This version is reformatted from the official version that appears in the conference proceedings.

Surviving Sensor Network Software Faults

Yang Chen

School of Computing
University of Utah
Salt Lake City, UT USA

chenyang@cs.utah.edu

Philip Levis

Computer Systems Laboratory
Stanford University
Stanford, CA USA

pal@cs.stanford.edu

Abstract

We describe Neutron, a version of the TinyOS operating
system that efficiently recovers from memory safety bugs.
Where existing schemes reboot an entire node on an error,
Neutron’s compiler and runtime extensions divide programs
into recovery units and reboot only the faulting unit. The
TinyOS kernel itself is a recovery unit: a kernel safety viola-
tion appears to applications as the processor being unavail-
able for 10-20 milliseconds.

Neutron further minimizes safety violation cost by sup-
porting “precious” state that persists across reboots. Appli-
cation data, time synchronization state, and routing tables
can all be declared as precious. Neutron’s reboot sequence
conservatively checks that precious state is not the source of
a fault before preserving it. Together, recovery units and pre-
cious state allow Neutron to reduce a safety violation’s cost
to time synchronization by 94% and to a routing protocol by
99.5%. Neutron also protects applications from losing data.
Neutron provides this recovery on the very limited resources
of a tiny, low-power microcontroller.

1. Introduction

Sensor networks consist of large numbers of small, low-
power, wireless devices, often embedded in remote and in-
convenient locations such as volcanoes [35], thickets [25],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SOSP’09 October 11-14, 2009, Big Sky, Montana, USA.

Copyright (© 2009 ACM 978-1-60558-752-3/09/10. .. $10.00

Reprinted from SOSP’09, Proceedings of the 22nd ACM Symposium on Operating
Systems Principles, October 11-14, 2009, Big Sky, Montana, USA., pp. 1-16.

Omprakash Gnawali

Computer Science Department
University of Southern California
Los Angeles, CA USA

gnawali@usc.edu

Maria Kazandjieva

Computer Systems Laboratory
Stanford University
Stanford, CA USA

mariakaz@stanford.edu

John Regehr

School of Computing
University of Utah
Salt Lake City, UT USA

regehr@cs.utah.edu

bird burrows [31], glaciers [32], and tops of light poles [22].
Applications commonly specify that a network should op-
erate unattended for months or years [25, 31]. Software de-
pendability and reliability are therefore critical concerns.

In practice, however, sensor networks operate for weeks
or months and require significant attention from developers
or system administrators [31, 35]. The discrepancy between
desired and actual availability is in part due to difficult-to-
diagnose bugs that emerge only after deployment [34]. A
recent deployment in the Swiss Alps illustrates this chal-
lenge. Network communication failed during mornings and
evenings, but worked during the day and night. The cause
was temperature response differences for the processor and
radio oscillators. Periods of warming and cooling led their
clocks to drift too much for their interconnect to be reli-
able [3].

Unforeseen bugs often manifest as memory errors. For
example, a popular radio chip, the ChipCon CC2420, erro-
neously signals reception of corrupted packets shorter than
the 802.15.4 standard permits. Early CC2420 drivers for the
TinyOS operating system did not consider this case; receiv-
ing a short, corrupt packet triggered an off-by-one error in a
loop, overwriting unrelated parts of RAM [28].

As wireless sensors use microcontrollers whose RAM
is no larger than a typical MMU page, compiler-enforced
safety is the standard mechanism for detecting memory
bugs. For example, Safe TinyOS [8] uses Deputy [7] to
make all of TinyOS and its applications type-safe, prevent-
ing pointer bugs from cascading into memory corruption and
random consequences.

Safe execution is an important step towards dependable
software, but it raises a difficult question: How should a node
respond to a safety violation? These embedded, event driven
systems typically have no concept of a process or unit of

code isolation. Thus, on a safety violation, Safe TinyOS spits
out an error message (for lab testing) or reboots the entire
node (in deployment).

Rebooting an entire node is costly: it wastes energy and
loses data. Systems gather state such as routing tables and
link quality estimates to improve energy efficiency by min-
imizing communication. Systems gather this state slowly to
avoid introducing significant load. After rebooting, a node
may take some time—minutes, even hours—to come fully
back online. For example, in a recent deployment on Reven-
tador Volcano, reboots from a software error led to a 3-
day network outage [35], reducing mean node uptime from
>90% to 69%.

This paper presents Neutron, a version of the TinyOS op-
erating system that improves the efficiency and dependabil-
ity of wireless sensor networks by reducing the cost of mem-
ory safety violations. Neutron has two parts: extensions to
the TinyOS compiler toolchain (nesC and Deputy) and ex-
tensions to TinyOS itself.

Neutron extends the nesC compiler to provide boundaries
between “recovery units.” Similarly to microreboots [6],
Neutron reboots only the faulting unit on a safety viola-
tion. TOSThreads, the TinyOS threading library, helps de-
fine application recovery units. Unlike microreboots, which
operate only on application-level structures, Neutron must
also be able to survive kernel faults, as the TinyOS kernel is
typically the largest and most complex part of an application
image. In Neutron, the kernel itself is a recovery unit. If the
kernel violates safety, Neutron reboots it without disrupting
application recovery units.

Rebooting a recovery unit is better than rebooting a node,
but it conservatively wastes energy by discarding valid state.
Neutron allows application and kernel recovery units to de-
clare memory structures as “precious,” indicating that they
should persist across faults when possible. The complica-
tion is that precious state may be involved in a safety vi-
olation and become inconsistent. Neutron uses a combina-
tion of static analysis, type safety checks, and user-specified
checks to determine which precious structures can be safely
retained, and which must be re-initialized on a reboot.

Neutron must provide these mechanisms in the limited
code space (tens of kilobytes) and RAM (4-10 kB) typi-
cal to ultra low-power microcontrollers. These constraints,
combined with embedded system workloads, lead Neutron
to take different approaches than are typical in systems
that have plenty of available resources. By modifying vari-
ables in-place, Neutron introduces no instruction overhead
in the common case of correctly executing code. In contrast,
transactions would introduce a RAM overhead for scratch
space and a CPU overhead for memory copies. Neutron
re-initializes possibly corrupt variables, rather than restore
them to their last known good states, because logging good
states to nonvolatile storage has a significant energy cost.

Neutron minimizes its overhead through compiler tech-
niques that leverage the static nature of TinyOS programs.
For example, the component graph of a TinyOS program
allows Neutron to infer recovery unit boundaries at com-
pile time. Similarly, Neutron statically analyzes each mem-
ory safety check to determine which precious data structures
may be in the middle of an update at the program point where
the check occurs. When a safety check fails, Neutron does
not preserve the contents of any precious data whose invari-
ants are potentially broken. From the user’s point of view,
Neutron’s interface consists of simple, optional annotations,
making it easy to retrofit existing sensornet application code.

We evaluate Neutron by demonstrating that it isolates
recovery units and increases application availability. We
find that Neutron saves energy by preserving precious state
across reboots. Our experiments are on a medium-sized net-
work of 56 nodes and use two fault models. First, we model
sporadic faults by periodically triggering reboots. Second,
we reintroduced a fixed kernel bug back into TinyOS, to
verify that Neutron improves dependability.

We find that in comparison to whole node reboots, Neu-
tron reduces time synchronization downtime by 94% and
routing control traffic by 99.5%. Furthermore, TinyOS ker-
nel reboots do not lose application state or data. For com-
plex sensor network applications, this increased robustness
comes at a 3—8% code size increase over the equivalent Safe
TinyOS image, and 1-6% increase in RAM usage. As Neu-
tron only engages when there is a memory safety violation,
it introduces no appreciable CPU overhead during normal
operation. A Neutron sensor network can survive memory
bugs and reboots, continuing to correctly report data without
increasing energy consumption.

2. Background

Neutron builds on two recent extensions to TinyOS: Safe
TinyOS for memory safety, and the TOSThreads [17] library
for application programming. This section provides the nec-
essary background on these systems, TinyOS itself, and core
sensornet services that maintain valuable state. This infor-
mation provides context for Neutron’s design, and for how
Neutron affects network efficiency and behavior.

2.1 TinyOS

TinyOS is a wireless sensornet operating system. Its mecha-
nisms and abstractions are designed for ultra-low-power mi-
crocontrollers with limited RAM and no hardware support
for memory isolation. TinyOS typically runs on 16-bit mi-
crocontrollers at 1-8 MHz that have 4-10 kB of SRAM and
40-128 kB of flash memory [26].

The operating system uses components as the unit of
software composition [15]. Like objects, components couple
code and data. Unlike objects, however, they can only be
instantiated at compile time. TinyOS components, written in
a dialect of C called nesC [12], have interfaces which define

Send/EBUSY
Cancel/FAIL

Send/FAIL
Cancel/FAIL

Send/SUCCESS

sendDone(SUCCESS)

sendDone(FAIL) Cancel/SUCCESS

Send/EBUSY
Cancel/SUCCESS

Figure 1. Simplified FSM for the TinyOS interface for
sending a packet. A call to Send that returns SUCCESS
moves the interface into the Busy state, at which point sub-
sequent calls to Send return FAIL. The interface moves back
to the Idle state when it signals the sendDone callback with
a SUCCESS argument, indicating the packet was sent suc-
cessfully.

downcalls (“commands”) and upcalls (“events”). Upcalls
and downcalls are bound statically: the absence of function
pointers simplifies call graph analysis.

TinyOS interfaces, and components in general, are de-
signed as simple finite state machines. Calls into a compo-
nent cause state changes and sometimes cause the compo-
nent to call other components. Many state changes are in-
ternal, but some are explicitly visible to other components.
For example, Figure 1 shows the finite state machine of the
standard packet send interface. Other components can call
send() and cancel(); the component implementing the inter-
face calls the sendDone() callback. In some cases, a call
made in one state can have multiple results. For example,
calling cancel() when the FSM is busy can either fail (packet
transmission continues) or succeed (packet transmission is
canceled).

TinyOS interfaces typically do not maintain caller state
after returning to the idle state. For example, non-volatile
storage abstractions do not maintain the equivalent of a seek
pointer. Instead, they return an opaque “cookie” to callers
on completion, which becomes a parameter to the next call
in order to continue at the next byte. This is in contrast to
traditional OS interfaces such as POSIX, where the kernel
maintains a good deal of state on applications’ behalf (sock-
ets, seek pointers, etc.).

The TinyOS core has a highly restricted, purely event-
driven execution model. Using a single stack, it supports
only interrupt handlers and run-to-completion deferred pro-
cedure calls called fasks. Tasks are similar to interrupt bot-
tom halves in UNIX implementations: they run at first op-
portunity and do not preempt one another.

Since tasks and interrupts do not retain stack frames while
inactive, they cannot block. Instead, all I/O operations in
TinyOS have completion callbacks. For example, in the Send

000 D B

app. recovery unit 1 :: app. recovery unit 2

syscall API
R L EEEE LR
1
1 |precious :
' siate kernel '
1 thread 1
1
1
:kernel recovery unit 1
- O N O O . e .. - - - - o d

hardware interrupts

Figure 2. Neutron’s structure in TinyOS. TOSThreads are
grouped into application recovery units. The kernel thread is
its own recovery unit. Recovery units can declare precious
state.

interface shown in Figure 1, send() is an asynchronous I/O
call and sendDone() is its completion callback.

2.2 TOSThreads

TOSThreads [17] is a preemptive threading library for
TinyOS applications. To remain compatible with existing
code, TOSThreads is careful to not break the TinyOS con-
currency model. To maintain the invariant that tasks run to
completion, TOSThreads runs all TinyOS tasks in a single
thread that runs with the highest priority.

An application thread makes a system call by passing a
message to the TinyOS thread. Passing a message posts a
task: the TinyOS kernel thread runs immediately to handle
the message. The application half of the system call stores
the blocked thread’s state. When the kernel half of a system
call executes a completion event, that event resumes the
thread. As no call within the TinyOS core blocks, using a
single thread does not limit kernel concurrency.

The structure of concurrency in TOSThreads is thus not
very different from a traditional uniprocessor microkernel
OS. However, as microcontrollers have neither virtual mem-
ory nor caches, very simple message passing does not have
the context switch overheads seen in traditional computer
systems, such as those due to TLB flushes and cache misses.

2.3 Safe TinyOS

Since nesC is an unsafe language and TinyOS nodes lack
memory protection hardware, pointer and array bugs lead
to corrupted RAM and difficult debugging. Some microcon-
trollers place their registers in the bottom of the memory
map, exacerbating the problem. On these architectures, null
pointer dereferences corrupt the register file. For example,
writing a zero to address 0x0 on an ATmegal28 microcon-
troller [1] clears register O which, depending on the configu-
ration, can reconfigure output pins FO-F7 or write to general
purpose register RO.

Safe TinyOS [8] uses the Deputy compiler [7] to enforce
type and memory safety using static and dynamic checks.
Deputy is based on a dependent type system that exploits
array bounds information already stored in memory. There-
fore, unlike other memory-safe versions of C, it has no RAM
overhead.

When Safe TinyOS detects a safety violation, it takes one
of two actions. First, for debugging purposes it can repeat-
edly display an error message on the node’s LEDs. Second,
in a deployment setting it can reboot the offending node. If
safety violations are infrequent, rebooting can increase the
availability of a sensornet application.

2.4 CTP, FTSP, Tenet

Although reboots can increase availability, they are not free.
Sensornet systems often build up state to provide useful ser-
vices or to improve precision or energy efficiency. Reboot-
ing a node clears this state. We present three examples where
losing it is costly.

As a first example, applications use the Collection Tree
Protocol (CTP) [13] to route data to a collection root. A
CTP node maintains two tables. The link estimation table
stores an estimate of the expected transmission (ETX) [9]
cost of each link. The routing table stores the last heard
route cost of a neighbor. Because the set of candidate links
and next hops can be much larger than the table sizes, and
it takes time to determine the best links and next hops,
CTP spends significant effort to continually improve table
contents. Rebooting a node re-initializes its tables, forcing a
node to ask its neighbors to advertise their presence so it can
rediscover good neighbors and link qualities.

As a second example, the Flooding Time Synchroniza-
tion Protocol (FTSP) establishes a uniform global time over
the network [21]. Nodes periodically broadcast packets, and
receivers calculate the drift between their local clock and the
global clock using linear regression. Each node stores a table
of drift coefficients to build an estimate. Rebooting a node
flushes this table, forcing a node to recalculate coefficients.
While coefficient estimation is in progress, the node is un-
synchronized and calls to get the global time fail. Further-
more, if the global time root node reboots, all other nodes in
the network fall out of synchronization.

Lastly, Tenet is an application-level programming inter-
face for sensor network applications [14]. Users write pro-
grams in a data flow language that compiles to format that
is run by an on-node interpreter. In order to save RAM by
reducing caching requirements, Tenet’s program dissemina-
tion protocol operates on a finite time window. Nodes do not
execute a new program they hear if it is more than 15 minutes
old. If a node reboots due to a safety violation, it will not ex-
ecute an older program. Therefore, a single node reboot may
force an administrator to reprogram the entire network.

TinyOS Stage Neutron

Precious annotations
Recovery routines

Safe annotations .
Threads TinyOS Code

l Recovery unit inference

Dead code elimination " AR -
Concurrency checks nesC Compiler Re-initialization functions
Precious state preservation

Safety checks Deputy Compiler Precious group reinit

Binary

Figure 3. Neutron’s extensions to the TinyOS toolchain and
build process, shown on the right

3. Neutron Overview

This section presents Neutron, a collection of extensions to
TinyOS and its toolchain that address the high cost of whole-
node reboots. Figure 2 illustrates Neutron’s extensions to
TinyOS. Neutron changes how a node responds to a Safe
TinyOS memory safety violation. Rather than output an error
message or reboot the entire node, Neutron organizes threads
and data into “recovery units” that can be rebooted indepen-
dently.

Neutron supports multiple application recovery units that
interact with the TinyOS kernel through a blocking system
call interface. It also supports a single kernel recovery unit:
the event-driven TinyOS kernel which contains one thread,
all interrupt handlers, and all kernel data structures. Exten-
sions to the nesC compiler derive these recovery units and
automatically generate code for rebooting them.

In addition to limiting reboot scope with recovery units,
Neutron allows components to declare memory structures
as “precious.” By default, Neutron re-initializes a recovery
unit’s variables when it reboots that unit. If a variable is
precious and passes a set of conservative checks, however,
Neutron can allow the variable to persist across a reboot.
This persistence operates at a component level: if any vari-
able in a component fails a check, Neutron re-initializes all
of them on reboot. Extensions to the nesC and Deputy com-
pilers generate these checks and restoration procedures.

Figure 3 shows Neutron’s extensions to the TinyOS
toolchain. Both applications and kernel are in the nesC
language and can specify precious state. The nesC com-
piler generates C code, which the toolchain passes to the
Deputy compiler. Deputy deals with safety annotations,
checks types, and generates C code with safety assertions
to enforce its safety model. Finally, GCC cross-compiles the
output of Deputy to machine code.

In order to correctly reboot recovery units, Neutron needs
to properly implement C initializers' that normally execute
as part of the bootloader. The Neutron nesC compiler gener-
ates C functions that re-initialize variables to the same state

I'Such as int *a = &b; in file scope.

Figure 4. An example TOSThreads application that is
forward-compatible with Neutron. Neutron infers two recov-
ery units, 1 and 2, surrounded by dotted lines. Components A
and B are both in Unit 1 as they may share state through
Thread 3. Component C is placed in its own recovery unit,
Unit 2.

as if the bootloader had run. Adding this code to a TinyOS
image increases its ROM usage; we evaluate this cost in Sec-
tion 7.

The next three sections detail Neutron’s mechanisms and
implementation. Section 4 covers how Neutron reboots ap-
plication recovery units. Section 5 covers how Neutron re-
boots the kernel recovery unit. Finally, Section 6 covers how
Neutron restores precious variables across a recovery unit
reboot.

4. Application Recovery Units

An application recovery unit contains one or more TOS-
Threads and their associated variables. Neutron derives ap-
plication recovery unit boundaries at compile-time. When
one thread in an application recovery unit has a violation,
Neutron halts all threads in that unit and cleans up their state,
including pending system calls.

4.1 Delineating Application Recovery Units

The nesC compiler, modified for Neutron, infers recovery
unit boundaries at compile-time by finding a solution to the
following constraints. It minimizes application recovery unit
size (puts components in separate units whenever possible),
given:

1. An application recovery unit may not call directly into a
different recovery unit.

2. An application recovery unit instantiates at least one
thread.

3. Every nesC component (and by extension, every thread
and variable) above the system call interface belongs to
at most one application recovery unit. NesC’s reachabil-
ity analysis and dead code elimination mean that applica-
tion components not reachable by any thread will not be
included in the TinyOS image.

4. Every nesC component below the system call interface
belongs to the kernel recovery unit.

5. The kernel recovery unit has one thread.

The Neutron compiler issues an error if the constraints are
not satisfiable. For example, if a component makes a direct
function call on a kernel component, constraint 1 implies it
is part of the kernel recovery unit. If this same component
instantiates a thread, it violates constraint 5.

The nesC compiler contains no special support for TOS-
Threads. On the other hand, for Neutron’s recovery unit in-
ference algorithm to work, the compiler has to be aware
of the system call boundary. We accomplish this using
two special-purpose nesC annotations: @syscall_base and
@syscall_ext. These annotations mark components that
implement the Neutron system call API. The former simply
marks a component, while the latter marks that a component
needs to be parameterized—at compile time—by a small in-
teger identifying an application recovery unit. These “PIDs”
are used for bookkeeping purposes inside the Neutron ker-
nel; they are not exposed to applications. The code below
shows the use of these two annotations:

/* definition */
configuration BlockingActiveMessageC @syscall_base() {}

/* instantiation */
components BlockingActiveMessageC;

/* definition */

generic configuration SafeThreadC(uintl6_t stack_size,
uint8_t pid) @syscall_ext() {}

/* instantiation */

components new SafeThreadC(100);

Both BlockingActiveMessageC and SafeThreadC are
labeled as system call APIs, using @syscall_base and
@syscall_ext respectively. Neutron instantiates syscall-
related components using the nesC compiler’s parameter-
ized component feature to generate a PID for each recovery
unit and to generate code passing these PIDs into the kernel
as necessary. An additional benefit of this approach is that
kernel data structures are automatically sized appropriately,
including the special case where there are zero application
recovery units. When there are no application recovery units,
Neutron introduces no RAM overhead.

4.2 TIsolating Application Recovery Units

Neutron isolates recovery units using three mechanisms:
namespace control, analysis of the application’s component
linking graph, and Deputy’s memory safety. The nesC lan-
guage’s component model provides namespace control, en-
suring that the local state of components is only exposed
through components’ interfaces. Because nesC requires all
components to explicitly declare what functions they call,
the compiler can walk the component linking graph to stati-
cally determine all component interactions. Neutron exploits
this property to ensure that applications only use the system
call API, even though applications and the kernel run in the

same physical address space. Finally, Deputy’s type safety
checks prevent code from exploiting pointer and array viola-
tions to cross a recovery unit boundary. In summary, Neutron
statically prevents a recovery unit from naming resources in
application recovery units, and dynamically prevents it from
fabricating pointers or exploiting other backdoors.

4.3 Termination Overview

The TOSThreads system call API provides a natural bound-
ary on which to build termination-safe abstractions. TOS-
Threads’ message passing structure means that application
and kernel recovery units are only very loosely coupled: ter-
minating an application does not require unwinding a stack
running kernel code.

When an application recovery unit has a memory safety
violation, Neutron reboots it in four steps. First, Neutron
cancels in-progress system calls and halts all runnable
threads in the recovery unit. Second, Neutron reclaims any
dynamically allocated memory. Third, Neutron re-initializes
the application unit’s RAM. Fourth, Neutron restarts the ap-
plication unit’s threads. The rest of this subsection explains
these steps in more detail.

4.4 Canceling System Calls and Halting
Threads

A thread cannot violate memory safety while it is blocked
on a system call. However, an application recovery unit can
have one or more blocked threads when the active thread
faults. Neutron therefore needs to safely and correctly reboot
threads that are blocked on system calls. Doing so is the
most complex part of the reboot sequence of an application
recovery unit.

The problem of interrupting a thread blocked on a sys-
tem call is analogous to POSIX signal handling in UNIX-
based operating systems. As cleanup can complicate system
call code, multitasking OSes usually distinguish “fast” and
“slow” system calls [33]. Fast calls, such as disk reads and
simple functions, are expected to terminate at some point.
Slow calls, such as reading from a terminal or accepting a
connection, may never terminate. While a signal can inter-
rupt a slow system call, fast system calls wait for the call to
complete before issuing a signal.

Neutron keeps track of which queue each application
thread is blocked on, if any. When Neutron reboots a recov-
ery unit, a component in the kernel walks this list and re-
moves threads from the queues. System calls will therefore
not resume their waiting threads and threads on the ready
queue are halted.

Because Neutron passes messages between application
threads and the kernel thread, it is straightforward to inter-
rupt any system call by removing the thread from the system
call structure. Neutron performs this step when it halts all
threads. In the case of slow system calls that wait on exter-
nal events (such as packet reception), the application half of
the system call discards future events, as if no thread were

blocking on it. In the case of fast system calls where there is
a completion event (such as sending a packet), the applica-
tion half of the system call ignores the completion event for
the canceled call. However, in the case of fast system calls,
the presence of an outstanding request means that Neutron
must perform extra bookkeeping.

4.4.1 Re-Execution of Cancelled System Calls

System call cancellation has an important corner case when a
system call cannot be cleanly canceled. If a restarted thread
tries to re-execute the same system call, Neutron needs to
hide the effects of the earlier reboot, as the system call is
still pending.

For example, consider recovery unit 1 in Figure 4, with
two threads « and (3. Thread « is blocked on a call to send
a packet. Thread 3 violates the safety model, causing Neu-
tron to reboot unit 1. Neutron removes « from the system
call structure then restarts both threads. Thread « restarts
and calls send again. Following the send interface FSM (Fig-
ure 1), this call will fail, as the kernel is busy. The reboot is
now visible to the application.

Neutron solves this problem by maintaining a pending
flag in the kernel for system calls with completion events.
When a thread that is blocked on such a call is rebooted,
Neutron marks that system call as pending. When a thread
executes a system call, it checks the pending flag. If the
pending flag is true, the kernel blocks the request until the
event signaling completion of the prior request has arrived.
In case of send(), for example, it blocks on the sendDone()
event for the pending send. When a completion event arrives,
if the pending flag is set, Neutron clears the flag and then
starts the system call of the blocked thread. Neutron does not
allow system calls to immediately re-execute after a reboot
due to the memory cost of maintaining multiple pending
calls.

4.4.2 System Calls with Pointers

System calls with pointer arguments transfer ownership of
buffers between application threads and the kernel thread.
TOSThreads does not copy across the user/kernel boundary
because of the memory cost doing so would entail. Neutron
waits for pending system calls with pointer arguments to
complete before rebooting the recovery unit. Otherwise, an
application could reuse a buffer that belongs to the kernel,
resulting in data corruption. Worse yet, the buffer could
be on the stack. Therefore, long-running system calls with
pointer arguments can introduce latency between a safety
violation and reboot. This issue is not unique to Neutron:
timeouts on NFS operations in UNIX operating systems, for
example, can delay signal delivery by minutes [33].

4.5 Memory and Restarting

After halting all threads, Neutron needs to free any dy-
namically allocated memory, re-initialize static memory, and
restart threads.

Because Neutron builds on Safe TinyOS, it can assume
that the heap is not corrupted. Neutron modifies the standard
TOSThreads malloc implementation (a boundary tag allo-
cator based on the implementation from msp430-gcc’s libc)
to add a process identifier to each allocated chunk. When
a recovery unit reboots, Neutron scans the heap and frees
all chunks allocated by the unit. Because heaps in sensornet
nodes are tiny (a few kB), walking the heap is fast.

After recovering memory, Neutron re-initializes the ap-
plication recovery unit’s variables using code generated by
the nesC compiler. It then restarts application threads by is-
suing their boot events as if the node had just booted.

5. The Kernel Recovery Unit

This section describes how Neutron reboots the kernel re-
covery unit. In a traditional OS, an application may have
large amounts of dynamically allocated state in the kernel,
such as page tables, file descriptors, I/O streams, and shared
memory regions. In TinyOS, however, this state is very lim-
ited. There is no virtual memory. Following nesC’s model of
static allocation, descriptors and state for non-volatile stor-
age are allocated and configured at compile-time.

These allocation approaches lead to very loose coupling
between application threads and the TinyOS kernel. Keeping
an application recovery unit runnable across a kernel reboot
requires maintaining a small number of data structures.

5.1 Application State

The TinyOS kernel maintains four pieces of application
state. First, the TOSThreads scheduler, which maintains
three thread pointers (the running thread, the kernel thread,
and the yielding thread), the head of the ready queue, and a
counter of the active application threads. The counter saves
energy by disabling the time slice interrupt when no appli-
cation is active.

Second, there are the thread control blocks and stacks.

Because TinyOS statically allocates the state for each TOSThread,

these memory structures are defined within the kernel, rather
than in application components.

Third, there are system call structures. Active calls de-
scribe which application threads are blocked awaiting mes-
sages from the kernel. Re-initializing this state removes
threads from wait queues but does not make them ready
to run: they will never return.

Finally, there are the system call implementations them-
selves. This is important because system calls will malfunc-
tion if kernel components fail to follow their interface state
machines. For example, if an application issues a send sys-
tem call and the kernel reboots the radio mid-transmission,
the network stack components will not issue a completion
event. This lack of an event will cause the send request to
block indefinitely.

5.2 Keeping Applications Runnable

The very limited application state in the TinyOS kernel,
combined with the simple FSMs of system calls, makes it
possible for Neutron to reboot the TinyOS kernel thread
without disrupting applications.

Neutron does three things to keep application threads
runnable when recovering from a kernel safety violation.
The first is canceling all outstanding system calls. A can-
celed system call returns a retry error code to the application
code, permitting it to remain in sync with the reboot-induced
kernel state change. Canceling system calls places once-
blocked threads on the ready queue. The second is protect-
ing application-level kernel state, such as application thread
control blocks and stacks, from re-initialization on kernel re-
boot. The third is protecting the thread scheduler itself from
re-initialization on kernel reboot.

Canceling pending system calls means it is safe to re-
initialize system call structures. When the node reboots,
there are no blocked threads. Protecting application thread
structures and the thread scheduler by making their values
persist across the reboot solves the issues of maintaining
thread state. Finally, completely re-initializing the rest of the
kernel resets the state machines of kernel components that
implement system calls.

5.3 Implementation

Implementing Neutron’s kernel thread reboot policy requires
changing the TinyOS boot sequence. The standard TinyOS
boot sequence goes through three initialization steps: low-
level hardware, platform, and software. These respectively
include actions such as setting each I/O pin to its lowest
power state, setting oscillator sources and clock speed, and
initializing queues.

Neutron separates the software initialization step into two
parts: kernel state and thread state. On first boot, it runs
both. The kernel reboot handler, however, skips thread state
initialization.

The memory structures handled by thread state initial-
ization include the application threads, the thread scheduler,
and system call gates. Any component that needs to be main-
tained across kernel reboots can register with this initializa-
tion routine: adding new application-dependent kernel state
is easy.

6. Precious State

When a safety fault occurs, the state of either an applica-
tion or the kernel—by definition—violates the safety model.
The obvious solution, rebooting the kernel or restarting an
application, reverts the faulting recovery unit to an initial,
safe state. While separating applications from each other and
from the kernel limits how much state a reboot loses, this so-
lution is still highly conservative.

After inspecting a number of applications, we concluded
that most state could be reverted to an initial value with little

cost. However, a few key data structures cost substantial
time and energy to rebuild. Our hypothesis was that in the
common case, expensive soft state would not be corrupted,
permitting it to persist across reboots and avoiding the cost
of rebuilding it. To support this idea, Neutron introduces a
“precious” annotation that is implemented by the Neutron
nesC compiler. When possible, precious data retains its value
even when the recovery unit containing it is rebooted. The
new annotation is used as follows:

TableItem @precious() table[MAX_ENTRIES];
uint8_t @precious() tableEntries;

Unlike C’s volatile and const type qualifiers, the nesC
precious attribute may only be applied at the top level of
a variable: struct and union fields cannot be independently
precious or not precious.

6.1 Precious Groups

The compiler divides a recovery unit’s precious variables
into precious groups. A precious group is all precious state
declared within a single nesC component. When a recovery
unit reboots, the Neutron kernel decides if each precious
group belonging to that unit is safe or potentially corrupted.
If Neutron suspects that the precious state is corrupted, it re-
initializes the state as it would on the system’s initial boot.
Otherwise, it saves and restores the precious state across a
reboot.

Since precious groups are separately persistent, they must
be semantically independent. The example code above has
the invariant that tableEntries specifies the number of valid
entries in the table array. If only one of these variables were
persistent across a reboot, the invariant would no longer hold
in the new instance of the recovery unit. Thus, semantically
connected precious data must be declared within the same
nesC component. Furthermore, in Neutron it is forbidden—
though these rules are not yet checked by the compiler—
for pointers to refer: across precious groups, from precious
data to non-precious data, or from precious data into the
heap. The static design of TinyOS discourages heavy use of
pointers and it is fairly uncommon for pointers to cross nesC
interfaces.

6.2 Balancing Efficiency and Integrity

Although precious state can be used to reduce the energy and
availability penalties of reboots, it carries the risk of prop-
agating corrupted data into the next instance of the kernel
or application recovery unit. Neutron’s high-level goal is to
propagate precious state across a reboot when no reasonable
doubt exists about its integrity. Neutron uses several analyses
and heuristics to avoid propagating corrupt precious data.

6.2.1 Preventing Termination-Induced Corruption

Persistence and termination have the potential to interact
poorly. For example, a thread in an application recovery unit,
or an interrupt handler in the kernel recovery unit, can be

preempted in the middle of updating a precious data struc-
ture. This can leave its invariants broken. The preempting
thread or interrupt (which belongs to the same recovery unit)
violates safety, causing the unit to be rebooted. On reboot,
the recovery unit will see inconsistent precious data.

To avoid this problem, updates to precious data must oc-
cur within an atomic block supported by the nesC language.
Modifications to precious variables outside an atomic block
are a compilation error. Atomic blocks in nesC are indepen-
dent and serializable with respect to concurrency, but they
are not transactional in terms of durability. If a thread or in-
terrupt violates safety while updating a precious data struc-
ture, any stores issued before the violation are persistent and
will leave the precious data in an inconsistent state.

To solve this problem, Neutron uses a lightweight static
analysis to compute, for each memory safety check inserted
into an application, a conservative estimate of the precious
data structures that could be in the middle of being updated.
This analysis operates in two stages. In the first stage, the
compiler analyzes each atomic block to find which, if any,
precious data structures it may update. In the second stage,
the compiler marks all code reachable from each atomic
block as being “tainted.” If a memory safety check in tainted
code fails, the associated precious data structures are re-
initialized to a clean state. At the implementation level, the
Neutron compiler associates a bit-vector with each mem-
ory safety check in an application, where the bits specify
which groups of precious state must be re-initialized when
that check fails. Typically, little TinyOS code is actually
reachable from atomic blocks that update precious state, due
to TinyOS’s tendency to use small, short-running events.
Therefore, although our analysis is quite conservative, it
does not lead to significant false sharing and unnecessary
loss of precious state. Even so, it is critical for dependabil-
ity that the interaction of rebooting and precious state avoids
corrupting that state.

6.2.2 Defending Against Other Sources of Corruption

Deputy’s memory safety model cannot defend against all
types of data corruption: a stack overflowing into another
memory region, a safety violation in trusted code, or buggy-
but-safe application logic could all lead to inconsistent pre-
cious state. Neutron uses three checks to avoid propagating
inconsistent state across a reboot.

For each precious group, the developer can optionally
write a check_rep function that checks a collection of data
for application-level consistency. Neutron calls this function
following a safety violation; Neutron re-initializes the pre-
cious group if the check fails.

Second, when Neutron detects a safety violation that di-
rectly involves a precious data structure (such as a negative
array index in a routing table), the precious group contain-
ing that data structure is automatically re-initialized as part
of the reboot.

Lastly, one consequence of propagating corrupted state
across a reboot is that subsequent reboots are likely to hap-
pen more often. To address this, Neutron could be parame-
terized by a time window and a maximum reboot count. If
a violation occurs more than the specified number of times
within the time window, a clean reboot is performed, wiping
out all precious state. Our implementation of Neutron does
not include this feature, as the time scales of our experiments
in Section 7 would trigger it unnecessarily.

6.3 Implementation

Neutron modifies the nesC compiler to generate routines that
save and restore precious state. Neutron also instructs the C
compiler to place different precious groups’ initialized and
uninitialized variables into separate .data and .bss segments.
When a recovery unit reboots, Neutron re-initializes all non-
precious variables and also each precious group that fails
any of the heuristic checks described in Section 6.2. As the
reboot sequence has already re-initialized variables, failing
to restore a variable returns it to its initial state.
Neutron goes through five steps to restore precious data:

1. check precious variables for possible corruption;
2. push persisting variables on the stack;

3. copy initial values from ROM to the recovering .data
section;

4. zero the recovering .bss section; and

5. pop persisting variables, replacing initial values.

Placing a recovery unit’s variables in a contiguous region
of memory has two benefits. First, aggregation makes recov-
ering a precious group simple and fast, as it is a single mem-
cpy operation rather than a series of individual writes. Sec-
ond, RAM is saved by copying precious data onto the stack,
which is nearly empty during a reboot. In the common case
where precious data fits into the existing stack memory re-
gion, no additional stack memory needs to be allocated to
support precious data.

7. Evaluation

This section evaluates Neutron’s improvements to the de-
pendability, efficiency, and robustness of TinyOS applica-
tions. It measures the cost of whole-node reboots for two
TinyOS services, FTSP and CTP, and a sample Tenet pro-
gram. It measures the extent to which precious state allows
Neutron to reduce the cost of rebooting the recovery unit
containing the service, in the case where the precious state
is not corrupted. Through controlled and uncontrolled re-
boot scenarios, it verifies that Neutron limits the effect of a
safety violation to the corresponding recovery unit. Finally,
it measures the RAM, ROM, and CPU overhead Neutron
introduces due to the need to save state and selectively re-
initialize variables.

Service Variable Purpose

CTP routingTable Network-layer route costs of neighbors
routingTableActive ~ Count of valid table entries
linkEstSeq Counter for beacon packets
currentInterval Current beaconing interval
prevSentldx Last neighbor estimate sent in beacon

FTSP table Table of clock drift coefficients
tableEntries Number of coefficients in table

skew Aggregate result from table

localAverage Aggregate result from table
offsetAverage Aggregate result from table
heartBeats Freshness of table entries
TBR Timer B counter register

Figure 5. Precious variables in CTP and FTSP

7.1 Methodology

All experiments use Telos rev. B sensor nodes [26]. A Telos
has an MSP430F1611 microcontroller with 10kB of RAM,
48 kB of program flash, and a 2.4 GHz 802.15.4 radio. Since
the radio operates in the same band as 802.11b, WiFi traffic
can interfere with 802.15.4. All experiments use 802.15.4
channel 16, with overlaps with WiFi channels 4-8.

For network experiments, we use the Tutornet testbed at
USC, consisting of 56 TelosB sensor nodes deployed above
the false ceiling of a single floor of a large office building.
Small embedded PCs provide debugging and instrumenta-
tion backchannels. The combination of a false ceiling and
heavy WiFi interference makes the testbed a realistic setting
for evaluating network protocols.

As a first step, we evaluate Neutron by inducing con-
trolled reboots through randomized triggers. In a real sys-
tem, the reboot could be caused by safety violations but the
result is the same: interrupted execution while the whole
node reboots.

To explore a less controlled test case, we also re-introduce
a fixed bug from TinyOS. An SPI (serial peripheral inter-
face) bus driver in TinyOS 2.0.0 had an off-by-one error. If
the SPI master asked to read a zero-byte message, the driver
would read 65,535 bytes instead. Reading 65,535 bytes over-
writes the stack, making the return address of the stack frame
0x0 (the reset vector). An unforeseen edge condition in the
CC2420 stack would trigger this bug. We recreate this bug
in the drivers for the MSP430 microcontroller of the TelosB.

To validate Neutron’s ability to detect corrupted precious
state, we introduce safety violations in code that accesses
precious state. This causes a reboot where Neutron must
recognize that a precious structure might be corrupt and re-
initialize it.

7.2 Precious State

This section describes the variables we declared precious
in CTP, FTSP, and Tenet. Each of the system services we
evaluate (introduced in Section 2.4) maintains valuable in-
memory structures. In the case of FTSP and CTP, nodes
fill data into these structures over time. Losing this state

therefore harms efficiency. To a smaller degree, it also harms
uptime, as a node can be unsynchronized, unable to deliver
data, or improperly configured until it regenerates the proper
state. Tenet, in contrast, stores a task description that, if lost,
cannot be recovered without manual intervention.

CTP has three precious data structures: its routing ta-
ble, its link estimation table, and its beaconing interval.
Two variables govern the routing table: routingTable,
an array of table entries, and routingTableActive: the
number of valid entries. The link estimation table is stored
in an array neighborTable. For beaconing, 1inkEstSeq
is a sequence number for inferring beacon losses while
currentInterval stores the interval between beacons. Fi-
nally, prevSentIdx is an index into the neighbor table for
cycling through entries to report.

FTSP has three precious data structures: its neighbor drift
estimation table, its current time estimates, and the local
clock. The drift estimation table is stored in table and
tableEntries counts how many entries are valid. The vari-
ables skew, localAverage, and offsetAverage are the
aggregate estimates from the table. The counter variable
heartBeats validates that the table values are up-to-date.
Finally, since FTSP uses the local node clock, it marks the
counter register as precious.

Tenet has one precious structure, its program descrip-
tions. When Tenet reboots, it maintains loaded programs. To
support this feature, we had to modify the Tenet interpreter
slightly: on boot it checks if it has programs in memory, and
if so executes them.

Figure 5 summarizes these annotations.

7.3 Cost of Reboots

This section quantifies the cost of reboots. For each of the
three services that we consider, we examine the system when
there are no reboots, when there are reboots and no precious
state, and when there are reboots and precious state. Bugs in
deployed sensornets are typically rare (e.g., occurring every
few days), but running statistically significant multi-day ex-
periments is infeasible. Given a particular fault rate, we mea-
sure the relative cost increase Neutron observes as a fraction
of the cost increase due to a whole node reboot. Thus, the
measured increase in the cost of faults is independent of the
fault rate.

For FTSP, reboots increase the time for which nodes are
unsynchronized. Figure 6 shows that without precious state,
reboots cause significant desynchronization. These data are
from a two-hour, 56-node run of FTSP where each node
rebooted every five minutes with some randomization to
prevent synchronized behavior. The first 1000 seconds of
data were discarded to let the network reach a steady state.
Packet losses and other real-world variations cause a non-
zero amount of unsynchronized time even in the no-reboot
case. Without reboots, the median node is out of synch 1.3%
of the time. With reboots, it is out of synch 30% of the time:
this time is very large due to the artificially high reboot rate.

No Reboot

——) -

Node ID

60 - R_ebootw/l\l_ei,ltron
20 . - -z
% 36 56 76 96 116

Time (minutes)

(a) Unsynchronized time for each node is marked in gray

1.0
~0.8
%)
L |
006 :
C "
0.4y
o
@]
0.2 — No Reboot
— Reboot
--- Reboot w/ Neutron
0.0
0% 20% 40% 60% 80% 100%

Unsynchronized Time

(b) CDFs of unsynchronized time

Figure 6. For the Flooding Time Synchronization Protocol
(FTSP), precious state reduces the penalty of a reboot, in
terms of time spent without time synchronization, by a factor
of 17

With this high reboot frequency and precious state, however,
the median node is out of synch 1.7% of the time. Precious
state reduces the cost of reboots by 94%, a factor of 17.

For CTP, the cost of a reboot is a burst of control pack-
ets for a node to rediscover its neighbors and estimate link
qualities. Figure 7 shows the cumulative number of beacons
sent during three 25-minute experiments on the same 56-
node testbed. At around 450, 930, and 1400 seconds into
two of the three runs, a single node reboots. Without pre-
cious state, three reboots nearly triple the total number of

2500
., — No Reboot
c — Reboot
82000 --- Reboot w/ Neutron
@)
c
01500
O
]
81000 o
£
S 000 e
3 s
0
0 5 15 20 25

. 10 .
Time (minutes)

Figure 7. For the Collection Tree Protocol (CTP) without
precious state, each reboot of a single node leads to a surge
in control traffic; three reboots more than doubles the total
number of beacons sent. Precious state eliminates the surges
in traffic.

beacons the network sends, from 894 to 2,407. Rebooting
with precious state, however, causes 901 beacons to be sent.
Precious state reduces the increase in beacons triggered by
reboots by 99.5%.

For Tenet, a reboot’s cost is the need to reprogram an
entire network. Without Neutron, a safety violation clears
Tenet programs. Using Neutron, Tenet programs should per-
sist across a reboot.

To validate this behavior, we performed two experiments
using a Tenet program that collects and sends light sensor
readings. First, we introduced code that triggers a safety
violation six seconds after Tenet starts running a program.
After six seconds, the node stopped reporting. In the second
experiment, key data structures that describe programs and
the state of task execution are precious. With these precious
structures, the node continued to report light samples after
the reboot. This experiment demonstrates that we are able to
preserve execution state of an application and avoid loss of
application control information or data loss.

7.4 Validating Recovery Unit Isolation

We perform a series of experiments to validate that Neutron
properly isolates recovery units from each other and that it
correctly re-initializes corrupt precious state. These tests use
a Neutron application that takes sensor readings and stores
them into a buffer. When a buffer fills, it is put into a packet
and sent to the base station using CTP as the routing layer.
The CTP service runs in the kernel recovery unit, and the
sampling and buffering run in an application recovery unit.
Isolating the kernel from application faults: A modi-
fied version of the application periodically accesses an out-
of-bound array element, violating memory safety. Without
Neutron, the resulting node reboot re-initializes CTP; this is
visible at the base station because CTP’s packet sequence

numbers get reset to zero. With Neutron, the sequence num-
bers increase monotonically.

Isolating applications from kernel faults: For this ex-
periment, the kernel sporadically violates memory safety via
the SPI bug described in Section 7.1. Without Neutron, a
kernel reboot wipes out the application’s buffer, losing sam-
ples. With Neutron, the reboot does not affect the application
recovery unit: all samples arrive successfully at the base sta-
tion.

Correctly preserving/re-initializing precious state: We
further modify the sampling application to read from two
sensors at different rates, placing the results into separate
buffers. The two buffers are marked as precious along with
the corresponding indices. Since the components share a
timer, they are in the same application recovery unit. How-
ever, since the buffers reside in different components, they
are in different precious groups. That is, Neutron separately
decides whether each buffer (along with its current index) is
to be persistent across a reboot. As before, an out-of-bound
access causes a safety violation and the application reboots.
The application logs show that Neutron correctly preserves
one of the buffers, while re-initializing the other one.

7.5 Programmer cost

This section evaluates the implementation burden that Neu-
tron imposes on sensornet application developers.

Application recovery units: Because Neutron automati-
cally infers the boundaries of recovery units, existing TOS-
Threads applications can be ported to Neutron with near zero
programmer effort. The behavior of a fault-free application
is never changed by Neutron: Neutron’s code runs in the con-
text of the safety violation failure handler. Rebooted appli-
cation recovery units may have their behavior changed by
Neutron if, for example, they interact with a stateful hard-
ware device that is outside of Neutron’s framework, such
as non-volatile storage. A practical solution to this kind of
problem is to add, for example, atomic flash memory ma-
nipulation primitives to Neutron’s system call APIL.

Precious state: To fully benefit from Neutron, a pro-
grammer must annotate applications to express precious
state. Depending on the complexity of an application, the
number of annotated data structures and variables can be
different. However, each annotation only requires a simple
@precious () code addition.

Pre-existing annotations in TinyOS, such as those in CTP
and FTSP, reduce programmer burden. The simplest TinyOS
application, Blink, has no precious annotations. FTSP uses
11 and CTP uses seven. The kernel uses an additional six
precious annotations to avoid disrupting applications when
the kernel reboots.

Our experience is that for complex TinyOS components,
such as the ones implementing FTSP or CTP, finding the
right set of precious variables is not incredibly difficult.
The difficult cases requiring some trial-and-error involve
components that include many loosely-coupled variables,

Safe TinyOS Neutron Increase Boot Reboot Increase
Blink 6402 8978 40% Blink 10.3 12.2 18%
BaseStation 26834 31556 18% BaseStation 16.2 22.1 36%
CTPThreadNonRoot 39636 43040 8% CTPThreadNonRoot 10.1 15.6 54%
TestCollection 44842 48614 8% TestCollection 10.8 15.6 44%
TestFtsp 29608 30672 3% TestFtsp 12.6 14.8 17%
Figure 8. Code size of applications (bytes) Figure 10. Boot and reboot times for TinyOS applica-
tions using Neutron (milliseconds). Reboots take up to 54%
longer than boot due to the need to selectively re-initialize
Safe TinyOS Neutron Increase variables.
Blink 1031 1090 6%
BaseStation 3580 3764 5% ..
CTPThreadNonRoot 2890 3000 4% Node Kernel Application
TestCollection 3098 3228 4% Blink 12.2 11.4 1.16
TestFtsp 1354 1352 0% BaseStation 22.1 14.1 9.18
CTPThreadNonRoot 15.6 15.5 1.01
Figure 9. RAM use of applications (bytes). As TestFtsp TestCollection 15.6 15.5 0.984
has no application threads, it has a single recovery unit and TestFtsp 14.8 - -

introduces no RAM overhead.

each of which could plausibly be made either precious or
non-precious.

7.6 Overhead

Neutron introduces several types of overhead to TinyOS ap-
plications. First, Neutron’s mechanisms can increase pro-
gram size. The selective initialization vector, application re-
covery unit clean-up, and reboot code all introduce extra
code. Second, because Neutron must selectively re-initialize
variables on reboot, its memory initialization sequence can
take longer than the standard assembly routine produced by
the C compiler.

We evaluate these overheads on five representative TinyOS
applications. The first is Blink, a trivial application that tog-
gles three LEDs. As Blink is effectively only a timer, it repre-
sents the boot time dedicated to hardware initialization. The
second application, BaseStation, bridges packets between
the radio and serial port. CTPThreadNonRoot is the third
application, a threaded application that sends packets using
CTP; as it is not a root of the collection tree, it does not
use the serial port. The TestCollection application extends
CTPThreadNonRoot to also support being a collection sink:
it includes the serial stack in its image. Finally, TestFtsp is
a simple test of FTSP, which periodically sends messages to
the serial port describing whether it is successfully synchro-
nized, its local time, and its perceived global time. TestFtsp
has no application threads, so the TinyOS kernel is its only
recovery unit.

ROM: The increase in code size is due to three types of
code additions. The majority of the overhead comes from
code managing the recovery units within a node. There is
also code for handling re-initialization of global variables
after a reboot and routines for copying and restoring precious

Figure 11. Reboot times (milliseconds) for sample threaded
applications. In the case of application faults, Neutron can
recover much faster than a whole node reboot by avoiding
the cost of rebooting the kernel.

data across failures. Figure 8 shows the results. Neutron
increases code size by 3—-40%.

Over 90% of the additional code in our applications is
the constant overhead of unit management. While small ap-
plications see a large percentage increase in their code size,
larger applications—the ones which actually struggle with
code size limits—see only a small percentage increase.

RAM: Precious state and recovery also increase applica-
tion RAM use, as shown in Figure 9. The RAM cost varies
within a relatively small range, from a very slight decrease
for TestFtsp to 6% for Blink.> Neutron requires very little ex-
tra state to correctly handle pending system calls. In the case
of Blink, for example, where there is 59 byte (6%) overhead,
32 bytes of this is for tracking pending system calls and 25
bytes is for tracking threads. By placing precious variables
on the stack during a reboot, Neutron minimizes its RAM
needs. Furthermore, as the stack is very small when they are
pushed, Neutron typically does not increase the maximum
stack size.

Reboot time: Figure 10 shows the reboot times of the
applications. Because Neutron has to copy back preserved
precious state and selectively re-initialize variables on a re-
boot, reboots can take up to 1.54x as long as an initial boot.

However, Neutron’s recovery units mean that application
failures do not reboot the kernel. Figure 11 presents a break-
down of reboot time. In all cases, the majority of the time

2 The decrease in RAM usage for TestFtsp is an accident resulting from the
way in which data alignment requirements interact with our reorganization
of recovery units’ data into new ELF sections.

is spent on kernel re-initialization. Applications other than
BaseStation can be rebooted in 1-2 milliseconds. BaseSta-
tion takes about nine milliseconds to reboot the application
recovery unit, which has five worker threads; about seven
milliseconds are spent re-starting those threads. In general,
when a Neutron application recovery unit violates safety, the
node comes back to full operation rapidly.

8. Related Work

This section describes some of the prior work that motivated
us to build a language-based OS for sensor network nodes.
Safe TinyOS [8] and TOSThreads [17] form the founda-
tion for Neutron. Broadly speaking, Neutron draws its ideas
from three main sources: language-based operating systems,
reboot-based mechanisms for improving reliability, and sys-
tem support for persistent state.

8.1 Language-Based Protection in an OS

Most operating systems use the MMU to isolate processes,
but some OSes have instead used language-level safety. For
example, Singularity [16], KaffeOS [2], and SPIN [4] are
respectively based on the type-safety provided by C#, Java,
and Modula-3. Even so, each of these systems depends on
low-level unsafe C code that is significantly larger than a typ-
ical TinyOS application. In contrast with these from-scratch
systems, Neutron builds a protected-mode OS that is almost
entirely backwards compatible with TinyOS. For this reason,
Neutron is perhaps most closely related to projects such as
SafeDrive [37] and Nooks [30] that support rebootable exe-
cution environments in legacy kernels.

Unlike most previous language-based OSes, Neutron
does not rely on garbage collection. In fact, Neutron does
not require any dynamic memory allocation at all (although
applications that use a heap are supported).

8.2 Recovering from Faults

Microreboots [6] examined how to reboot fine-grained sys-
tem components in Java Enterprise Edition [29] Internet ser-
vices. Microreboots depend on individual operations being
idempotent and stateless, and requires a backing transac-
tional store for completed operations. Where microreboots
store all persistent state in a transactional database, Neutron
modifies variables in place and relies on integrity checks to
detect when they are inconsistent. Furthermore, rather than
focus on high-level Internet services, Neutron operates on
the lowest levels of an embedded operating system.

Rx [23] and recovery domains [18] use a combination of
checkpointing and re-execution to recover from software er-
rors. While similar in goals, Rx tackles user applications and
recovery domains tackle the kernel, and so they respond to
faults differently. Rx changes the re-execution environment
in order to hopefully avoid the same error, while recovery
domains return an error to the user process. Like both of
these techniques, Neutron hopes that re-execution after some

cleanup will avoid the problem. But as Neutron nodes do not
have the storage for efficient checkpointing and rollback nor
the hardware support to make it efficient (e.g., copy-on-write
pages), it instead reboots part of the system.
Failure-oblivious computing [24] dynamically detects vi-
olations of a memory safety model; faulting stores are sup-
pressed and data is fabricated to satisfy faulting loads. The
resulting system is analogous to what could be a variant of
Neutron where all data is precious and there are no integrity
checks. The difference is one of goals; failure-oblivious
computing improves availability with zero developer over-
head, but can give incorrect results. Neutron asks the de-
veloper for help, but does not sacrifice correctness in trying
to improve availability. Furthermore, failure-oblivious com-
puting mostly addresses user-readable or user input data,
such as mail subject headers, URLSs, and file names. Because
these data are user-centric, mistakes or errors are expected,
such that masking the failure often results as a user-level
error rather than a crash. In contrast, the data in embedded
systems are consumed by less forgiving computer programs:
corrupting the last byte of a MAC address has more serious
consequences than the last byte of a subject line.

8.3 OS Support for Persistence

Most operating systems use one interface to access RAM
and another to access non-volatile storage like disks and
tapes. A persistent OS, such as Eumel/L3 [19], EROS [27],
Grasshopper [10], or KeyKOS [5], provides a uniform in-
terface to both kinds of storage. Neutron—which provides
a uniform interface to reboot-volatile and reboot-persistent
storage—is peripherally related to these systems but is much
simpler. In particular, Neutron does not have to deal with the
problem of providing transparent and high-performance ac-
cess to slow, stable media.

Like EROS, Neutron attempts to protect the consistency
of persistent state. However, unlike a traditional persistent
OS, Neutron explicitly does not attempt to make all data
persistent. Our view is that minimal persistent state is useful
for improving efficiency and availability; beyond that, all
state should be volatile with respect to reboots so it can be
wiped clean on a safety violation.

Rio Vista [20] provides ultra-high performance trans-
actions by combining a persistent file cache with an as-
sociated transaction library. The persistent file cache, like
recovery units, protects user application state from kernel
crashes. While Neutron and Rio Vista provide a very similar
abstraction—persistent memory—their different hardware
assumptions cause them to have very different implementa-
tions. Rio Vista uses the swap partition to store the buffer
cache across reboots and Neutron has a special reboot se-
quence that does not lose RAM contents. Furthermore, Neu-
tron introduces the concept of precious state, such that data
within a faulting recovery unit can persist across a reboot.

9. Discussion

The constraints of low-power embedded devices—very lim-
ited RAM and program memory, the static structure of
TinyOS—Ilead Neutron to use a different set of tradeoffs
than used in traditional systems. Rather than relying on ex-
ecution rollback [18], re-execution [23], or a transactional
store [6], Neutron uses conservative, compile-time tech-
niques whenever possible. Doing so has two advantages:
first, it requires few RAM and ROM resources, and second,
it does not introduce any CPU overhead during normal ex-
ecution. The tradeoff to these advantages is that Neutron is
not fully transactional and can lose state. If a memory bug
corrupts precious variables or leaves them inconsistent, Neu-
tron must re-initialize them. Precious data can also be lost
due to conservative static analysis.

The underlying assumption in this choice of tradeoffs is
that memory faults are uncommon. While the systems stud-
ied in this paper are very different from those in failure-
oblivious computing [24], Rinard’s ideas on testing versus
deployment apply similarly: developers should not use Neu-
tron during testing, as it masks bugs that could be fixed, but
in deployment Neutron can provide efficient recovery from
the bugs that testing does not catch.

At present, there are no data or studies on sensornet fail-
ures in the field. In most cases, developers and engineers are
simply unable to pinpoint the root causes due to the inherent
lack of visibility into embedded, event-driven systems that
respond to real-world phenomena [34]. For example, while
researchers at Harvard were able to identify the downtime on
the Reventador volcano network being due to node reboots
from the reprogramming system, to this day they are unable
to identify the exact cause [36]. As another example, the SPI
bug described in Section 7.1 took a TinyOS developer over
one month to identify, and doing so required approximately
30 hours of experiments on a controlled testbed with a wired
debugging backchannel. The bug was crippling because it
lost MAC and topology state, such that CTP’s performance
was determined more by reboots than algorithms.

Neutron’s approach of restarting individual recovery
units is a good match for TinyOS’s FSM-based interfaces
and strongly decoupled components. In monolithic systems
with large amounts of state sharing, Neutron would be forced
to create very large recovery units, reducing their utility.
However, event-driven systems, such as Internet services,
which have well-defined boundaries between independent
execution units, could be another promising domain. Simi-
larly, component-based operating systems and OS toolKkits,
such as the OSKit [11], or strongly decoupled microkernels,
may also benefit from Neutron’s approaches.

10. Conclusion

This paper presents Neutron, a set of extensions to the
TinyOS operating system and its toolchain. Neutron enables
sensor network software running on tiny microcontrollers

to recover from memory safety violations by rebooting “re-
covery units”: subcomputations that are isolated from each
other using namespace control and memory-safe execution.
The Neutron kernel—a modified version of the TinyOS op-
erating system—is itself a recovery unit and can be rebooted
with minimal application disruption. The Neutron compi-
lation toolchain automatically infers boundaries between
application recovery units to minimize recovery unit size
without compromising safe, separate termination.

Neutron allows applications and kernel services to de-
clare “precious” state that persists across recovery unit re-
boots. Neutron uses static and dynamic methods to ensure
the consistency of precious data before restoring it. In the
presence of memory errors, recovery units and precious state
can increase availability, reduce energy consumption, and
avoid losing application data. In comparison to whole node
reboots, Neutron reduces time synchronization downtime by
94% and routing control traffic by 99.5%.

Neutron achieves these goals by leveraging the static na-
ture and finite-state machine behavior of TinyOS programs.
Mechanisms that might be too expensive at runtime for a
microcontroller, such as tracking precious data structure up-
dates, are approximated using compile time analyses. Sim-
ilarly, leveraging language extensions and simple, optional
annotations makes Neutron easy to incorporate into existing
code.

Acknowledgments

This work was supported by Microsoft Research, Intel Re-
search, DoCoMo Capital, Foundation Capital, the National
Science Foundation under grants #0615308, #0121778,
#0627126, #0846014, and #0448047, as well as a Stanford
Terman Fellowship.

References

[1] Atmel, Inc. ATmegal28 datasheet, June 2008. http:
//wuw.atmel.com/atmel/acrobat/doc2467.pdf.

[2] G. Back, W. C. Hsieh, and J. Lepreau. Processes in KaffeOS:
Isolation, resource management, and sharing in Java. In
Proc. of the 4th Symp. on Operating Systems Design and
Implementation, pages 333-346, San Diego, CA, Oct. 2000.

[3] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli.
The hitchhiker’s guide to successful wireless sensor network
deployments. In Proc. of the 6th ACM Conf. on Embedded
Networked Sensor Systems (SenSys), pages 43-56, Raleigh,
NC, Nov. 2008.

[4] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Extensi-
bility, safety, and performance in the SPIN operating system.
In Proc. of the 15th ACM Symp. on Operating Systems Prin-
ciples, pages 267-284, Copper Mountain, CO, Dec. 1995.

[5] A. C. Bomberger and N. Hardy. The KeyKOS nanokernel
architecture. In Proc. of the USENIX Workshop on Micro-

kernels and Other Kernel Architectures, pages 95-112, Apr.
1992.

http://www.atmel.com/atmel/acrobat/doc2467.pdf
http://www.atmel.com/atmel/acrobat/doc2467.pdf

[6] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot—A technique for cheap recovery. In Proc. of the
6th Symp. on Operating Systems Design and Implementation
(OSDI), San Francisco, CA, Dec. 2004.

[7] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula.
Dependent types for low-level programming. In Proc. of
the 16th European Symp. on Programming (ESOP), Braga,
Portugal, Mar.—Apr. 2007.

[8] N. Cooprider, W. Archer, E. Fide, D. Gay, and J. Regehr.
Efficient memory safety for TinyOS. In Proc. of the 5th ACM
Conf. on Embedded Networked Sensor Systems (SenSys),
pages 205-218, Sydney, Australia, Nov. 2007.

[9] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless routing. In
Proc. of the Intl. Conf. on Mobile Computing and Networking
(MobiCom), pages 134—146, San Diego, CA, Sept. 2003.

[10] A. Dearle, R. di Bona, J. Farrow, F. Henskens, A. Lindstrom,
J. Rosenberg, and F. Vaughan. Grasshopper: An orthogonally
persistent operating system. Computing Systems, 7(3):289—
312, 1994.

[11] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers. The Flux OSKit: A substrate for OS and
language research. In Proc. of the 16th ACM Symp. on
Operating Systems Principles, pages 38-51, Saint-Mald,
France, Oct. 1997. http://www.cs.utah.edu/flux/
papers/oskit-sospl6.ps.gz.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC language: A holistic approach
to networked embedded systems. In Proc. of the ACM
SIGPLAN 2003 Conf. on Programming Language Design
and Implementation (PLDI), pages 1-11, San Diego, CA,
June 2003.

[13] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis.
Collection Tree Protocol. In Proc. of the 7th ACM Conf.
on Embedded Networked Sensor Systems (SenSys), Berkeley,
CA, Nov. 2009.

[14] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek,
M. Vieira, D. Estrin, R. Govindan, and E. Kohler. The
TENET architecture for tiered sensor networks. In Proc. of
the 4th ACM Conf. on Embedded Networked Sensor Systems
(SenSys), pages 153-166, Oct. 2006.

[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. In Proc. of the 9th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pages 93—-104, Nov. 2000.

[16] G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken, P. Barham,
M. Féhndrich, C. Hawblitzel, O. Hodson, S. Levi, N. Murphy,
B. Steensgaard, D. Tarditi, T. Wobber, and B. Zill. An
overview of the Singularity project. Technical Report MSR-
TR-2005-135, Microsoft Research, Oct. 2005.

[17] K. Klues, C.-J. M. Liang, J. Pack, R. Musiloiu-E., R. Govin-
dan, P. Levis, and A. Terzis. TOSThreads: Safe and Non-
Invasive Preemption in TinyOS. In Proc. of the 7th ACM
Conf. on Embedded Networked Sensor Systems (SenSys),
Berkeley, CA, Nov. 2009.

[18] A. Lenharth, S. T. King, and V. Adve. Recovery domains:
An organizing principle for recoverable operating systems.
In Proc. of the 14th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
Mar. 2009.

[19] J. Liedtke. A persistent system in real use—experiences of
the first 13 years. In Proc. of the 3rd Intl. Workshop on Object
Orientation in Operating Systems, pages 2—11, Dec. 1993.

[20] D. E. Lowell and P. M. Chen. Free transactions with Rio
Vista. In Proc. of the 16th ACM Symp. on Operating Systems
Principles (SOSP), pages 92-101, Saint-Mald, France, Oct.
1997.

[21] M. Maréti, B. Kusy, G. Simon, and A. Lédeczi. The flooding
time synchronization protocol. In Proc. of the 2nd ACM Conf.
on Embedded Networked Sensor Systems (SenSys), pages
39-49, Baltimore, MD, Nov. 2004.

[22] R. Murty, G. Mainland, I. Rose, A. R. Chowdhury, A. Gosain,
J. Bers, and M. Welsh. CitySense: A vision for an urban-scale
wireless networking testbed. In Proc. of the 2008 IEEE Intl.
Conf. on Technologies for Homeland Security, Waltham, MA,
May 2008.

[23] E. Qin, J. Tucek, Y. Zhou, and J. Sundaresan. Rx: Treating
bugs as allergies—a safe method to survive software failures.
ACM Transactions on Computer Systems, 25(3), Aug. 2007.

[24] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and
W. S. B. Ir. Enhancing server availability and security through
failure-oblivious computing. In Proc. of the 6th Symp. on
Operating Systems Design and Implementation (OSDI), San
Francisco, CA, Dec. 2004.

[25] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srini-
vasan, Y. Wu, W. Kang, J. Stankovic, D. Young, and J. Porter.
LUSTER: Wireless sensor network for environmental re-
search. In Proc. of the 5th ACM Conf. on Embedded Net-
worked Sensor Systems (SenSys), pages 103-116, Sydney,
Australia, Nov. 2007.

[26] Sentilla, Inc. Telos rev. B datasheet, 2007. http://www.
sentilla.com/moteiv-transition.html.

[27] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast
capability system. In Proc. of the 17th ACM Symp. on
Operating Systems Principles, Kiawah Island, SC, Dec. 1999.

[28] SPI driver for ATmegal28, version 1.5, 2007. http:
//tinyos.cvs.sourceforge.net/viewvc/tinyos/
tinyos-2.x/tos/chips/atm128/spi/Atm128SpiP.nc.

[29] Sun Microsystems. Java Platform, Enterprise Edition (Java
EE). http://java.sun.com/javaee/.

[30] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.
Recovering device drivers. ACM Transactions on Computer
Systems, 24(4), Nov. 2006.

[31] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler.
Lessons from a sensor network expedition. In Proc. of the
1st European Workshop on Wireless Sensor Networks (EWSN
2004), pages 307-322, Berlin, Germany, Jan. 2004.

[32] I. Talzi, A. Hasler, S. Gruber, and C. Tschudin. PermaSense:
Investigating permafrost with a WSN in the Swiss Alps. In
Proc. of the 4th Workshop on Embedded Networked Sensors
(EmNets 2007), Cork, Ireland, June 2007.

http://www.cs.utah.edu/flux/papers/oskit-sosp16.ps.gz
http://www.cs.utah.edu/flux/papers/oskit-sosp16.ps.gz
http://www.sentilla.com/moteiv-transition.html
http://www.sentilla.com/moteiv-transition.html
http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x/tos/chips/atm128/spi/Atm128SpiP.nc
http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x/tos/chips/atm128/spi/Atm128SpiP.nc
http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x/tos/chips/atm128/spi/Atm128SpiP.nc
http://java.sun.com/javaee/

[33] E. Troan. The ins and outs of signal processing. Linux network. In Proc. of the 7th USENIX Symp. on Operating
Magazine, Dec. 1999. Systems Design and Implementation (OSDI 2006), Nov. 2006.

[34] M. Wachs, J. I. Choi, K. Srinivasan, M. Jain, J. W. Lee, [36] G. Werner-Challen. Private correspondence, 2009.
Z. Chen, and P. Levis. Visibility: A new metric for protocol

design. In Proc. of the 5th ACM Conf. on Embedded [37]1 F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals,

Networked Sensor Systems (SenSys), pages 73-86, Sydney, M. Harren, G. Nec‘ula, an.d E. Brewer. SafeDrive: Safe and
Australia. Nov. 2007 recoverable extensions using language-based techniques. In
| ’ ’ . Proc. of the 7th Symp. on Operating Systems Design and
[35] G. Werner—Alleg, K. Lopncz., J. Johnson, J. Legs, and Implementation (OSDI), Nov. 2006.
M. Welsh. Fidelity and yield in a volcano monitoring sensor

	Introduction
	Background
	TinyOS
	TOSThreads
	Safe TinyOS
	CTP, FTSP, Tenet

	Neutron Overview
	Application Recovery Units
	Delineating Application Recovery Units
	Isolating Application Recovery Units
	Termination Overview
	Canceling System Calls and Halting Threads
	Re-Execution of Cancelled System Calls
	System Calls with Pointers

	Memory and Restarting

	The Kernel Recovery Unit
	Application State
	Keeping Applications Runnable
	Implementation

	Precious State
	Precious Groups
	Balancing Efficiency and Integrity
	Preventing Termination-Induced Corruption
	Defending Against Other Sources of Corruption

	Implementation

	Evaluation
	Methodology
	Precious State
	Cost of Reboots
	Validating Recovery Unit Isolation
	Programmer cost
	Overhead

	Related Work
	Language-Based Protection in an OS
	Recovering from Faults
	OS Support for Persistence

	Discussion
	Conclusion

