
Routing Without Routes: The Backpressure Collection
Protocol

Scott Moeller∗, Avinash Sridharan∗, Bhaskar Krishnamachari∗, Omprakash Gnawali†
∗University of Southern California, Los Angeles, CA

†Stanford University, Palo Alto, CA
{smoeller,asridhar,bkrishna}@usc.edu, gnawali@cs.stanford.edu

ABSTRACT
Current data collection protocols for wireless sensor net-
works are mostly based on quasi-static minimum-cost
routing trees. We consider an alternative, highly-agile
approach called backpressure routing, in which routing
and forwarding decisions are made on a per-packet basis.
Although there is a considerable theoretical literature on
backpressure routing, it has not been implemented on
practical systems to date due to concerns about packet
looping, the effect of link losses, large packet delays, and
scalability. Addressing these concerns, we present the
Backpressure Collection Protocol (BCP) for sensor net-
works, the first ever implementation of dynamic back-
pressure routing in wireless networks. In particular, we
demonstrate for the first time that replacing the tradi-
tional FIFO queue service in backpressure routing with
LIFO queues reduces the average end-to-end packet de-
lays for delivered packets drastically (75% under high
load, 98% under low load). Further, we improve back-
pressure scalability by introducing a new concept of
floating queues into the backpressure framework. Un-
der static network settings, BCP shows a more than
60% improvement in max-min rate over the state of
the art Collection Tree Protocol (CTP). We also em-
pirically demonstrate the superior delivery performance
of BCP in highly dynamic network settings, including
conditions of extreme external interference and highly
mobile sinks.

1. INTRODUCTION
As wireless sensor networks mature from concepts and

simple demonstrations to real-world deployments, there

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

has been a push to identify and develop key network-
ing building blocks in a more organized and coherent
fashion. One such fundamental building block that has
been identified at the network layer is Collection, which
allows for data from multiple sources to be delivered
to one or more common sinks. State-of-the-art imple-
mented protocols for collection are based on quasi-static
minimum cost trees with suitably defined link metrics
[15]. Due to the limited radio link rates, high density
of deployment, and multi-hop operation, bandwidth is
a scarce resource in wireless sensor networks, and recent
studies such as [3] have suggested that it is essential to
improve collection throughput as much as possible. Ad-
ditionally, collection capabilities in real systems must
be extremely robust to external interference, requiring
routing responsiveness to sudden link fluctuations. Fi-
nally, new collection scenarios as seen in participatory
sensing [6] demand responsive routing to sink dynamics
even while maintaining substantial collection rates.

We explore in this work an exciting alternative ap-
proach — dynamic backpressure routing — whose per-
packet next-hop route computations allow for greater
responsiveness to link variation, queue hot-spots, and
node mobility; this substantially enhances the through-
put efficiency of collection. In this paper, backpressure
routing refers to techniques grounded in stochastic net-
work optimization ([35], [23], [14], [26], [19], [21], [25])
referred to as Utility Optimal Lyapunov Networking al-
gorithms in recent work by Neely [25]1. The crux of this
approach lies in the generation of queue backlog gradi-
ents that decrease towards the sink, where these queue
backlogs encode certain utility and penalty information.
Using information about queue backlogs and link states,
nodes can make source rate, packet routing and forward-
ing decisions without the notion of end-to-end routes. In
theory, backpressure mechanisms promise throughput-
optimal performance and elegant cross-layer solutions

1In particular, we differentiate our work here from other
heuristic queue-congestion aware load-balancing mecha-
nisms, sometimes also referred to as backpressure mecha-
nisms.

1

for integrating medium access, routing, and rate con-
trol.

Despite the theoretical promise of these dynamic back-
pressure techniques, to date they have not been imple-
mented in practice at the routing layer2 due to several
challenges. First, if the link weights are not carefully
defined, backpressure routing can suffer from either ex-
cessively high hop-counts or, at the other extreme, over-
emphasize low hop counts, resulting in wasted trans-
missions and link-layer packet losses. Second, due to
large queue sizes that must be maintained to provide
a gradient for data flow, backpressure routing can suf-
fer from inordinately large delays. Third, queues grow
in size with distance from the sink which is a problem
in large-scale deployments due to maximum queue size
limitations in resource-constrained devices.

In this work, we take the first steps towards address-
ing these problems in order to allow backpressure rout-
ing to realize its promise in practical environments. We
present the Backpressure Collection Protocol (BCP), a
low-overhead dynamic backpressure routing protocol at
the network layer implemented on TinyOS 2.x, a widely
used wireless sensor network operating system and pro-
tocol stack. We evaluate it in real experiments on a 40-
mote testbed, where we compare BCP’s performance
with the Collection Tree Protocol (CTP) [15], a state
of the art routing protocol distributed with TinyOS
2.x. Within relatively static networks having predicable
topology and interference, we find that BCP performs
competitively with CTP. The queue stability of BCP
allows it to outperform CTP in terms of the max-min
rate by more than 60%, and BCP’s ETX minimization
reduces average packet transmissions by more than 30%
versus CTP in low traffic tests.

In more adverse environments, such as those with un-
predictable and severe external interference, we show
BCP adapts quickly to link fluctuations, providing ex-
cellent packet delivery ratios and low average ETX. We
show that by using LIFO queueing instead of FIFO,
the delays associated with backpressure routing can be
reduced dramatically, by more than 98% at low data
rates and by 75% at high data rates, without apprecia-
bly affecting the achievable goodput. We introduce a
novel concept of floating queues into the backpressure
framework, allowing for scalability in network size and
load while maintaining throughput-utility performance
and fixed sized data queues. Finally, we demonstrate
excellent performance in participatory sensing settings,
in which high sink mobility and multi-sink capability is
desired.

In section 2 we give a more detailed description of

2There have been several implementations of backpressure
ideas at the MAC and transport layers, as we shall discuss
when presenting related work in section 6.

backpressure routing. Section 3 discusses the challenges
to practical systems implementation, and BCP’s novel
solutions that address these challenges. The software
design of BCP is described in section 4, and section 5
gives experimental evaluation. In section 6 we provide a
brief survey of related systems and theory work. Finally,
we conclude and discuss extensions in section 7.

2. BACKPRESSURE EXPLAINED
Unlike traditional routing mechanisms for wired and

wireless networks, backpressure routing does not per-
form any explicit path computation from source to des-
tination. Instead, the routing and forwarding decision
is made independently for each packet by computing for
each outgoing link a backpressure weight that is a func-
tion of localized queue and link state information. Be-
fore presenting the detail of the Backpressure Collection
Protocol (BCP), we present a simplified introduction to
the basic concepts and theory behind backpressure rout-
ing.

2.1 Routing as a Stochastic Optimization Prob-
lem

We first present a rigorous definition for a stable net-
work. We will call a network of queue backlogs (Q(t))
strongly stable if:

lim sup
t→∞

1
t

t−1∑
τ=0

E[Qq(τ)] <∞ for all q ∈ Q (1)

The Utility Optimal Lyapunov Networking theoret-
ical framework ([14], [22], [23], [26]) upon which our
backpressure routing approach is based, has the fol-
lowing general form. Given a series of penalties x(t)
and a series of rewards y(t) incurred by network con-
trol decisions, each non-negative for all time and upper
bounded, let x̄ and ȳ be the long term average values.
Provided non-negative, continuous, convex and entry-
wise non-decreasing (f(x) ≤ f(ỹ) whenever x ≤ ỹ entry-
wise) penalty functions f(x) and l(y), and likewise util-
ity functions g(y) and h(y), Utility Optimal Lyapunov
Networking solves the following stochastic optimization
problem:

Minimize :f(x̄)− g(ȳ) (2)
Subject to :l(x̄) ≤ L

h(x̄) ≥ H
Strongly Stable

Specifically the problem of routing can be formulated
in the above form by assuming that f(x) is some cost
metric for routing. To simplify the problem of routing,
we can neglect the constraints l(x̄) ≤ L and h(x̄) ≥ H.
The solution for Equation (2) using the Utility Optimal

2

Figure 1: An intuitive example of backpressure routing on a four-node line network with FIFO queueing service.

Three packets (in black) are injected at nodes 1 and 2 at time B, intended for the destination sink S.

Lyapunov Networking framework ([14], [22], [23], [26]),
can be shown to be control decisions resulting in a back-
pressure routing policy. In this routing policy each node
calculates the following weight per outgoing link:

wi,j = (∆Qi,j − V · θi→j) · Ri→j (3)

Here, ∆Qij = Qi−Qj is the queue differential (back-
pressure), with Qi and Qj representing the backlog of
nodes i and j respectively3, Ri→j is the estimated link
rate, and θi→j is a link usage penalty that depends upon
the particulars of the utility and penalty functions of
(2). Within the theoretical framework, the V parame-
ter is a constant that trades system queue occupancy for
penalty minimization. In the theoretical framework, the
optimal routing solution requires centralized scheduling
of the set of non-interfering links at each time that max-
imize the sum of these weights.

A key advantage of formulating the problem of rout-
ing, as shown above, is that since the routing policy is
striving to minimize the penalty f(x), it will intuitively
minimize looping of packets in the network, since any
loops result in an unnecessary increase of the routing
penalty f(x). The validation of this hypothesis will be
presented in our empirical evaluation in section 5.

In our decentralized approximation to the optimal
backpressure routing policy, node i computes the back-
pressure weight wi,j for all its neighbors, and uses it
as the basis for making independent routing (who to
try and send the packet to) and forwarding (whether to
transmit the packet) decisions as follows: Routing de-
cision: Node i identifies the link (i, j∗) with the highest
value of the backpressure weight as the next hop for the
packet. Forwarding decision: if wi,j∗ > 0, the packet
is forwarded (i.e. sent to the link layer for transmission
to the designated neighbor), else the packet is held until
the metric is recomputed.

2.2 A Simple Example
In describing this simple routing and forwarding mech-

anism to colleagues unfamiliar with backpressure tech-
niques, we have found that a common initial reaction
is surprise that this simple forwarding strategy that has
3This backlog may not strictly comprise of data packets, as
virtual queues are necessary in some optimizations.

neither an explicit path computation nor an explicit ref-
erence to the destination, should work at all.

We will first illustrate the functioning of backpressure
routing with a very simple example. Figure 1 shows a
network of queues with four nodes labelled 3, 2, 1, and S
(for sink) respectively. For simplicity, assume that each
link has θi→j = 1, V = 1,Ri→j = 1.

In steady state, as shown in step A, there is a natu-
ral queue backpressure gradient sloping downwards to
the sink 4. Each node has just one packet more than its
neighbor to the right but is unable to forward because it
does not strictly exceed the threshold of (V ∗ θi→j = 1).
The injection of new packets into nodes 1 and 2, shown
in step B, causes the thresholds to be exceeded. Node
1 then starts sending packets to the sink, while node 2
initially forwards a packet backwards to node 3 (after
step B), then halts (after step C), then reverses to start
sending packets to node 1 as that node’s packets are
drained out by the sink. Eventually six packets (corre-
sponding to the number of new arrivals) are sent to the
destination, and the system returns to the steady state
gradient.

3. NOVEL CONTRIBUTIONS OF BCP
There are three key challenges in translating back-

pressure routing from theory to practice. The first chal-
lenge is to choose an appropriate penalty function f(x)
in equation (2) to provide efficient performance over a
real-world wireless network with lossy links. The second
challenge is that traditional backpressure approaches
suffer from high end-to-end packet delays because they
inherently rely on having large queue-backlogs to pro-
vide throughput-optimality. A related third challenge
is that large queue sizes required by traditional back-
pressure approaches are difficult to support on resource-
constrained wireless sensor devices.

We now discuss each of these challenges in more detail
and present our novel contributions in the design of the
Backpressure Collection protocol that address each of
them.

4Backpressure routing requires a gradient to exist before
packets can begin to be forwarded, resulting in a small
startup time, and the possible sacrifice of a small number
of “trapped” packets. Both of these are negligible concerns
for even moderately long flows.

3

Figure 2: A three node network is given in (i), links are labeled with both rate and expected transmission count

per packet. Bold links in (ii) through (iv) indicate links selected for packet forwarding. Weights are calculated using

Equation (5) with V = 1.

3.1 ETX Minimization
The expected number of transmissions (ETX) required

to successfully transmit a packet from a sender to a re-
ceiver is a commonly used metric for routing in wire-
less multi-hop networks with lossy links [9, 38, 4, 15].
To incorporate ETX minimization into the backpressure
framework, we use the following penalty function in the
optimization problem (2):

f(x) =
∑
q∈Q

∑
l∈Nout

q

µql(t) · ETXq→l (4)

Where q ∈ Q is the set of nodes, each having out-
bound links to neighborsN out

q , ETXq→l is the link ETX
estimates, and µql(t) is the forwarded packet count over
link q → l. Note that f(x) satisfies the penalty func-
tion properties of problem (2), and yields a backpressure
weight wi,j calculated by a node i for a given neighbor
j which is the following:

wi,j = (∆Qi,j − V · ETXi→j) · Ri→j (5)

By including ETX as a link penalty, BCP works to
minimize ETX when possible, while maintaining strongly
stable queues. For a more thorough understanding of
BCP weight calculations and how traffic conditions af-
fect routing dynamics, we’ll next consider the small net-
work of Figure 2 (i). As was observed in Figure 1, the
forwarding penalties exceed queue differentials, causing
the network to stall while waiting for additional admis-
sions. When admissions do occur at the source, shown in
(ii), the weight is greatest between the source and node
B. Note that node B is on the path with lowest source to
sink ETX. Packets forwarded to node B then trigger the
weight between node B and the sink to become positive
(iii), resulting in delivery to the sink. Should periodic
source arrivals continue without seriously stressing the
network capacity, a flow of packets will cascade from the
source to node B and then on to the sink. In the event
of a sudden load increase that causes node B’s queue to
back up, such as seen in (iv), the source to sink link’s
higher capacity influences the weight maximization and

the network reacts to the loading threat (hot spot) by
forwarding directly to the sink.

3.2 Delay Reduction using LIFO
High source to sink delays are a well established prob-

lem in backpressure systems, resulting in significant re-
cent theoretical focus ([16], [25], [24], [5], [40]). Under a
FIFO service priority, data reaches the sink only when
it is pushed through the chain of qeueus toward the
sink. Counter-intuitively, the average source to sink de-
lay in backpressure algorithms under FIFO service pri-
ority grows with decreased loading for low loading [5].
Halving the admission rate across the network can dou-
ble the per source average packet delivery delay. This
puts traditional FIFO based backpressure algorithms at
a severe delay disadvantage when compared to tree rout-
ing alternatives.

Our novel delay solution is motivated by imagining
water cascading down the queue backpressure gradient
that is built up in steady state. Intuitively, this way,
instead of packets having to make their way through all
the queues, new packet arrivals can be rapidly sped to
their destination. This can be achieved by using a last-
in-first-out (LIFO) queueing discipline. We illustrate
this in figure 3. Note that by the time the system returns
to the minimum queue backlog state in step J, all new
arrivals have been delivered to the sink. None of our
admissions become trapped within the queues, waiting
to be pushed toward the sink by future arrivals. We
show empirically in section 5 that this innovative use
of LIFO in backpressure routing reduces the average
packet delay for packets reaching the sink by at least two
orders of magnitude at low data rates, when compared
with FIFO queuing.

3.3 Scalability
Another substantial challenge faced by systems imple-

mentations of backpressure techniques is scalability. It
can be clearly seen in Figure 2 that the minimum queue
size grows with each hop from the sink (by at least the
corresponding ETX ≥ 1). Given the extremely lim-
ited queue availability in resource-constrained wireless
sensor nodes, therefore, nodes beyond a certain num-

4

Figure 3: The four-node network of Figure 1, now with LIFO service priority. New additions to the queues flow over

the existing gradient to the sink.

Figure 4: Our novel floating queues drop from the data

queue during overflow, placing the discards within an

underlying virtual queue. Services that cause data queue

underflows generate null packets, reducing the virtual

queue size.

ber of hops end up with saturated queues, resulting
in improper routing and forwarding decisions. We will
demonstrate this empirically in section 5.2.2.

Recent theoretical work on queue stability [16] in the
context of backpressure schemes shows that the tail dis-
tribution of queue backlogs shrinks exponentially be-
yond some distance from the mean value determined by
the queue gradient at steady state. We have also ver-
ified empirically that the queue backlog distributions
tend to be concentrated around their long term average
values, suggesting that much of the queue is not used in
accommodating traffic bursts, but instead only incurs
delay while consuming system resources. We leverage
this fact to generate floating queues: a scalable solution
that does not break the optimization framework.

Consider the trapped white packets in Figure 3. Be-
cause the queues can never drop below their minimum
backlogs shown in (A) and due to LIFO service priority,
these white packets will never be serviced. Our float-
ing queues discard these white packets and add them
to a virtual queue, which then lies beneath the data
queue. We carefully balance queue arrivals and depar-
tures (using null packets if needed) so as to preserve
the overall stochastic queue dynamics, and backpres-
sure weights are computed on the combined virtual plus

data backlogs. A floating queue is illistrated in figure 4.
We show empirically in section 5.2.2 that without these
floating queues, backpressure routing does not scale to
large-diameter networks, and that the overhead of null
packets is negligible.

4. BCP IMPLEMENTATION
We have developed the Backpressure Collection Pro-

tocol (BCP), the first ever real-system implementation
of a dynamic backpressure routing mechanism. BCP is
implemented on TinyOS 2.x, and has been tested on the
IEEE 802.15.4-based Tmote Sky platform5. BCP’s code
footprint is about 23 KB including our test application,
versus CTP’s 27 KB.

4.1 Routing and Forwarding
The routing and forwarding algorithm for BCP is sim-

ple. When the forwarding queue is non-empty, weights
are computed for every neighbor using Equation (5). If
all weights are less than or equal to zero, there exists no
good neighbor option and the node waits for a back-off
period τ , then re-computes weights. Eventually, arrivals
or neighbor queue backlog values will cause a neighbor’s
weight to become positive. Upon detecting one or more
positive neighbor weights, the node forwards the head
of line packet to the neighbor having greatest positive
weight, then repeats the weight computation process.

4.2 Weight Recalculation
The weight recalculation parameter τ , which deter-

mines the time for which a packet that is not forwarded
is withheld before the metric is recalculated, provides
a tradeoff between throughput/delay performance and
processor loading. We use τ = 50ms for our experi-
ments, resulting in weight re-computation (section 4.1)
20 times a second in the event that no neighbor has a
positive weight. We can use a larger τ in case weight
re-computation keeps the CPU too busy for other tasks
on the node.

4.3 Link Metric Estimation
Link metric estimation for transmissionsETXi→j and

rate Ri→j are carried out in an online fashion by each
5BCP source code is publicly available online at
http://anrg.usc.edu/∼scott/

5

node i for each of its neighbors based on local time
stamps of its unicast data transmission attempts and
corresponding received acknowledgments. The metrics
are updated using exponentially weighted moving av-
erages (BCP uses a simple stop-and-wait ARQ with a
maximum of 5 retransmission attempts on a link before
weights are recomputed). For both our EWMA esti-
mates of ETX and link rate, we use a weight of 0.9 for
the previous estimate. We show in section 5 that the
responsiveness of BCP to external interference is quite
good with this parameter setting.

4.4 Disseminating Local Queue Backlog
Each data packet includes a packet header field for dis-

seminating the local queue backlog. The header fields
for BCP are identical to CTP with two key exceptions.
One is that the ETX field for CTP is used by BCP to
broadcast the local queue backlog, and the other is that
one of the reserved bits is used to flag null packets (de-
scribed in the next subsection). All the nodes within
reception range of the transmitter receive and process
the BCP packet header through the snoop interface. In
order to reduce the potential for processor overloading, a
small 5-packet FIFO is attached to the snoop interface,
allowing for snoop message drops in the event of mi-
croprocessor overloading and quick returns from radio
snoop events. Experimentally, this has proven neces-
sary to prevent processor overload due to packet snoop-
ing. Using this snooping mechanism, BCP incurs no
additional overhead in terms of separate broadcast con-
trol packets for either link estimation or for exchanging
queue status. Additionally, these snooped backlog up-
dates provide frequent notification of neighbor conges-
tion, as is required by backpressure techniques.

4.5 Floating Queue Implementation
Our LIFO floating queue is implemented through the

introduction of a virtual queue, which stores no real data
and requires only an integer size. When data arrives to
the forwarding queue and finds it full, the oldest data
packet is discarded from the data queue and the virtual
queue is incremented. When servicing the forwarding
queue, if the data queue is found to be empty we instead
generate and forward a null packet, reducing the size
of the local virtual queue. Null packets are filtered by
the sink and statistics are kept on their arrival rate.
Local backpressure is computed by summing both the
forwarding queue size and this virtual queue.

5. EXPERIMENTAL RESULTS

5.1 Experimental Methodology
We perform our evaluation experiments on motes la-

beled 1-40 in Tutornet [1], an indoor wireless sensor net-

work testbed consisting of IEEE 802.15.4-based Tmote
Sky devices. A transmit power of -18 dBm is used for
all experiments, and packet inter-arrival times are expo-
nential, providing poisson traffic. Packet sizes were 34
bytes for both BCP and CTP, as both protocols require
an 8 Byte data packet header in addition to the CC2420
header (12B) and payload (14B).

While there have been previous theoretical/simulation-
based proposals for use of multi-path routing in wire-
less sensor networks [12], nearly all implemented routing
protocols for collection in wireless sensor networks have
been based on minimum cost trees, including the state-
of-the-art collection tree protocol (CTP) [15], which we
have used as a baseline in our evaluation. CTP has been
thoroughly validated and released as a routing protocol
for TinyOS 2.x, and has been used for comparison pur-
poses in a number of recent works ([36],[8],[11],[10],[7]).
In our experimentation, CTP uses the 4 bit link estima-
tor (4bitle [11]).

A number of BCP variants will be evaluated in order
to demonstrate the improvements garnered from float-
ing LIFO queues. All references to BCP imply the core
BCP implementation having floating LIFO queues en-
abled. In 5.2, we first run experiments within a simple
collection scenario, where external interference is mini-
mized and topology is held constant. After demonstrat-
ing competitive performance with CTP in these less ar-
duous environments, we move on to settings with strong
external interference (5.3) and finally high sink mobility
(5.4).

5.2 Static Network Tests
The following static scenarios all run on 802.15.4 chan-

nel 26, as this channel does not experience external
802.11 interference within the testbed environment. All
tests collect data for 35 minutes, and 39 motes source
traffic. For brevity, we will state only the per source
packet rate below, with the understanding that 1.0 pack-
ets per second indicates 39 sources are each active at this
rate. The backpressure optimization parameter V was
set to 2 as a result of early experimentation. We con-
servatively set τ = 50 ms6. Source rates vary from 0.25
to 1.66 packets per second.

5.2.1 Delay Performance
As discussed in section 3.2, delay in FIFO backpres-

sure stacks actually grows with decreased loading, putting
traditional backpressure at a severe disadvantage when
compared to tree routing algorihtms. Figure 5 provides
6Due to space constraints, we do not provide a more de-
tailed evaluation of the parameter settings for V and τ in
this paper; there may be potential for further improvement
by careful parameter tuning. Our experiments, however, do
show that the current settings are robust to dynamics in
traffic, external interference and sink mobility.

6

Figure 5: Source to sink delay CDF at 0.25 PPS for

motes 4 and 40 under CTP, BCP-FIFO and BCP-LIFO.

the CDF of delivered packet delays for mote 4 (top) and
mote 40 (bottom) in our 35 minute static network tests
of CTP, BCP-FIFO and BCP-LIFO. Mote 4 is a single
hop from the sink for all experiments, while Mote 40
is at the rear of the network and averages 5 hops from
the sink in both CTP and BCP. Although still higher
than the delay for CTP, the delay for delivered packets
under LIFO service priority is two orders of magnitude
lower than FIFO, for both motes 4 and 40. The sys-
tem average delivered packet latency was 231 ms under
LIFO, and 20,704 ms under FIFO. Experiments at 1.5
packets per second demonstrate a lesser delay improve-
ment. Here, system average delivery delays under LIFO
(FIFO) are 1,088ms (5,623ms). In all experiments, the
percentage of non-delivered packets was indistinguish-
able for LIFO and FIFO service priorities (< 2% for
0.25 PPS, < 0.7% at 1.5 PPS). Undelivered packets are
due to the learning time required within BCP. Whereas
LIFO traps some packets sourced early in the flow, FIFO
stalled when flows terminated, trapping the undelivered
packets at the tail of the experiment.

Within the computer networks community, LIFO ser-
vice priority is traditionally avoided for datapath queues.
One key concern has been the reordering of packets in
the network, which is much less common under static
routing and a FIFO service priority. It is now known,
however, that packet reordering is a challenge for multi-
path routing algorithms, even under FIFO assumptions
[27]. Reordering density ([28], RFC 5236 [17]) is a com-
monly accepted metric for analysis of reordering per-
formance in a network. The packet transmission order
is compared with delivery order and a pdf of observed
reordering magnitude is generated. A reordering magni-
tude of zero indicates that the mth packet sourced was
also the mth packet sinked, while a magnitude of one
indicates that it is sinked (m− 1)th or (m+ 1)th.

Figure 6: The Reordering Density for BCP under FIFO

(top) and LIFO (bottom) servicing priorities for 0.25, 1.0

and 1.5 packets per second per source. The quasi-static

tree routing mechanisms of CTP resulted in greater than

99.9% in-order delivery (Reordering X = 0) for 0.25 and

1.0 PPS tests.

Figure 6 gives the reordering density for BCP under
both FIFO and LIFO queue prioritization within our
static network tests at 0.25, 1.0 and 1.5 packets per
second. The reordering density was also calculated for
CTP at 0.25 and 1.0 packets per second (CTP was un-
stable beyond 1.0 packets per second) and more than
99.9% of all packets were delivered in order. At the
lowest data rate of 0.25 packets per second per source,
we find that BCP’s LIFO in order delivery rate (96.8%)
is in fact greater than that seen under our FIFO test
(92.7%). We attribute this to the enormous packet de-
lay disparity between FIFO and LIFO; For most pack-
ets, the LIFOs allow for delivery to the sink before the
source generates its next packet. This reordering trend
reverses once queues become less stable. In Figure 6,
at 1.5 packets per second, 3% of packets experienced
reordering greater than 8 under BCP’s LIFO use, while
the FIFO queues result in 2.2% of packets falling within
the same reordering range. We therefore conclude that
even when operating near the capacity region, the re-
ordering penalty for LIFO use is small due to the natural
packet reordering caused by multi-path routing.

5.2.2 Scalability
In section 3.3, we described the scalability challenge of

backpressure stacks, and provided a description of our
floating queue solution. In order to validate our solu-
tion, we ran our 35 minute, 40 mote tests at 1 packet per
second with BCP’s floating queues disabled. Figure 7
gives per mote goodput, time average queue size and av-
erage packet transmissions for sinked packets. Note that

7

Figure 7: Comparison of BCP’s per mote goodput,

time average queue sizes and average packet transmis-

sions for sinked packets with 95% confidence intervals.

Tests are run with and without BCP’s floating queues

disabled. The maximum data queue size is 11.

without floating queues, motes furthest from the sink
(highest ETX, which is correlated with mote ID loosely)
reach their maximum queue occupancy and cease local
admissions. Some motes (33-35,39,40) sink no packets
at all, while others (36-38) successfully deliver only a
few.

With floating queues enabled, backpressure informa-
tion is no longer truncated by the size of the data queue.
Instead, trapped LIFO data is discarded and an under-
lying virtual queue is incremented, allowing the sum of
the data and virtual queues to represent backlog values
greater than the size of the limited capacity data queue.
This activity can be seen in the time average queue sizes
in Figure 7, where some motes (35-40) have average
queue size that exceeds the data queue capacity. We
see that by using floating queues, BCP achieves greater
than 98% delivery for all sources. Furthermore, the ac-
curate backpressure information allows the ETX mini-
mization to operate accurately, as true neighbor costs
are reflected by advertised queue sizes throughout the
network.

Floating queues do come at a potential cost, as it
is possible for data queues to underflow, requiring ser-
vice of the underlying virtual queue in order to main-
tain proper backpressure signaling. With the fixed data
queue of of 11 packets, the null packet delivery rate
caused by floating queues was less than 0.2%. We found

this very low null packet generation rate held for all ex-
periements run on Tutornet.

5.2.3 Goodput and Delivery Efficiency

Figure 8: Goodput in static tests over source rate for

CTP, BCP and Volcano.

Figure 9: Per source average per packet transmission

count to the sink and 95% confidence intervals for static

tests at 0.25 PPS (top) and 1.0 PPS (bottom) on CTP

and BCP.

Having addressed the primary barriers to system use,
we next investigate the real-world performance of BCP.
Figure 8 provides the goodput at the sink over various
offered loads. At source rates in excess of one packet per
second we begin to see packet losses over CTP resulting
in a decrease in the minimum source rate. The cause is
dominated by queue tail drops near the sink, indicating
the need for source rate control. The BCP performance,
however, demonstrates no significant losses until source
rates exceed 1.66 packets per second per source, a more
than 60% improvement in max-min rate. We attribute
this to the queue-aware hotspot avoidance of BCP and

8

its multi-path-like routing capabilities (though no ex-
plicit routes are employed).

While avoiding hotspots, BCP should also be mini-
mizing packet transmissions, as this is one of the dual
goals of our underlying stochastic optimization. Figure
9 provides per source average transmissions to the sink
for BCP and CTP at 0.25 packets per second and 1.0
packets per second per source. At 0.25 packets per sec-
ond, the system average transmissions per packet for
BCP (CTP) is 2.39 (2.65), while at 1.0 packets per sec-
ond the average is 3.12 (2.99).

Having demonstrated that the performance of BCP is
competitive with those of CTP, a tree routing protocol
optimized for this static-network environment, we next
move into the domain in which backpressure algorithms
should intuitively excel.

5.3 External Interference

Figure 10: Thirty second windowed average sourced

packet delivery ratio (top) and system transmissions per

packet (middle). Spectrum analyzer results are plotted

at bottom for the colliding 802.11 channel 14 traffic.

Due to the frequency sharing of 802.11 and 802.15.4
radios, and the severe disparity in transmit powers, 802.15.4
devices suffer greatly from external interference. We
therefore ran a series of controlled external interference
experiments in order to evaluate the external interfer-
ence performance of BCP. Within Tutornet, mote chan-
nel 26 is reserved for low external interference tests, as
this spectrum is shared only by 802.11 channel 14, which
is unused in the building. For our external interference
tests we operate two 802.11 radios (near nodes 25 and
33) on channel 14, transmitting UDP packets of size

890 bytes. The test begins with activation of source
mote traffic at 0.25 packets per second per source for
all 40 motes. After five minutes of settling time, we be-
gin broadcasting packets from the 802.11 devices at a
rate of 200 packets per second. During the interference
phase, broadcasts are generated with a duty cycle of 10
seconds on, 20 seconds off. This periodic external inter-
ference continues for a total of 15 minutes, and we then
conclude the experiment without external interference
for a final five minutes.

In the top portion of Figure 10, we provide delivery
ratios for each 30 second window of the experiment.
The introduction of interference at 300 seconds is par-
ticularly clear in CTP performance, where delivery ra-
tios fluctuate between 55% and 84% for fifteen minutes.
Over the same test period, BCP’s delivery performance
was markedly better: between 88% and 96% of pack-
ets reached the sink successfully. Inspection of tree-
rebalancing messages in CTP indicate that the on/off
behavior of the external interference caused frequent
tree re-generation. Every such tree modification risks
looping and misrouting behaviors, which can briefly re-
sult in queue discards. This can be seen in the bot-
tom portion of Figure 10, where we plot system average
transmissions per packet for each 30 second window of
the experiment. The lack of end-to-end routing paths in
backpressure protocols is a significant strength in this
external interference test, allowing packet routing to re-
spond to sudden external interference with fewer packet
losses and better link selection.

5.4 Highly Mobile Sinks
There has been interest in the use of external mobile

sinks within participatory sensing literature [6]. With
the goal of evaluating BCP performance under such a
scenario, we chose to emulate in experimentation the ex-
istence of an external mobile sink that repeatedly wan-
dered through a portion of the Tutornet testbed. We
selected a sequence of 17 sink motes, leading in order
from several laboratories down a hallway to a stairwell.
One mote at a time turns on its sink designation, as if
an external sink had made contact and requested data.
The sink moves every second, approximately the walk-
ing speed of a student, and cycles through the motes in
17 second before repeating. All 40 sources operate at
0.25 packets per second during the 35 minute test.

It is important to note that CTP was not designed for
highly mobile sinks, but prior system implementations
for mobile sinks (such as Hyper [31]) assume much lower
sink mobility than modeled here (minutes, not seconds).
We believe that performance results for CTP will not
be unreasonable as approximations for Hyper and other
tree-centric sink mobility solutions. Table 1 gives the
delivery ratio and average transmissions per packet for

9

Figure 11: Results from highly mobile sink experiments

on BCP (top) and CTP (bottom). Circle radius repre-

sents the goodput received by the sink (row) originated

by the source (column). Gradients in BCP direct packets

to the most efficient regional sinks.

Figure 12: Results from highly mobile sink experi-

ments, we present a 200 second window of sink time ver-

sus source mote for sinks 8, 18 and 26 running CTP (top)

and BCP (bottom). Each Sink in BCP services commu-

nities of nodes having low ETX, while CTP attempts to

rebuild trees that service the entire network.

our sink mobility experiment for BCP and CTP. The
delivery ratio and average transmission count for BCP
improved when compared with the static network tests.
The same cannot be said for the tree-based collection
algorithm. To better understand the disparity, we next
look into source-sink pairings in the mobile test.

Mobility Static
BCP CTP BCP CTP

Delivery Ratio 0.996 0.590 0.969 .999
Average Tx/Packet 1.73 9.5 2.39 2.65

Table 1: Test results for highly mobile sink experiment

at source rate 0.25 packets per second per source, pro-

vided alongside static network results from section 5.2.

In order to visualize packet deliveries over time, we
plot sink timings per source for sinks 8, 18 and 26 in
Figure 12. We immediately note that once trees are
generated by CTP (if successful) data from the entire
network is rapidly routed to that new sink for the re-
maining sink duration (e.g. sink 8 at 725 seconds). This
contrasts sharply with BCP, where motes draw region-
ally from their neighborhood (e.g. sink 8).

Plotting source to sink delivery goodputs, as in Fig-
ure 11, gives a system view of the packet handling under
mobility for BCP and CTP. Looking at any particular
source (column), under a tree routing algorithm (CTP
at bottom) we observe a generally uniform traffic de-
livery rate to sinks in the network. Under BCP, we see
that for many sources the sink delivery rate is highly un-
even. These sources are forwarding the majority of their
traffic to an intermittently available local sink, having
low ETX distance. This results in very low average TX
count per delivered packet.

6. RELATED WORK
The intellectual roots of dynamic backpressure rout-

ing for multi-hop wireless networks lie in the seminal
work by Tassiulas and Ephremides [35]. They showed
that using the product of queue differentials and link
rates as link weights for a centralized maximum-weight-
matching algorithm allows any traffic within the net-
work’s capacity region to be scheduled stably. Recent
work in Utility Optimal Lyapunov Networking ([23],
[14], [26], [19], [21], [25]) has provided a theoretical
framework for backpressure-based stochastic optimiza-
tion that we have used in this work to derive the link-
specific thresholds for BCP. Independently, Stolyar et
al. have also developed a related backpressure-based
stochastic optimization framework using Lagrange du-
ality ([34], [20], [5]).

Researchers working on both optimization frameworks
have lately worked to address delay reduction theoreti-

10

cally ([16], [25], [24], [5], [40]), but none stray from tradi-
tional FIFO assumptions. Our floating queue is similar
in spirit to the virtual queues used in [16], but we re-
quire no knowledge of the steady-state optimal queue
backlogs.

There has been work to translate backpressure schedul-
ing and optimization into practical protocols for wireless
networks. These efforts have been limited to the MAC
and Transport layers. In wGPD [2] and DiffQ [37], the
queue differentials are used to change contention behav-
ior at the MAC layer. In Horizon [30], load balancing
decisions over multiple disjoint routing paths (gener-
ated separately by a link state routing protocol) take
into account queue state information to enhance TCP
performance. Transport layer backpressure-based rate
utility optimization is demonstrated in both wGPD [2]
and in the work by Sridharan et al. ([33], [32]). None of
these prior works have implemented dynamic backpres-
sure routing at the network layer, which is the focus of
BCP. Moreover, these prior works have not investigated
the mitigation of delay in backpressure based protocols,
nor scalability issues, key contributions of this work.

The routing weights computed in backpressure algo-
rithms are related to a class of routing algorithms known
as potential routing algorithms. With the goal of us-
ing queue congestion to make routing decisions, Ganjali
et al. proposed Volcano [13], a potential routing al-
gorithm that has some similarities to BCP. However,
Volcano routing was evaluated only via idealized simu-
lations and is not based on any theoretical framework;
in particular, because it assumes lossless links, it effec-
tively tries to minimize hop-count, which results in poor
performance in real systems. Also, it does not provide
any solutions for reducing queueing delay.

There have been proposals to use path or one hop
queue backlogs in routing decisions for a number of
protocols over the years, and modern protocols such as
MIXIT [18], Horizon [30] and Arbutus [29] continue to
see the strength of including congestion notification at
the routing layer. These path-based congestion aware
mechanisms are not derived from the Lyapunov Network
Optimization framework, and are essentially heuristics
that attempt to reduce queue drops by either re-computing
routes or re-balancing rate allocations across multiple
static paths when hot-spots occur. While they may
improve throughput performance, we believe that such
path-based heuristics will not be as responsive as BCP
to dynamics that are disruptive to path construction
and maintenance (such as sink mobility). We had hoped
to do a direct comparison with one of these schemes to
justify this claim, but are unable to do so at present
due to lack of source code availability for the TinyOS
platform.

7. CONCLUSION AND FUTURE WORK
We have presented BCP, a collection protocol for sen-

sor networks that is the first-ever implementation of
dynamic backpressure routing in wireless networks. In
BCP, we have implemented several novel techniques to
make backpressure routing practical, such as ETX op-
timization and the use of floating LIFO queues. We
have shown that this results in substantial throughput
improvements over the state of the art CTP in static
settings, and superior delivery performance under dy-
namic settings such as external interference and mobile
sinks.

For duty-cycled operation in long-lived sensor net-
works, we have tested BCP over asynchronous low power
listening (LPL) MAC available in the current TinyOS
2.x distribution and verified that it is functional at mod-
erate duty cycles (15-25%). However, for lower duty
cycle operation, we find that the underlying LPL MAC
will need to be modified to be more supportive of packet
snooping. On the other hand, BCP should work quite
well even at low duty cycles over synchronous sleep-
based MAC protocols such as S-MAC [39] which do not
negatively affect snooping; we plan to explore these in
the future.

One of the most exciting aspects of our work with
BCP is the number of extensions available for future re-
search and development, both by our group and others.
We believe that BCP can be the basis of a comprehen-
sive new high-performance cross-layer networking stack
for wireless sensor networks. Some immediate exten-
sions that we plan to pursue pertain to providing auto-
mated parameter adaptation (for protocol parameters
such as V and τ). With a backpressure routing stack in
place, it is very easy to implement transport layer con-
gestion control on top that allows for the maximization
of any concave source-rate utility function. We plan to
do this in the future, similar to the backpressure-based
transport layer optimizations implemented in ([2], [32],
[33]). We also plan to investigate if there are any fur-
ther throughput gains to be obtained with MAC-layer
prioritization based on the back-pressure weights (as has
been explored in [37], [2]). Other desirable extensions
include integrating BCP over a suitable multi-frequency
MAC, exploring receiver diversity techniques, and net-
work coding.

8. REFERENCES
[1] Tutornet. http://enl.usc.edu/projects/tutornet/.

[2] U. Akyol, M. Andrews, P. Gupta, and J. Hobby. Joint
scheduling and congestion control in mobile ad-hoc
networks. IEEE INFOCOM, Jan 2008.

[3] M. Bathula, M. Ramezanali, I. Pradhan, N. Patel,
J. Gotschall, and N. Sridhar. A sensor network system for
measuring traffic in short-term construction work zones.
DCOSS, Jan 2009.

[4] S. Biswas and R. Morris. Exor: opportunistic multi-hop

11

routing for wireless networks. ACM SIGCOMM, Jan 2005.

[5] L. Bui, R. Srikant, and A. Stolyar. Novel architectures and
algorithms for delay reduction in back-pressure scheduling
and routing. ACM Infocom mini-conference, 2008.

[6] J. Burke, D. Estrin, M. Hansen, and A. Parker.
Participatory sensing. World Sensor Web Workshop, Jan
2006.

[7] J. I. Choi, M. A. Kazandjieva, M. Jain, and P. Levis. The
case for a network protocol isolation layer. Sensys, Oct
2009.

[8] J. I. Choi, J. W. Lee, M. Wachs, and P. Levis. Opening the
sensornet black box. Proceedings of the International
Workshop on Wireless Sensornet Architecture (WWSNA),
Mar 2007.

[9] Couto, D. Aguayo, B. Chambers, and R. Morris.
Performance of multihop wireless networks: Shortest path
is not enough. ACM SIGCOMM, Jan 2003.

[10] L. Filipponi, S. Santini, and A. Vitaletti. Data collection in
wireless sensor networks for noise pollution monitoring.
DCOSS, Jan 2008.

[11] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis.
Four-bit wireless link estimation. HotNets, Oct 2007.

[12] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin.
Highly-resilient, energy-efficient multipath routing in
wireless sensor networks. ACM SIGMOBILE, Jan 2001.

[13] Y. Ganjali and N. McKeown. Routing in a highly dynamic
topology. IEEE SECON, Jan 2005.

[14] L. Georgiadis, M. Neely, M. Neely, and L. Tassiulas.
Resource allocation and cross layer control in wireless
networks. 2006.

[15] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection tree protocol. ACM Sensys, Apr 2009.

[16] L. Huang and M. J. Neely. Delay reduction via lagrange
multipliers in stochastic network optimization. WiOpt, Apr
2009.

[17] A. Jayasumana, N. Piratla, T. Banka, A. Bare, and
R. Whitner. Improved packet reordering metrics. IETF
RFC 5236.

[18] S. Katti and H. Balakrishnan. Symbol-level network coding
for wireless mesh networks. ACM SIGCOMM, 2008.

[19] C. Li and M. Neely. Energy-optimal scheduling with
dynamic channel acquisition in wireless downlinks. IEEE
CDC, Jan 2007.

[20] J. Liu, A. Stolyar, M. Chiang, and H. Poor. Queue
back-pressure random access in multi-hop wireless
networks: Optimality and stability. IEEE Trans on
Information Theory, Jan 2008.

[21] M. Neely. Order optimal delay for opportunistic scheduling
in multi-user wireless uplinks and downlinks. IEEE/ACM
TON, Jan 2008.

[22] M. Neely and R. Urgaonkar. Opportunism, backpressure,
and stochastic optimization with the wireless broadcast
advantage. IEEE SSC, Jan 2008.

[23] M. J. Neely. Dynamic power allocation and
routingforsatelliteand wireless networks with time varying
channels. PhD Thesis, Massachusetts Institute of
Technolog, 2003.

[24] M. J. Neely. Super-fast delay tradeoffs for utility optimal
fair scheduling in wireless networks. IEEE JSAC, Aug 2006.

[25] M. J. Neely. Intelligent packet dropping for optimal
energy-delay tradeoffs in wireless downlinks. IEEE TAC,
Feb 2009.

[26] M. J. Neely, E. Modiano, and C.-P. Li. Fairness and
optimal stochastic control for heterogeneous networks.
IEEE INFOCOM, Sep 2005.

[27] N. Piratla and A. Jayasumana. Reordering of packets due
to multipath forwarding-an analysis. IEEE ICC, Jan 2006.

[28] N. Piratla and A. Jayasumana. Metrics for packet
reordering-a comparative analysis. International Journal of

Communication Systems, Jan 2008.

[29] D. PUCCINELLI and M. HAENGGI. Reliable data
delivery in large-scale low-power sensor networks. ACM
TOSN, Sep 2009.

[30] Radunovic, C. Gkantsidis, and D. Gunawardena. Horizon:
Balancing tcp over multiple paths in wireless mesh network.
ACM MOBICOM, Jan 2008.

[31] T. Schoellhammer, B. Greenstein, and D. Estrin. Hyper: A
routing protocol to support mobile users of sensor networks.
Tech Report 2013, CENS, Oct 2006.

[32] A. Sridharan, S. Moeller, and B. Krishnamachari.
Implementing backpressure-based rate control in wireless
networks. ITA Workshop, Sep 2008.

[33] A. Sridharan, S. Moeller, and B. Krishnamachari. Making
distributed rate control using lyapunov drifts a reality in
wireless sensor networks. WiOpt, 2008.

[34] A. Stolyar. Maximizing queueing network utility subject to
stability: Greedy primal-dual algorithm. Queueing Systems,
Jan 2005.

[35] L. Tassiulas and A. Ephremides. Stability properties of
constrained queueing systems and schedulingpolicies for
maximum throughput in multihop radio networks. IEEE
Transactions on Automatic Control, 1992.

[36] M. Wachs, J. I. Choi, J. W. Lee, K. Srinivasan, Z. Chen,
M. Jain, and P. Levis. Visibility: A new metric for protocol
design. ACM Sensys, Sep 2007.

[37] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee. Diffq:
Practical differential backlog congestion control for wireless
networks. INFOCOM, Jan 2009.

[38] A. Woo, T. Tong, and D. Culler. Taming the underlying
challenges of reliable multihop routing in sensor networks.
ACM Sensys, 2003.

[39] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient
mac protocol for wireless sensor networks. IEEE
INFOCOM, Jan 2002.

[40] L. Ying, S. Shakkottai, and A. Reddy. On combining
shortest-path and back-pressure routing over multihop
wireless networks. Proceedings of the IEEE INFOCOM, Jan
2009.

12

	Introduction
	Backpressure Explained
	Routing as a Stochastic Optimization Problem
	A Simple Example

	Novel Contributions of BCP
	ETX Minimization
	Delay Reduction using LIFO
	Scalability

	BCP Implementation
	Routing and Forwarding
	Weight Recalculation
	Link Metric Estimation
	Disseminating Local Queue Backlog
	Floating Queue Implementation

	Experimental Results
	Experimental Methodology
	Static Network Tests
	Delay Performance
	Scalability
	Goodput and Delivery Efficiency

	External Interference
	Highly Mobile Sinks

	Related Work
	Conclusion and Future Work
	References

