
Evaluating the Performance of RPL and 6LoWPAN in
TinyOS

JeongGil Ko
Department of Computer

Science
Johns Hopkins University

Stephen
Dawson-Haggerty

Computer Science Division
University of California,

Berkeley

Omprakash Gnawali
Computer Science

Department
Stanford University

David Culler
Computer Science Division

University of California,
Berkeley

Andreas Terzis
Department of Computer

Science
Johns Hopkins University

ABSTRACT
Responding to the increasing interest to connect wireless sensor
networks (WSN) to the Internet, the IETF has proposed standards
that enable IPv6-based sensor networks. Specifically, the IETF
6LoWPAN and RoLL working groups developed standards for en-
capsulating IPv6 datagrams in 802.15.4 frames, neighbor discov-
ery, and routing that allow sensor networks to exchange IPv6 data-
grams with Internet hosts. However, given that these standards, es-
pecially the RPL routing protocol, are relatively new, there has not
yet been a study that measures the actual performance of these pro-
posals using real implementations. In this work, we use the BLIP
and TinyRPL implementations in TinyOS 2.x to evaluate the per-
formance of the newly proposed standards and compare them with
CTP, the de-facto routing protocol standard for TinyOS. Our results
indicate that the performance of TinyRPL is comparable with CTP
and at the same time, TinyRPL can provide additional functionali-
ties that traditional WSN routing protocols could not provide. We
also discovered several issues, relevant to system developers and
the standardization groups, which can enhance the proposed stan-
dards’ performance.

1. INTRODUCTION
For more than a decade, researchers considered the Internet ar-

chitecture to be ill-suited for low-power and resource-constrained
WSN platforms. However, increasing interest to connect WSN-
based infrastructure (e.g, [10, 11, 15]) to the Internet and results
from preliminary studies indicating the feasibility of using IPv6 in
WSNs [9], led the Internet Engineering Task Force (IETF) to de-
velop IP-based protocols for low-power and lossy networks (LLNs)
through the 6LoWPAN and RoLL working groups.

The research community took a leading role in developing these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’11, April 12–14, 2011, Chicago, Illinois.
Copyright 2011 ACM 978-1-4503-0512-9/11/04 ...$10.00.

standards, reflecting on results from over a decade of WSN re-
search. As a result of these efforts, the IETF 6LoWPAN working
group proposed standards that include mechanisms to effectively
compress IPv6 addresses and also schemes to efficiently discover
nodes using compressed IPv6 addresses [7]. More recently, the
IETF RoLL working group developed the RPL standard, which is
a routing protocol targeting IPv6-based LLNs.

These IETF standards were not developed in the void. Instead,
many ideas originally developed as part of the TinyOS collabora-
tion (e.g., [3, 4, 12]) and other research efforts, were adopted by
the 6LoWPAN and RoLL working groups. As these standards are
maturing, the TinyOS community is once again putting in efforts
to distribute the proposed standards through open source imple-
mentations and real-life applications. Nevertheless, adoption will
be determined eventually by the performance and features of these
protocols, especially for resource-constrained sensor networks.

This work is the first effort to evaluate the performance of TinyRPL,
the TinyOS implementation of the IETF RPL routing protocol,
in a testbed environment. Specifically, we compare the perfor-
mance of the latest TinyRPL implementation with the Collection
Tree Protocol (CTP), the de-facto standard data collection proto-
col for TinyOS 2.x [4]. Our results indicate that the performance
of TinyRPL is comparable, in terms of packet delivery and proto-
col overhead, to the well-engineered CTP protocol. Moreover, we
show that the additional features, such as RPL’s ability to establish
bi-directional routes, makes TinyRPL more attractive for practical
wireless sensing systems. Finally, based on our experience in im-
plementing and evaluating TinyRPL, we provide suggestions for
system developers that use the RPL routing protocol. We believe
that these suggestions can benefit the standards development pro-
cess.

2. RPL
Chartered in 2008, the goal of the IETF’s Routing over Low-

power and Lossy networks (RoLL) working group was to design
a routing protocol that fits the various requirements introduced by
the working group’s target applications described in RFCs 5548 [2],
5673 [16], 5826 [1], and 5867 [14]. In 2010, the working group in-
troduced the IPv6 Routing Protocol for Low-power and lossy net-
works (RPL) [18].

RPL’s high-level goal is to provide efficient routing paths for

three traffic patterns, multipoint-to-point, point-to-multipoint, and
point-to-point traffic in low-power and lossy networks (LLNs).
Specifically, once a RPL node obtains a proper global IPv6 ad-
dress (e.g., via DHCPv6), it tries to join a Destination Oriented
Directed Acyclic Graph (DODAG) by exchanging ICMPv6-based
DODAG Information Solicitation (DIS) or DODAG Information
Object (DIO) messages.

Using such routing control messages1, the root of a RPL DODAG
advertises itself as a parent node for other nodes in its neighbor-
hood. Once it selects a parent, a RPL node propagates its own
DIO further down the network to form its sub-DODAG. When a
DIO is received and a node tries to connect to a RPL DODAG,
the node starts by computing its own “rank” value which repre-
sents its relative position within the DODAG from the root. The
DIO messages also include objective functions (OFs) which con-
tain the details on how the rank value is initially computed and fur-
ther maintained. Currently two different types of OFs are specified
as Internet Drafts of the RoLL working group, OF0 [17], which is
simply a hop count-based metric, and the Minimum Rank Objec-
tive Function with Hysteresis(MRHOF) [5], which uses hysteresis
while selecting the path with the smallest metric value (e.g., path
ETX).

As previously said, RPL supports three traffic patterns. Intu-
itively, multipoint-to-point (i.e., collection) traffic can be supported
with little routing state, whereby each node stores the next hop
leading to the single destination, the root of the DODAG. This state
can be maintained by properly constructing the DODAG using DIO
message exchanges. On the other hand, for the other two types of
traffic patterns (i.e., point-to-multipoint and point-to-point), RPL
provisions separate “downward” routes using an additional RPL
control ICMPv6 message, the so-called Destination Advertisement
Object (DAO) message. DAO messages advertise routes for various
destinations and prefixes within a RPL network. Upon receiving a
DAO message, depending on how the network is pre-configured,
nodes either locally store the route (storing mode) or forward this
route information to the root of the DODAG (non-storing mode).
By collecting such individual route information, a packet can travel
“up” the tree until it reaches a node that has knowledge of the rout-
ing path to the packet’s ultimate destination.

It is notable that the design of RPL was heavily influenced by
various findings from a decade of wireless sensor network research.
Specifically, RPL reduces the cost of propagating routing state by
using a Trickle-based timer [13], increases the probability of packet
delivery by simultaneously provisioning multiple potential rout-
ing paths [4], and uses expressive link metrics to deal with var-
ious types of applications in challenging radio channel environ-
ments [3].

The RPL standards are based on a IPv6-based addressing layer
(e.g., 6LoWPAN layer). While the RPL specification does not man-
date the use of the 6LoWPAN specifications, it is important to keep
an efficient IPv6 stack that can fit in resource-constrained mote
platforms. Therefore, we consider the use of a 6LoWPAN layer
to be a de-facto requirement for WSN systems. Specifically, drafts
such as the IPv6 header compression draft [7] are essential for ef-
fective management of a mote’s resources (e.g., radio capacity and
memory resources). Finally, for applications that require or provide
global connectivity, a communication path that physically connects
the low-power wireless network to other nodes on the Internet is
necessary (e.g., through a PPP connection at the edge router or the
DODAG root).

1DIO messages carry details on how to connect to a node to a
DODAG and DIS messages explicitly request DIO messages.

Application

UDP / TCP

BLIP TinyRPL

ICMPv6 (DIO, DIS, DAO)

RPL Data Header Validation

Link Result

Route Install

MAC / IEEE 802.15.4 PHY

Data Packets

Data Packets

Data and Control
Packets

Figure 1: The 6LoWPAN/RPL software stack in TinyOS 2.x.
TinyRPL implements the control plane of the RPL specifica-
tions and interacts with the packet forwarding plane imple-
mented in BLIP.

3. RPL IN TINYOS
The RPL implementations in TinyOS is centered in two lay-

ers of the software stack, blip, the TinyOS 6LoWPAN stack,
and TinyRPL the actual implementation of the RPL standard.
This section introduces the interfaces and the interactions between
TinyRPL and BLIP and also presents the performance of TinyRPL/BLIP.

3.1 BLIP
The Berkeley Low-power IP stack, blip, is the de-facto IPv6/6LoWPAN

stack for TinyOS 2.x. Therefore, the RPL implementations in
TinyOS interacts heavily with the interfaces that blip provides.
blip implements the 6LoWPAN header compression, 6LoWPAN
neighbor discovery and DHCPv6 to support the use of IPv6 in
the upper layers. blip also provides a layered IP forwarding ab-
straction which allows routing protocols such as RPL to be imple-
mented on top of the ICMP engine. In its interaction with TinyRPL,
blip initiates the TinyRPL operations once a node is assigned a
global address. Specifically, as Figure 1 shows, once TinyRPL es-
tablishes a route using the RPL-related ICMPv6 messages (e.g.,
when TinyRPL obtains knowledge of what the next hop node is for
any desired/supported destination), the route is added to blip’s
routing table. The forwarding engine in blip makes routing de-
cisions by performing lookups in this table and also includes op-
tional up-calls to the routing layer for each packet being forwarded;
this allows the routing protocol to implement non-standard tests
for packet forwarding. For instance, TinyRPL checks for an op-
tional routing header to discover the existence of any routing loops.
blip also manages per-interface message queues which are used
to buffer outgoing packets, necessary to support bursts of outgoing
packets such as those generated from sending a fragmented packet
and that caused by head-of-line blocking during retransmissions.

The stack also provides a number of other components which
allow implementers to work on just one layer rather than reinvent-
ing a large amount of new software. One important piece for our
experiments was the implementation of the Point-to-Point protocol

Protocol TinyRPL CTP

Packet Interval 5 sec 10 sec 5 sec 10 sec

PRR 99.88% 99.96% 99.94% 99.99%

Control Traffic 8.96 9.01 8.29 8.02

Table 1: Packet reception ratio (PRR) and the average num-
ber of routing control packets generated at each node per hour
with varying traffic rates. We compare TinyRPL and CTP
when each member of a 50-node testbed generates a packet ev-
ery 5 and 10 seconds. The results are the average of two 24-
hour testbed runs for each network configuration. The PRR
and routing control packet overhead of TinyRPL is compara-
ble with that of CTP.

(PPP). PPP is a framing and configuration protocol for many types
of links which provide a byte-stream abstraction; it has mostly re-
placed the SLIP protocol. Using PPP, a TinyOS node running RPL
can present itself as a network interface to another host or router.
In our experiments, the node running as the RPL DODAG root also
configures itself with a serial interface, which it used to route pack-
ets between the LLN running RPL and external networks such as
the Internet. The PPP stack is still a work in progress, but provided
satisfactory functionality for these experiments.

3.2 TinyRPL
TinyRPL is a prototype implementation of the IETF RPL routing

protocol in TinyOS 2.x. As a sample implementation, TinyRPL
supports the RPL draft’s basic mechanisms, while omitting some of
RPL’s optional features, such as the security options. The current
implementation provides the OF0 [17] or MRHOF [5] objective
functions with the ETX metric. Nevertheless, the modular design
of TinyRPL simplifies the use of additional objective functions.

4. EVALUATION
Next, we present the results of our RPL evaluation using mea-

surements collected from a medium-size testbed. The same testbed
was used to run CTP and we compare the performance of the two
protocols.

4.1 Methodology
In this work, we evaluate the performance of TinyRPL with the

path-ETX metric and MRHOF using various routing performance
metrics and compare the measurements with the de-facto standard
routing protocol in TinyOS 2.x, the Collection Tree Protocol (CTP)
[4].

We present results collected from a testbed of 51 TelosB motes
distributed over two floors of an office building. One of the 51
nodes was configured as the root of the routing tree while the
remaining 50 nodes operated as packet generating sources that
formed a routing tree using either TinyRPL or CTP. When the net-
work boots up and a global address is issued by blip, the pre-
assigned root node starts the TinyRPL operations by sending DIO
packets (routing beacon packets for CTP2). After joining the rout-
ing tree, source nodes start to generate data packets destined to
the root node. In our experiments, packets were generated at each
source node with a fixed interval of 5 seconds or 10 seconds for two
separate sets of tests. Note that in order to make a fair comparison
with CTP, we temporarily disabled the downstream routing options
2CTP does not use the blip layer; thus, no global IPv6 address is
assigned.

 0

 0.5

 1

 1.5

 2

 2.5

 3

TinyRPL CTP

A
ve

ra
ge

 N
um

be
r

of
 T

ra
ns

m
is

si
on

s

Per Hop
End-to-End

Figure 2: Average number of packet transmissions required at
each hop (gray bars) and over the entire end-to-end path (black
bars) for TinyRPL and CTP. The results indicate that TinyRPL
and CTP both select links with very good quality and also that
the path that CTP selects are slightly more efficient than the
path that TinyRPL selects.

from TinyRPL; thus, no DAO packets were sent. Also note that the
packets generated when using TinyRPL were UDP packets.

4.2 Packet Reception Ratio
The first result that we present in Table 1 is a comparison of the

average end-to-end packet reception ratio (PRR) between TinyRPL
and CTP computed over two runs for a duration of 24 hours each.
The PRR values in Table 1 indicate that the PRR for TinyRPL is
comparable with that of CTP and always higher than 99.8%.

Given the similar high PRR values of TinyRPL and CTP, another
important metric to consider is the amount of overhead necessary
to maintain the routing tree. It is always desirable to maintain well
performing routes with minimal routing control overhead. Further-
more, since routing control packets are typically transmitted using
multicast addresses and lead to longer radio uptimes in duty-cycled
networks, minimizing their quantity is even more desirable for low-
power and lossy networks. As discussed above, in RPL, the routing
control packets are ICMPv6-based messages (e.g., DIO, DIS, and
DAO messages) and likewise, CTP transmits routing beacons for
the same purpose as DIOs. While the DIS packets are sent peri-
odically from a RPL node until the first parent node is selected3,
a Trickle timer is used in both CTP and TinyRPL to schedule the
transmission of DIOs and CTP routing beacons4 [13]. The Trickle
timer allows the beacon intervals to exponentially increase when
the network conditions are stable and quickly decrease to the min-
imum interval when noticeable changes in the network conditions
are detected; thus, using a Trickle timer effectively minimizes the
amount of routing overhead when the network is stable.

In addition to the PRR values mentioned previously, Table 1 also
shows that on average, 8.96 DIO packets were generated at each
node per hour when TinyRPL source nodes were generating pack-
ets at a 5 second interval. Each CTP node generated 8.29 control
packets per hour. The slightly higher routing control overhead for
TinyRPL can be explained in two ways. The first reason, which
is rather simple, is that the events that trigger a Trickle timer reset
3Few DIO packets are exchanged during the initial part of our ex-
periments and we disable DAO packets.
4We match the Trickle timer parameters of TinyRPL to those of
CTP (e.g., minimum interval as 0.128 seconds and maximum inter-
val as 512 seconds).

are set differently in the two implementations. Moreover, TinyRPL
nodes experienced slightly higher churn compared to CTP. While
CTP experienced an average number of 0.241 parent changes for
each node every hour, TinyRPL experienced a slightly higher 0.252
parent changes per node per hour. By making more frequent par-
ent changes, the network was less stable, which, as a result, created
more control packets. In any case, we conjecture that the small dif-
ferences in the overhead measurements is caused by the use of dif-
ferent link quality estimation techniques that impact the parent se-
lection process. While CTP uses the 4-bit link estimator [3], which
combines link quality information from multiple layers in the net-
working stack, TinyRPL relies on the Minimum Rank Objective
Function with Hysteresis (MRHOF) [5] with the path-ETX metric.

4.3 Routing Protocol Overhead
Another type of overhead related to the efficiency of a routing

protocol is the overhead of attaching and transporting a routing
header to the data packets. In RPL and CTP, these routing headers
are used to detect route inconsistencies during data transmissions.
For CTP, each data packet includes an 8-byte routing header that
consists of information on the origin of the data packet along with
information used for detecting routing loops. In TinyRPL, an 8-
byte (including the IPv6 extension header size [8]) optional routing
header, which contains the information needed for detecting loops,
is attached to outgoing datagrams. Also, when using TinyRPL,
the datagram’s origin information, which the CTP routing header
also contains, is attached at the BLIP layer using a 7-byte 6LoW-
PAN header (when 16-bit addresses are used). In summary, each
data packet in TinyRPL contains up to 15 bytes of overhead to
achieve the same functionalities of the CTP routing header. While
the amount of overhead is higher for TinyRPL, we argue that this is
only a small difference and also given that the RPL routing headers
are optional [8], this difference can always be reduced. Overall,
by combining these numbers with the results from Table 1, we can
conclude that the per-packet overhead for TinyRPL and CTP are
also comparable.

Finally, one of the main goals of a routing protocol for low-
power and lossy networks, or any other wireless network for that
matter, is selecting high quality paths that can minimize the ag-
gregate number of transmissions, which directly translates to the
energy consumed during packet transmissions and radio idle lis-
tening. For this, Figure 2 presents the total number of transmis-
sions necessary to successfully deliver a packet to its final desti-
nation; the same figure also plots the number of transmission at-
tempts made at each hop for both TinyRPL and CTP. The per-hop
bars indicate that the quality of the links that TinyRPL and CTP se-
lected were similar and that in both cases, these links had very high
delivery ratios (e.g., per link ETX of 1.13 and 1.06 for TinyRPL
and CTP respectively). While the per-hop link quality was close to
identical, the two end-to-end bars indicate that the MRHOF-ETX-
based TinyRPL selected slightly longer routes when compared to
the 4-bit link estimator-based CTP (e.g., 1.81 for CTP vs. 1.86
for TinyRPL). Nevertheless, the numbers are very close, indicat-
ing that a MRHOF combined with path-ETX-based link selection
mechanism was effective in selecting efficient end-to-end routing
paths.

4.4 Downstream Routing
The results presented until now demonstrate that, for collection

traffic, the performance of TinyRPL is comparable to CTP. In turn,
these results suggest that an IPv6-based collection protocol pro-
vides high PRR and low routing overhead. However, what makes
TinyRPL even more attractive than CTP are the additional features

Response Ratio Latency
Edge router 99.99% 132.23 ms

RPL node 98.51% 191.01 ms

Table 2: The response ratio (i.e., round-trip PRR) of actua-
tion messages and their response latencies when using the PPP
module provided with BLIP. Actuation messages are sent from
a remote PC to a RPL network bridged to another PC using
the PPP module. The edge router in the RPL network receives
the messages from the PPP connection then forwards them to
the target node using the downwards routes constructed by
TinyRPL’s storing mode option. Once the action is performed
at the target node, the node responds to the remote PC indi-
cating that the process was successful. The results show that
the bi-directional paths that TinyRPL establishes enables LLN
nodes to successfully exchange messages with nodes in the In-
ternet. By using a reliable transport layer protocol, a RPL net-
work can enable sensors to effectively communicate with a host
in the Internet to exchange actuation messages.

that the RPL specification offers. Major benefits that separate RPL
from CTP include RPL’s support for various types of traffic pat-
terns (see Section 2) and its ability to directly connect to Internet
nodes by exchanging packets with global IPv6 addresses.

To demonstrate this benefit, we present results from a simple ap-
plication that uses actuation messages. For this, we set up a RPL
network which is bridged to a PC using the PPP connections pre-
sented in Section 3.1. We then send actuation messages to the RPL
nodes in this network asking them to toggle their LEDs. These
actuation commands originate from a remote PC with a periodic
interval of 2 seconds for 100 times to each reachable RPL node
(e.g., 29 nodes + 1 edge router node). The RPL network establishes
downwards routes, which are needed to forward these requests to
the target RPL node, using the storing mode option described in
the RPL specification. Upon receiving the actuation request and
performing the requested operations, the RPL nodes send back a
response indicating that the task was successfully completed. We
present the response ratio (i.e., round-trip PRR) of the actuation
message exchanges and their latency in Table 2. Our results indi-
cate that the remote PC receives 98.51% of the actuation response
messages that it requests, implying that the bi-directional links that
are established by TinyRPL can successfully forward packets trav-
eling in both directions. From a practical standpoint, these results
indicate that when TinyRPL is combined with a reliable transport
layer protocol it can offer the connectivity that a real-life applica-
tion (e.g., home automation system) would expect.

5. EXPERIENCES AND DISCUSSION
Next, we present some of the points that we, as the implementers

of the IETF proposed standards, feel that would help a system de-
veloper or even the standardization groups to improve the perfor-
mance RPL-based networks.

Flexibility of the RPL Specifications.
Our experience with implementing TinyRPL suggests that the

RPL specification provides a level of freedom to implementers,
even to a point where the performance of the implementation can
be heavily affected.

One area that warrants more detailed description is the set of
events that trigger a DIO Trickle timer reset. The RPL specifi-
cation indicates that a RPL implementation must reset the Trickle

 0

 20

 40

 60

 80

 100

 120

0.25 1 4

N
et

w
or

k
S

et
up

 T
im

e
(s

)

DIO Minimum Interval (s)

Perfect Channel
Lossy Channel

Figure 3: Cooja simulation results on the network setup delay
for constructing the initial DODAG using different minimum
intervals for DIO transmissions. Despite the topology having a
small average hop count of 2.37, large values for the minimum
interval of the DIO controlling Trickle timer can result in long
network setup times when the network is lossy.

timer when a DIS message is received (with some restrictions [18])
and when an inconsistency or loop is detected. Additionally, de-
pending on the implementation, a developer can define additional
events that reset the DIO Trickle timer. Also separate implementa-
tions may come up with a diverse set of cases on how multicast DIS
messages are used (which in turn will trigger a reset for the Trickle
timer as well). Based upon our experience, the Trickle timer in-
tervals and the number of their resets heavily affect the amount
of overhead spent to maintain the DODAG. Without a firm defini-
tion, different RPL implementations can obtain extremely different
results both in terms of routing overhead and PRR; therefore, we
suggest that future amendments to the standard, further clarify the
trigger conditions.

In the same context, we note that the loss of DIO messages and
their rapidly increasing Trickle timers had a large impact on the
network setup time and also the nodes’ parent selection processes.
As an example, we show network setup latency results obtained
using our TinyRPL binary in the Cooja simulator with a random
topology of 40 nodes (average hop count of the topology = 2.37).
We perform experiments for a network with perfect channel con-
ditions and also a network with lossy links. To simulate a lossy
network, we configured a network where the average PRR of all
possible links in the network was ∼56%. In this setting, we tested
for cases where the DIO Trickle timer’s minimum interval was 0.25
second, 1 second, and 4 seconds. For each test case, we compute
the latency required to setup an initial DODAG that connects all the
nodes in the network (e.g., time that the final node connects itself
to the DODAG minus the time of the first DIO transmission).

Figure 3 shows the average of these values and their standard
deviations computed over five runs for the two different chan-
nel conditions. Results indicate that despite having a topology
with a small average hop count of 2.37 (i.e., shallow topology),
the increase in the minimum interval for the DIO transmission
Trickle timer results in a long setup latency when the channel con-
ditions are lossy. We can also expect that if the number of hops
in the DODAG’s topology increases, this network setup latency
can increase even further. While this may be less of an issue in
LLNs that have the goal of long lifetimes with sparse traffic pat-
terns, it can become critical in scenarios where the network needs
to be deployed rapidly and carries high volumes of traffic (e.g.,
emergency response scenarios). Recently, as a first step to ad-
dress such issues, the Recommendations for Efficient

Implementation of RPL draft was proposed to discuss and
clarify several topics on implementation decisions [6]. This docu-
ment should be further expanded to address the issues raised above.

Downwards Route Provisioning.
RPL requires the network to select between the storing and the

non-storing mode to provision downwards routes. The storing
mode option effectively reduces communication overhead since it
eliminates the additional routing header that specifies the routing
path that a packet should travel to reach the target destination (typ-
ically attached at the DODAG root). On the other hand, using the
storing mode requires a node to sacrifice more of its local memory
to store routes, thereby leaving developers with a trade-off.

While making detailed estimations on the tradeoff is possible,
if local memory spaces permit, it is always meaningful to reduce
bandwidth usage as much as possible. In our experiments with
downstream routing in storing mode, we noticed that the current
TinyRPL/BLIP implementations on TelosB motes support up to
∼30 target destinations. This argues that to support routes to all
nodes in the RPL network, the network’s size must be limited to
∼30 nodes. This of course can be further optimized by using com-
pressed addresses and constructing routing tables based on IPv6
prefixes rather than individual IPv6 addresses. In any case, we ad-
vise that the size of the implementations themselves can be a way
of determining which downstream route provisioning mode to use
when designing a RPL-based WSN system.

Fragmented packet forwarding.
Another implementation decision bearing further investigation is

the forwarding path for large, fragmented packets. A strictly lay-
ered approach requires the entire IPv6 packet to be reconstructed at
each hop, so that routing decisions are made with the entire packet
on hand; this is the approach taken by the current implementations
of blip. A disadvantage of this approach is that it increases mem-
ory pressure on forwarding nodes: they must allocate a reconstruc-
tion buffer for each packet being forwarded, which may remain
allocated until a timeout (in the case of packet drops) occurs. An
alternative approach is to decompress only the IPv6 header con-
tained in the first fragment, and make a routing decision. The for-
warder can then cache the next hop determination for succeeding
fragments at the link-layer and dispatch incoming fragments di-
rectly to the output queue. This approach results in both reduced
latency and reduced memory pressure, and has been successfully
used in previous versions of blip.

6. SUMMARY
This work evaluates the performance of the IETF RPL routing

protocol using an implementation in TinyOS 2.x. Our implemen-
tation of RPL, TinyRPL is combined with BLIP, the 6LoWPAN
stack in TinyOS to provide efficient routing performance, in terms
of PRR and protocol overhead, that is comparable with CTP, the
de-facto routing protocol in TinyOS. Furthermore, we show that, by
leveraging RPL’s capabilities of performing bi-directional routing
and forwarding IPv6 data frames, TinyRPL/BLIP can successfully
communicate with devices in the greater Internet. Our experience
with implementing and evaluating RPL has allowed us to provide
some suggestions that can benefit future system developers as well
as improve the quality of the proposed standards.

Acknowledgments
We thank the anonymous reviewers for their insightful comments
that helped us improve the quality of this paper. We would like

to acknowledge Albert Goto for managing the testbed for our ap-
plication evaluations in Section 4.4. This work was funded by
NSF Awards #0435454, #0454432, #0855191, CPS-0931843, and
the Stanford Army High Performance Computing Research Center
Grant W911NF-07-2-0027.

7. REFERENCES
[1] A. Brandt, J. Buron, and G. Porcu. Home Automation

Routing Requirements in Low-Power and Lossy Networks.
RFC 5826, April 2010.

[2] M. Dohler, T. Watteyne, T. Winter, and D. Barthel. Routing
Requirements for Urban Low-Power and Lossy Networks.
RFC 5548, May 2009.

[3] Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, and
Philip Levis. Four-Bit Wireless Link Estimation. In
Proceedings of the sixth workshop on Hot Topics in
Networks (HotNets), November 2007.

[4] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis.
Collection Tree Protocol. In Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems
(SenSys), pages 1–14, Nov 2009.

[5] O. Gnawali and P. Levis. The minimum rank objective
function with hysteresis. Internet Draft (Work in Progress),
IETF, 2010.

[6] O. Gnawali and P. Levis. Recommendations for Efficient
Implementation of RPL. Internet Draft (Work in Progress),
IETF, 2011.

[7] J. Hui and P. Thubert. Compression Format for IPv6
Datagrams in 6LoWPAN Networks. Internet Draft, IETF,
2010.

[8] J. Hui and JP. Vasseur. RPL Option for Carrying RPL
Information in Data-Plane Datagrams. Internet Draft (Work
in Progress), IETF, 2010.

[9] Jonathan W. Hui and David E. Culler. IP is dead, long live IP
for wireless sensor networks. In SenSys ’08: Proceedings of
the 6th ACM conference on Embedded network sensor
systems, pages 15–28, New York, NY, USA, 2008. ACM.

[10] X. Jiang, S. Dawson-Haggerty, P. Dutta, and D. Culler.
Design and implementation of a high-fidelity AC metering
network. In Proceedings of the International Conference on
Information Processing in Sensor Networks, pages 253–264,
2009.

[11] JeongGil Ko, JongHyun Lim, Yin Chen, Razvan
Musaloiu-E., Andreas Terzis, Gerald Masson, Tia Gao, Walt
Destler, Leo Selavo, and Richard Dutton. MEDiSN: Medical
Emergency Detection in Sensor Networks. ACM
Transactions on Embedded Computing Systems (TECS),
Special Issue on Wireless Health Systems, 10(1):1–29, 2010.

[12] Philip Levis, Eric Brewer, David Culler, David Gay, Samuel
Madden, Neil Patel, Joe Polastre, Scott Shenker, Robert
Szewczyk, and Alec Woo. The emergence of a networking
primitive in wireless sensor networks. Commun. ACM,
51(7):99–106, 2008.

[13] Philip Levis, Neil Patel, David Culler, and Scott Shenker.
Trickle: A Self-regulating Algorithm for Code Propagation
and Maintenance in Wireless Sensor Networks. In
Proceedings of NSDI, March 2004.

[14] J. Martocci, P. De Mil, N. Riou, and W. Vermeylen. Building
Automation Routing Requirements in Low-Power and Lossy
Networks. RFC 5867, June 2010.

[15] Jeongyeup Paek, Krishna Chintalapudi, John Cafferey,
Ramesh Govindan, and Sami Masri. A wireless sensor

network for structural health monitoring: Performance and
experience. In Proceedings of the Second IEEE Workshop on
Embedded Networked Sensors (EmNetS-II), May 2005.

[16] K. Pister, P. Thubert, S. Dwars, and T. Phinney. Industrial
Routing Requirements in Low-Power and Lossy Networks.
RFC 5673, October 2009.

[17] P. Thubert. RPL Objective Function 0. Internet Draft (Work
in Progress), IETF, 2010.

[18] T. Winter, P. Thubert, and RPL Author Team. RPL: IPv6
Routing Protocol for Low power and Lossy Networks.
Internet Draft (Work in Progress), IETF, 2010.

