to the ground truth.

(less than 0.025s) to focus on significant overlaps in our analysis. Figure 2(a)
shows the heatmap of RAOC across every node-pair during a 200s window size.
The darker color represents those two nodes having larger overlapped times.
A heuristic to find the parent for a node is to simply designate the node with
which a node has the largest overlap as its parent. For example, for y=20, the
pixel at x=10 is darkest. Hence, we guess that node 10 is the parent of node
20. If multiple nodes have same overlap length, we use overlap information from
adjacent time window. We use this heuristic for each node in the heatmap and
construct the routing topology, which is shown in figure 2(b). We found that this
inferred topology based on the heatmap is surprisingly close to the actual routing
topology shown in figure 2(c). Only the nodes marked red had the wrong estimate
of routing parent. We ran CTP and LQI multiple times on testbed and used the
heuristics above to estimate the routing topology. The estimation accuracy across
the experiments was 97.8% and 90.2% for CTP and LQI protocol, respectively.

Sink Node: Next we study how to identify the sink with RALC. During each
100s window period, the nodes with the maximum number of T2 had the highest
possibility to be the sink node, since the T2 could reflect the number of receive
events. We ran CTP for one hour, where the sink node changed every 600s. The
red curve in figure 3 shows the true sink node ID while the blue curve shows the
predicted sink node ID. The result shows that identifying the sink using RALC
is accurate and feasible. The slight lag between predicted and actual sink is due
to the 100s window when we calculate RALC.
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Fig. 4: True Positive Rate when using RALC to detect application workloads.

5.3 Determine Application Workloads

In this section, we evaluate the effectiveness of RALC to distinguish different
application workloads, including application layer packet transmission interval
and payload size. In this section all of the experiments were run on FlockLab.
We used J48 algorithm to perform the classification test.
Packet Transmission Interval on Same Protocol: We first run CTP with
data being generated at three different intervals: 5s, 10s, and 20s. We calculate
the True Positive Rate (TPR) when classifying each interval from the mixed
dataset. We use 10s as the window size to calculate the RALC, and its corre-
sponding TPRs are plotted with blue color in figure 4(a). The TPR is 99.2% to
classify 5s interval, then TPR decreases to 91.9%, even drops to 76.5% for inter-
val 10s and 20s, respectively. The drop is due to the packet transmission interval
becoming larger than the RALC window. Thus, TPR increases with a larger
RALC window size (30s), significantly improved the classification accuracy, as
showed in the same figure with red color.
Packet Transmission Interval over Various Protocols: In Figure 4(b), we
plot the results from determining packet intervals across four protocols using 30s
window size. The average accuracy to classify one of the instance from all of the
12 combinations of 4 protocol and 3 intervals is 87.5%.
Packet Size: We vary the data packet size sent with CTP and LQI from 10 to
50 to 100 bytes. The dataset includes a total 6 distinct types of instances, which
are the combination of two protocols and three packet sizes. Figure 4(c) shows
the average accuracy to classify one instance from 6 combinations is 82.8%.

6 Conclusions

In this paper, we demonstrated that energy instrumentation can be a powerful
tool to study and reveal information about the network, protocol, or workload.
We designed features for classification and analysis based on energy instrumenta-
tion. We found that the feature called Radio Awake Length Counter is especially



8 Dong Han, Omprakash Gnawali, and Abhishek Sharma

versatile in revealing information across protocols and application workloads,
such as 97% accurate for classify protocols, and average 87.5% accurate for clas-
sify workloads. Furthermore, another feature named Radio Awake Overlapped
Counter could reveal the parent node for each node, even to disclose the actual
network topology with 98% accuracy. Our extensive experimental results per-
formed on three different testbeds over 100 test cases suggest that our proposed
features are robust across the testbeds, frequency bands.
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