
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 1

Predictive Data Delivery to Mobile Users through
Mobility Learning in Wireless Sensor Networks

HyungJune Lee, Member, IEEE, Martin Wicke, Branislav Kusy, Member, IEEE,
Omprakash Gnawali, Member, IEEE, Leonidas Guibas, Fellow, IEEE

Abstract—We consider applications, such as indoor navigation,
evacuation, or targeted advertising, where mobile users equipped
with a smart-phone class device require access to sensor network
data measured in their proximity. Specifically, we focus on
efficient communication protocols between static sensors and
users with changing location. Our main contribution is to predict
a set of possible future paths for each user and store data at
sensor nodes that the user is likely to associate with. We use
historical data of radio connectivity between users and static
sensor nodes to predict the future user-node associations and
propose a network optimization process, called data stashing,
which uses the predictions to minimize network and energy
overheads of packet transmissions.

We show that data stashing significantly decreases routing
cost for delivering data from stationary sensor nodes to multiple
mobile users compared to routing protocols where sensor nodes
immediately deliver data to the last known association nodes of
mobile users. We also show that the scheme provides better load
balancing, avoiding collisions and consuming energy resources
evenly throughout the network, leading to longer overall network
lifetime. Finally, we demonstrate that even limited knowledge of
the future users location can lead to significant improvements in
routing performance.

Index Terms—Data Delivery to Mobile Users, Trajectory Pre-
diction, Mobility Pattern, Network Optimization, Sensor Net-
works.

I. INTRODUCTION

Classic multi-hop wireless routing protocols compute the
shortest path in terms of hops or expected number of trans-
missions (ETX) [68] between sources and destinations in a
network. Energy consumption for radio transmissions corre-
sponds to a considerable portion of the total energy consump-
tion at sensor nodes [17]. Since the shortest path minimizes
the number of necessary transmissions, this strategy minimizes
not only delay but also energy used for data communication.

In the presence of mobility, however, the shortest path
computed at one point in time is not necessarily the shortest
possible path connecting the source and the sink. A shorter

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

HyungJune Lee is the corresponding author and is with the Department
of Computer Science and Engineering, Ewha Womans University, Seoul,
Republic of Korea (e-mail: hyungjune.lee@ewha.ac.kr).

Martin Wicke is with eddy.systems, San Francisco, USA (e-mail: mar-
tin.wicke@gmail.com).

Branislav Kusy is with CSIRO, Brisbane, Australia (e-mail:
branislav.kusy@gmail.com).

Omprakash Gnawali is with the Department of Computer Science, Univer-
sity of Houston, Houston, USA (e-mail: gnawali@cs.uh.edu).

Leonidas Guibas is with the Department of Computer Science, Stanford
University, Stanford, USA (e-mail: guibas@cs.stanford.edu).

path might be available, if the nodes move closer to each other
in the future. An optimal routing strategy can be devised if the
trajectory of the mobile nodes is known.

In this paper, we study the problem of sending information
from sensor nodes (as data sources) in a sensor network
to multiple mobile sinks moving in the same space as the
network. Given some information about each sink’s trajectory,
we aim to minimize the expected routing cost to the sink.
We assume that the information sources and sensor network
nodes are static (not mobile). Data sinks (humans or vehicles)
move inside the area covered by the sensor network and
access sensor data through computationally capable devices,
such as smart-phones. Finally, we assume that applications
tolerate a packet delivery delay in the order of the average
network traversal time for mobile nodes, e.g., a few minutes.
This is often the case in sensor networks that accumulate
measurements until an observer takes a reading [16]. Examples
of such data delivery patterns can also be found in appli-
cations that sense information in places where people work
or live and deliver it to user mobile devices, enabling more
intelligent living environments. For instance, location-sensitive
data such as store advertisement and customized evacuation
notifications [21] can be forwarded to specific mobile users as
they come around in the network.

There is a large body of prior work in the field of routing
from nodes to mobile sinks. We can classify them into two
categories: 1) proactive scheme such as OLSR (Optimized
Link State Routing) [13] and DSDV (Destination-Sequenced
Distance Vector routing) [47], and 2) reactive scheme such
as DSR (Dynamic Source Routing) [24] and AODV (Ad hoc
On-demand Distance Vector routing) [46]. The state-of-the-art
ad-hoc routing protocols can discover routes without initially
knowing the topology of the networks, and this aspect is con-
sidered as a big advantage of these protocols over traditional
routing protocols like OSPF (Open Shortest Path First) [14]
and RIP (Routing Information Protocol) [39]. However, the
problem is that their routing performance degrades rapidly
with increasing mobility, i. e., resulting in higher route update
cost for proactive schemes or higher bandwidth usage of on-
demand flooding for reactive schemes as investigated in [53].

To design a robust routing algorithm under sinks’ mobility,
exploiting some trajectory information of the mobile nodes
may be necessary. In some applications, sinks know their
future trajectory through the network and can announce it to
the network when requesting information. Even if the future
trajectory is unknown, since many applications are deployed
in environments that constrain motion patterns of sinks to

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 2

roads, trails, or hallways, not all possible movements within
space are actually realized. Moreover, a recent study [56]
showed that mobile users move along a limited set of typical
spatial trajectories, and the movement shows a certain degree
of regularity. This suggests that we can learn the structure in
users’ movements, called the mobility pattern from repeated
observations, and exploit the mobility pattern for designing
a more reliable and efficient routing scheme that works even
under high mobility.

We present a long-term mobility prediction algorithm that
allows us to predict a sequence of node associations of mobile
sinks as shown in Fig. 1. To do this, we present a method
for representing trajectories with wireless association, learning
typical trajectories from observations, as well as predicting
likely association patterns given observed partial association
history. We borrowed ideas of sequence similarity, clustering,
and alignment from computational biology. Wireless devices
carried by mobile sinks run the prediction algorithm to com-
pute and supply information about their future association
sequences to the network. We define trajectory as a sequence
of node associations, and compute similarities between se-
quences in the association data acquired in a learning phase.
Using these similarities, we compute clusters representing
typical paths through the network. We then compute a compact
probabilistic representation for the clusters that we can use to
efficiently find likely future trajectories during prediction.

Based on the long-term mobility prediction algorithm de-
scribed above, we design a routing scheme that exploits
knowledge about the long-term association pattern of mobile
sinks within a network of data sources. It aims to minimize
energy consumption and network congestion. This enables
the routing scheme to scale to multiple mobile sinks and
a large number of data sources. For delay-tolerant network
applications, which do not require immediate real-time data
retrieval, we propose to route data not to the mobile sink
directly, but to relay nodes along a predicted path of the mobile
node that is close to the data source in terms of communication
hops (see Fig. 1). The selected relay node will stash the
information to be picked up when the mobile node passes
within the transmission range of the relay node. We use an
integer programming technique to find optimal relay nodes
that minimize the number of necessary transmissions while
guaranteeing robustness against link and node failures, and
achieving better load balancing and more even utilization of
network resources.

Our main contributions can be summarized as follows:
• We present data stashing, a data delivery scheme that

routes data to mobile sinks. In this scheme, each sensor
node selects a set of nodes on which its data will be
stashed, so that the overall network and energy costs of
delivering data to one or more users are minimized.

• We introduce a network-centric representation for trajec-
tories. In this representation, a trajectory is represented
as a sequence of associated nodes, giving us all the
information we need for data delivery, while abstracting
from unnecessary and possibly misleading spatial infor-
mation. We also develop useful similarity measures for
this motion representation which allows us to perform

Fig. 1. Overview of our routing algorithm using the anticipated association
nodes. The red node is the predicted next association node (through short-
term prediction [28]), and blue nodes are sequences of the future association
nodes (through long-term prediction). Packets can be stashed for pickup at
blue nodes.

Data Source

clustering.
• We propose a probabilistic representation for sets of

similar (but potentially partial) trajectories. This repre-
sentation can be used to compactly describe a cluster of
trajectories, and efficiently find the best-matching cluster
given a partial trajectory.

This paper extends our prior work presented in [32] as
follows:
• We present a new optimization formulation that allows

our algorithm to trade-off routing efficiency for improved
data latency.

• We validate our proposed data stashing scheme in a
real-world testbed where 41 TelosB sensor nodes are
deployed, showing a practical applicability.

• We perform qualitative and quantitative analyses on the
effects of packet delivery delay and energy saving in
terms of network routing performance in a large-scale
simulated network.

• We add experimental results to show the geographical
load balancing in packet transmission over the network.

• We add experimental results to investigate the geograph-
ical location of the selected stashing nodes over the
network.

• We add discussions on the applicability of the technique
in different types of networks, and the possibility of cross
layer integration with the media access control (MAC)
layer.

The rest of this paper is organized as follows: After dis-
cussing related work in Sec. II, we present our long-term
mobility prediction algorithm in Sec. III. In Sec. IV, we
propose our predictive data delivery schemes, and Sec. V
presents the evaluation results of our proposed approach. After
we add discussions in various aspects in Sec. VI, we conclude
this paper in Sec. VII.

II. RELATED WORK

Related work can be classified into two categories: mobility
prediction and routing to mobile users.

A. Long-Term Mobility Prediction
Long-term mobility pattern modeling has been studied using

GPS (Global Positionining System) data, or association data

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 3

from cellular networks or wireless LANs (Local Area Net-
works). Because raw GPS data contain many outliers, most
of the previous research [5], [27] filter out noisy and unrea-
sonable measurements first. They then identify the possible
goal locations from the filtered GPS positions and construct
prediction models. Alvarez-Garcia et al. [5] find places where
a user spent a significant amount of time, and cluster them
into locations. A Hidden Markov model is applied to move-
ment between locations, which is then used to predict future
locations. Krumm et al. [27] obtain end-to-end routes from
raw GPS data, and use a Bayesian model and a trip similarity
clustering algorithm to predict the next location. Further, Lane
et al. [29], and Lee et al. [33] not only extract significant
places from filtered GPS data, but also try to infer human
activity associated with each different place. [29] constructs a
user specific activity classification model by embedding inter-
person similarity in various aspects of similarity networks.
Also, [33] presents a Bayesian network model for activity
using context hierarchy based on contextual information from
a mobile phone. Their work suggest exploiting high-level
context (i.e., users’ activities) of a mobile user with higher
fidelity.

These previous approaches including [43] infer long-term
destinations of mobile users. Recently, [42] proposed a path
prediction model based on historical movement trace maps.
Our work provides not only the destination prediction, but
can also predict all possible future trajectories of the user.
Furthermore, our techniques rely only on wireless association
traces allowing of more generic applicability of mobile users’
movement.

Similarly, in cellular networks, some previous work [7],
[23] predicts the next cell connection based on various in-
formation such as past handoff rate, size of the active set,
active set update rate, and signal strength variation. In wireless
LAN networks, a theoretical work [3] constructs a Gauss-
Markov mobility model for predicting the speed, direction,
and randomness degree of mobile users. Further, based on real-
world empirical traces, a long-term large-scale measurement
study of user-access point (AP) association at Dartmouth [26]
has inspired work in mobility prediction. It has been noted
that wireless users’ locations can be predicted with up to
72% accuracy using an order-2 Markov predictor [58] for
users with long trace lengths. Further analysis of the same
dataset has suggested the feasibility of predicting the future
associations of a mobile user in space and time [57], and a
similar study [60] has been conducted for seamless handoffs
in wireless LAN. Using a different dataset, Ghosh et al. [18]
describe techniques to predict a user’s location with respect
to social hubs such as buildings and classrooms, rather than
individual wireless APs. Although the approaches work with
real world mobility data, and use only association data for
predicting the future association, they do not explicitly deal
with noisy association for classifying mobility pattern clusters.
Our work offers an explicit mechanism for classifying user
mobility patterns into different representative clusters, even if
the wireless association trajectories are noisy.

More recent work has exploited user context information to
distribute resources more efficiently across the network and as

a basis for energy-efficient design of network applications [2],
[21], [52]. Similarly, our work exploits users’ mobility patterns
from wireless traces, and our network optimization utilizes the
predictive knowledge to improve energy efficiency of routing.

B. Routing to Mobile Users
There is a large body of research in routing protocols de-

signed to deliver packets to mobile users in wireless networks.
Some of these protocols assume little about the network and
the mobility pattern of the mobile users and perform network
discovery pro-actively or on-demand. Classic protocols such
as DSR [24] and AODV [46], which were originally designed
for wireless ad hoc networks, and sometimes used in mobile
ad-hoc routing, fall into this category. In the wireless sensor
network context, protocols such as Directed Diffusion [22],
SEAD (Scalable Energy-efficient Asynchronous Dissemina-
tion protocol) [25], and TTDD (Two-Tier Data Dissemina-
tion) [65] construct energy-efficient routing paths without
knowledge of the mobility patterns of the sink.

Especially regarding routing to mobile sinks, mobile trajec-
tories or their sojourn times can be programmed to optimize
data forwarding efficiency in [4], [38], [54], [69]. Our work
does not assume a programmable trajectory of the mobile
sinks. Researchers have formulated computing energy-efficient
routes in sensor networks as an optimization problem in [45],
[62], [63]. Our work also frames routing as an optimization
problem. However, in our optimization formulation a number
of stashing nodes or the sinks themselves can be feasible
destinations, while also taking into account link reliability
and the probabilistic nature of the predicted trajectories of the
mobile sinks.

There has been previous work on exploiting predicted mo-
bility to improve the efficiency of routing to mobile users with
predictable trajectories. Chatzigiannakis et al. [11] demon-
strate an important claim that data collection should be adapted
depending on characteristic mobility patterns for reducing en-
ergy consumption in routing. Chakrabarti et al. [10] proposed
a protocol in which the mesh nodes keep statistics of user
visits and transmit information only when the mobile user is
within transmission range. Our work does not assume that
the trajectory of a mobile node takes it within single-hop
transmission range of each mesh node in the network. Most
closely related to our work is recent work on the proactive
scheme in [61], [67]. Based on the user arrival statistics, a
subset of nodes elect themselves as storage nodes and initiate
routing tree construction as roots. The mesh network forwards
data to these storage nodes so that packets can be relayed to the
mobile user. Although our work fits in this general framework,
we employ different methods to overcome shortcomings of this
approach. Our protocol is based on a clustering algorithm to
improve the accuracy of trajectory prediction (as described
in Sec. III) and uses the predictive knowledge to help an
efficient routing decision which is scalable for many mobile
sinks in terms of radio energy consumption and packet delivery
reliability.

III. LONG-TERM MOBILITY PREDICTION

We predict likely long-term association nodes of mobile
sinks by using the current association and a past history of

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 4

association trajectories. We present a method for learning
typical movement patterns from observations, representing
trajectories, as well as predicting likely trajectories, given
observed partial trajectories. The prediction algorithm is used
by the mobile node to compute and supply information about
its future trajectory to the network. We characterize the
trajectories as sequences of node associations, and find clus-
ters representing typical trajectories. Using multiple sequence
alignment techniques to identify similar and dissimilar regions
within a cluster, we then compute a compact probabilistic
representation for the clusters which we use to efficiently
determine likely future trajectories during prediction.

The predicted long-term trajectory of mobile sinks can
benefit network applications; this is particularly obvious in
efficient data delivery to mobile sinks. For example, when an
information source needs to deliver data to multiple mobile
sinks, it can select intermediate storage nodes which are close
to itself in terms of communication hops, and also lie along
the anticipated trajectory of the sinks. Stashing the data at
the selected nodes, instead of routing the data directly to the
sinks at their current positions, allows a mobile sink passing
through the network to collect the data at intermediate storage
nodes. We can further reduce redundant packet transmissions
by sharing data deliveries via intermediate storage relays on
nodes contained in several sinks’ trajectories. The long-term
connectivity prediction thus enables a scalable data delivery
scheme for multiple mobile sinks.

A. Constructing the Mobility Model

We introduce a trajectory in terms of wireless association
and present our mobile trajectory clustering method using
given trajectories for an off-line learning phase.

In most scenarios, mobile sinks travel along a fairly limited
set of trajectories. Oftentimes, this is due to obstacles present
in the environment: buildings, bridges, roads, and walkways
constrain the possible trajectories. Even without any environ-
mental restrictions, there are usually few interesting start- and
endpoints for any given journey, and sinks often follow short(-
est) paths from a starting point to a destination, greatly limiting
the set of possible trajectories.

It therefore makes sense to find and exploit the structure
that is present in the likely trajectories through a network.
We will do so by clustering similar trajectories, thus creating
a database of historical trajectories, arranged in clusters of
similar trajectories in the off-line learning phase. In order
to perform practical clustering on trajectories, we require a
trajectory representation, a similarity measure, and a compact
representation of a cluster of sequences. The following sec-
tions describe these concepts in turn.

1) Trajectory Representation: In the following, we will
represent a single trajectory through the network not in terms
of spatial position, but in terms of the associated sensor node
at any given time.

Let us consider a mobile sink moving through the network
on a given spatial path. Sending periodic beacons and listening
for replies, the mobile node can record the nodes in radio
range at each beacon time. In each of these sets, we can

determine the association node, for example, by measuring
signal strength on the acknowledgment or the beacon packet.
This is the node that the mobile node would associate with
to send or receive data. We represent trajectories through the
network as a sequence of association nodes:

T = N1N2N3 . . . Nk.

We only record changes in the associated node list, i. e.
Ni 6= Ni+1. For example, given “s s a a a r r r a
n n g h h h h a a e e e e y y o o”, the corre-
sponding trajectory is represented as T = s a r a n g
h a e y o.

Note that due to imperfect links and radio signal strength
fluctuations in dynamic environments, two node sequences
recorded from the same spatial path are not necessarily iden-
tical, or even of the same length. To compensate for noisy
fluctuations in capturing similar trajectory patterns, we bor-
row a similarity measure from computational biology where
functional, structural, or evolutionary relationships between
sequences encoding biological macromolecules have been
thoroughly investigated. Also, note that trajectory data can be
collected anonymously; the corresponding mobile sink ID is
not needed, which helps to mitigate possible privacy concerns.

2) Similarity Measure: We use a variant of the longest
common subsequence metric known from string theory and
a variant of the Smith-Waterman algorithm [55] to calculate
this similarity measure between two sequences.

Informally, to compute the similarity between two se-
quences TA = A1 . . . AnA

and TB = B1 . . . BnB
, we count

how many nodes we have to insert, delete, or substitute in TA
to obtain TB .

We define the partial match function FAB(i, j), which
computes the similarity between the prefixes of length i and j
of TA and TB , A1 . . . Ai and B1 . . . Bj . FAB can be defined
recursively:

FAB(i, 0) = 0 for 0 ≤ i ≤ nA, (1)
FAB(0, j) = 0 for 0 ≤ j ≤ nB , (2)
FAB(i, j) = max

[
FAB(i− 1, j − 1) + s(Ai, Bj), (3)
FAB(i− 1, j) + d,

FAB(i, j − 1) + d,

0
]
,

where the similarity for insertion or deletion operations, d,
as well as the similarity function on individual nodes are
free parameters. In our experiments, we use d = 0, meaning
we see no similarity in deletion or insertion operations. We
define a per-node similarity function s(Ai, Bj) where we set
s(A,A) = 1 and s(A,B) = 0 ∀A 6= B, meaning that we
penalize for a different node in substitute operations. With
these parameters, FAB(nA, nB) is the length of the longest
common subsequence in the two sequences.

We often need to compare several partial trajectories A to a
significantly longer complete trajectory B. As it is defined
above, FAB(nA, nB) will be lower the shorter A is, even
if (in the matching part of B) there is a perfect match. To

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 5

compensate for differences in length of A or B, we normalize
the similarity measure by dividing by the length of the shorter
sequence:

sim(A,B) =
FAB(nA, nB)

min(nA, nB)
. (4)

Note that the similarity measure we define is not a distance
metric.

3) Cluster Representation: Based on the pairwise similar-
ities between all pairs of sequences, we apply a hierarchical
clustering method. We use the average linkage metric which
uses the average similarity between objects in two clusters to
determine whether clusters are merged. For a more detailed
description of the hierarchical clustering method, we refer to
[41].

Each cluster consists of a number of similar sequences.
During the prediction stage of our algorithm, we will be
presented with a partial trajectory T and asked to find the most
likely cluster for this trajectory. While it would be possible to
compute average linkage for T and each cluster, this would
entail computing the similarity between T and each trajectory
in the database. To avoid limiting the size of our database, we
instead propose a probabilistic representation for each cluster,
so that we can efficiently query for the best matching cluster.

We create a representation for our clusters in two steps: for
each cluster, we first align all its sequences and then create a
probabilistic summary of the aligned sequences.

(a) Multiple Sequence Alignment: Given a set of se-
quences, multiple sequence alignment algorithms compute
how the sequences should be lined up in order to maximize
overlap. Our algorithm for computing the similarity between
two sequences essentially computes a sequence alignment for
these two sequences. In the general case, however, multiple
sequence alignment is an NP-hard problem [64]. Heuristic
alignment methods are widely used for DNA or protein
alignments in bioinformatics [35]. We use a modified version
of ClustalW, one of the most popular alignment tools [59].

The ClustalW algorithm starts by aligning the most similar
sequences, and progressively adds more distant sequences one
by one. This iterative procedure yields a good alignment of
all sequences. We modify ClustalW to use the set of node
IDs instead of an alphabet of amino acids or DNA base pairs.
We also use an unweighted substitution matrix, making each
substitution equally likely. The computation complexity of
ClustalW algorithm is O(N2L2) where N is the number of
sequences and L is the sequence length [36]. To construct a
cluster profile database, the aligned trajectory sequences need
to be stored with storage cost O(NL).

The output of the algorithm is aligned sequences that
have the same length. Gaps in the aligned sequences are
marked with a special gap symbol (see Fig. 2). We compute
a probabilistic representation from these aligned sequences
within a cluster.

(b) Probabilistic Cluster Representation: Given the set
of aligned sequences of length n, we construct a probabilis-
tic representation for the cluster, which we call the cluster

z a y u r s m a

z u r s t a

a r s l t

m t u z y q p b v m

t z q b q m

m q b v n

…

a l o r t z t b o r t

l o z t r z

o z b o t

Clustering

- a - - r s l t -

z a y u r s m - a

z - - u r s - t a

m t u z y q p b v m

- t - z - q - b q m

m - - - - q - b v n

…

a l o r t z t b o r t

- l o - - z t - - r z

- - o - - z - b o - t

Alignment

Fig. 2. Clustering and alignment procedures. A number of trajectories are
clustered together with respect to sequence patterns, and are aligned by using
a multiple sequence alignment algorithm (ClustalW). The aligned sequences
form a probabilistic trajectory profile.

-RT-EACE-GIP----D--S
-R--E-CEIGIPS---D--S
--Y-E-C---I---------
REC-EICG--IGNG-ND--S
-ED-E-C---IGP---D--S
-R--E-CH-CIGK---D--S
-R--E-C---IGC-------
-RI-E-CG--SG-D-LDK-S
--K-E-CG--IGTD-WD--S
-R--E-CN--IG-DGTD--S
-REPE-CN--IGID-GDKDS

RTEACEGIPDS
RECEIGIPSDS
YECI
RECEICGIGNGNDS
EDECIGPDS
RECHCIGKDS
RECIGC
RIECGSGDLDKS
KECGIGTDWDS
RECNIGDGTDS
REPECNIGIDGDKDS

(a) Sequences in a cluster

-RT-EACE-GIP----D--S
-R--E-CEIGIPS---D--S
--Y-E-C---I---------
REC-EICG--IGNG-ND--S
-ED-E-C---IGP---D--S
-R--E-CH-CIGK---D--S
-R--E-C---IGC-------
-RI-E-CG--SG-D-LDK-S
--K-E-CG--IGTD-WD--S
-R--E-CN--IG-DGTD--S
-REPE-CN--IGID-GDKDS

RTEACEGIPDS
RECEIGIPSDS
YECI
RECEICGIGNGNDS
EDECIGPDS
RECHCIGKDS
RECIGC
RIECGSGDLDKS
KECGIGTDWDS
RECNIGDGTDS
REPECNIGIDGDKDS

(b) Sequences after alignment

(c) Profile presentation from the aligned sequences in a cluster

Fig. 3. Sequences belonging to a cluster, the aligned sequences, and their
graphical profile generated by WebLogo [15].

profile. A profile is a sequence of probability distributions
P = P1 . . . Pn. At each position i, the probability distribution
Pi(A) denotes the probability that node A appears in position
i. This representation can also be considered a 0th order
Markov model of the set of aligned sequences.

The cluster profiles allow us to efficiently find the most
likely cluster, given a partial test sequence. See Fig. 2 for an
illustration of clustering and alignment for profile generation,
and Fig. 3 for a profile example of sequences after clustering.
Sequences classified in a cluster (Fig. 3(a)) are aligned to
one another through the ClustalW algorithm as in Fig. 3(b).
Given a group of these aligned sequences for each cluster, we
calculate the probability distribution over each column index.
In this way, we obtain a probabilistic trajectory profile for a
cluster and continue this procedure for the other clusters.

For illustration purposes, we generate a graphical represen-

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 6

tation of probabilistic trajectory profiles (see Fig. 3(c)) by
using WebLogo [15]. The figure graphically represents all
possible realizations of sequences within a mobile trajectory
cluster. The height of the letters within each stack indicates the
relative frequencies for each possibility, while the width of the
stacks indicates the relative proportion of valid readings at that
position where the more gaps (i.e., spaces to compensate for
insertions and deletions) in the sequence at a specific position
means a thinner stack.

B. Connectivity Prediction

In this section, we describe a long-term connectivity pre-
diction algorithm. The prediction algorithm provides a set of
possible future trajectory nodes using the mobile trajectory
clusters constructed in Sec. III-A.

If the future trajectory of a mobile sink is unknown, our
system tries to predict its behavior by comparing it to histor-
ical data. We will demonstrate that even limited information
about the future relay nodes can significantly improve routing
performance in terms of transmission cost and load balancing
in Sec. V.

Specifically, we are given a partial trajectory TM =
N1 . . . NnM

recorded after the mobile sink enters the network.
We would like to compute a set of trajectories through the
network that are likely continuations of the recorded partial
trajectory. In our experiments, we compute the cluster that TM
most likely belongs to, and use all elements in that cluster
as our set of likely trajectories. For each of the returned
sequences, we have to find the most likely position of the
last node of our partial trajectory TM , so that we can avoid
pushing data to nodes that have already been visited by the
mobile node. In the next two sections, we describe how we
compute the closest cluster (Sec. III-B1), and how we compute
the current position of the mobile node within the returned set
of sequences (Sec. III-B2).

1) Cluster Matching: Computing the similarity between a
trajectory and a probabilistic trajectory profile is very similar
to computing the similarity between two trajectories. In fact,
the recursive definition Eq. (2) can be used unaltered, except
that the partial match function FTP now operates on a trajec-
tory T = N1 . . . NnT

and a profile P = P1 . . . PnP
. We need

to change the definition of the per-node similarity function
s(Ni, Pj) (instead of using s(Ai, Bj)) to reflect the likelihood
of Ni given the probability distribution Pj . We choose

s(Ni, Pj) =

{
ePj(Ni) Pj(Ni) > 0,

h otherwise, (5)

and use the parameter values d = −1 in Eq. (2), e = 8, and
h = −1 which have proven effective in our setting. By varying
each parameter, we choose a set of parameters that leads to the
most accurate cluster prediction for our datasets (see Sec. V).
For instance, denser deployments incur higher variability of
relay nodes, thus the parameters need to allow for additional
mismatches and insertions/deletions.

2) Alignment: Once we have found the best-matching clus-
ter, we need to align the partial trajectory with the sequences
in the cluster in order to find the part of the trajectories that

m t u z y q p b v m

- t - z - q - b q m

m - - - - q - b v n

Cluster Profile Database

€

P1(m) =1, P2(t) =1, ..., P9(v) = 2 /3, P10(m) = 2 /3

€

P9(q) =1/3, P10(n) =1/3

m t z q

Test Sequence

Predicted trajectory nodes
= { {p, b, v, m},
 {b, v, n},
 {b, q, m} }

Fig. 4. Sequence alignment of a partial trajectory with a cluster profile.

will be visited by the mobile node. All sequences in the cluster
are aligned to each other and the cluster profile using multiple
sequence alignment as described in Sec. III-A3. It is therefore
sufficient to find an alignment of the partial trajectory T to
the profile P . In particular, we are interested in the position
J that the last node in the partial trajectory, NnT

, is matched
to in the profile P .

Note that the Smith-Waterman algorithm implicitly aligns
two sequences in order to compute their similarity. We can
make this alignment explicit: after we compute FTP (i, j), the
best-matching position of the last node in T , NnT

, is given
by J = argmaxj FTP (nT , j).

If the matched cluster contains the set of expanded trajecto-
ries {T1 . . . Tk}, all of which have been aligned to be of length
n as described in Sec. III-A3, then the set of trajectories that
needs to be considered by the data stashing optimization is
{T1[J, n] . . . Tk[J, n]}. See Fig. 4 for an illustration.

IV. PREDICTIVE DATA DELIVERY

The main objective of this paper is to develop a routing
scheme that delivers data to mobile sinks through a sensor
network. We exploit knowledge about the mobility of the
sinks to lower the cost and increase the reliability of data
transmission.

In particular, we solve the following problem: One (or
several) mobile sink moves through a network, collecting local
data from the nodes in the network. Traditionally, we would
either send all data directly to the current position of the
mobile sink (that is, to a node that is close to the mobile
sink, which will relay the information to the mobile sink), or
not send any data at all, and wait for the mobile sink to collect
the data as it passes each of the sensor nodes. The latter option
is often infeasible if we cannot control the movement of the
mobile sink, or if moving within radio range of each desired
node is not an option. We choose a compromise between
the two extremes. Using knowledge about the trajectory of
the mobile sink, data sources route data to a set of stashing
nodes that store information along the likely trajectories of the
mobile sink.

At the core of our method is an optimization procedure
that for each sensor node chooses a set of stashing nodes
that guarantee (with high probability) that a mobile sink will
receive data from the source (see Fig. 5 for an illustration).
The optimization procedure is described in detail in Sec. IV-B.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 7

Op#mal Route Selec#on Using  
Predic#ve Knowledge 

•  Op#miza#on problem  
– For sensor node A,  

– Find op#mal stashing nodes,  
minimizing rou#ng cost,  
•  From sensor node itself  
•  To the selected stashing nodes 

– Subject to 
•  Stashing nodes cover all possible  
future connec#ons of mul#ple mobile 
users 

M1

M2

T1
T2

T4

N

25 

A T3

Fig. 5. Our optimization procedure chooses a set of nodes that covers all
possible future trajectories (blue dashed line) of mobile sinks, but at the same
time is as cheap to route to as possible.

(1)	 Trajectory	 predic1on	 	

(2)	 Data	 request	 &	
Trajectory	 announcement	 	

(3)	 Stashing	 node	 selec1on	

(4)	 Data	 stashing	

(5)	 Data	 collec1on	

Fig. 6. Overall procedure of our proposed routing protocol of trajectory
prediction (by mobile sink), stashing node selection (by data source sensor),
and routing.

We assume some knowledge about the possible trajectories
that a mobile sink can take. This information is either provided
by the mobile sink, or is deduced from motion patterns of sinks
in the network, as shown in Sec. III.

Our evaluation in Sec. V shows that exploiting knowledge
of sinks’ motion can greatly decrease transmission costs and
energy use. However, we do require stationary sensor nodes to
have some storage capacity for stashing data, and we assume
that the data delivered to the mobile sink is delay-tolerant. The
sink will collect the data throughout her journey through the
network, possibly introducing some delay in data availability
to the sink.

A. Protocol

In this section, we clarify the overall procedure of trajectory
prediction, stashing node selection, and routing. We provide
a high-level description of the protocol used to negotiate data
stashing for a mobile sink as shown in Fig. 6. The protocol
assumes that a mobile sink enters the network and requests
data from a set of sensor nodes.

(1) Trajectory prediction. When a mobile sink joins the
network, it beacons in regular intervals. Sensor nodes
in range reply with their IDs and the sink selects the
node whose reply was received with the strongest signal
as its relay node for proxy. As the sink moves through
the network, we can observe a sequence of relay node
IDs. We use this sequence to predict a set of likely
trajectories that most closely match the recorded prefix

in the database of historical trajectories acquired in an
off-line learning phase, as described in Sec. III-B. If the
trajectory or set of likely trajectories is known, this step
can be skipped.

(2) Data request and trajectory announcement.
The mobile sink announces the set of likely trajectories
to the network. The set of trajectories is encoded and
broadcast to the whole network. This message can also
contain a set of sensor nodes whose data are interesting
to the mobile sink.

(3) Stashing node selection. Upon receiving a sink’s re-
quest for data and a set of likely trajectories, each
sensor node (which is a data source) computes a set
of stashing nodes that cover the likely trajectories and
minimize the routing cost required to send the data to the
stashing nodes. The optimization procedure is described
in Sec. IV-B.

(4) Data stashing. Sensor nodes forward data to the
stashing nodes, for future delivery to mobile sinks.

(5) Data collection. As the mobile sink moves through the
network, it regularly beacons to announce its position. If
a stashing node receives a beacon, it starts transmitting
the data stashed at this node to the mobile sink.

This protocol is easily extensible to multiple mobile sinks.
We disambiguate between the sinks based on their unique IDs
and discuss scenarios with multiple mobile sinks in Sec. V.

Note that we assume an underlying point-to-point routing
protocol such as S4 [40], however, we make no assumptions
on the properties of this protocol.

B. Network Optimization
Contrary to traditional routing schemes, data delivery by

stashing does not route to the current position or in fact, to
any single future position of a mobile node. Instead, we route
to all possible trajectories of one or several mobile nodes. To
this end, we choose a set of nodes that covers all trajectories,
but at the same time is as cheap to route to as possible.

We formulate the problem of data delivery from a data
source to stashing nodes along a set of trajectories as a
linear programming relaxation of a binary integer program.
The proposed scheme finds, for each data source, the optimal
stashing nodes to which to send the data. Each data source
can compute the solution to its particular routing problem
independent of the other nodes. In the following, we will
assume that a node A is asked to route data to one or several
mobile nodes which travel along a set of possible trajectories
{T1 . . . Tm}. The output of the optimization is a set of stashing
nodes R = {R1 . . . Rk}.

To set up our integer program, let us first define an indicator
function I(N) indicating whether our data source has chosen
N to be part of its set of stashing nodes:

I(N) =

{
1 N ∈ R,
0 otherwise. (6)

Based on this definition, we can write the objective function
to minimize as

f =
∑
N

I(N)C(A,N), (7)

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 8

where C(·, ·) denotes the routing cost between two nodes. In
our experiments, we use the expected number of transmissions
on a link as the routing cost for that hop, and the cost for a
path is the sum of the per-hop costs.

In order to make sure that the data can be retrieved by
the mobile sinks, there must be at least one stashing node on
each of the trajectories. Given the trajectories Ti = Bi

1 . . . B
i
ni

,
we can write this condition as a single linear constraint per
trajectory Ti: ∑

0<j≤ni

I(Bi
j) ≥ 1 (8)

Using these definitions, our problem is to find a set R
that minimizes Eq. (7) subject to the constraints Eq. (8).
This problem can be solved by a linear program (LP) if
we ignore the integrality constraints. In our case, since the
variable I(N) is either zero or one, we are dealing with
the special case of binary integer programming, which we
solve using the bintprog optimization toolbox in MATLAB
and AMPL/Gurobi.

C. Optimization to Improve Data Latency

We present an extended optimization problem of selecting
stashing nodes, considering how long it will take for a mobile
node to pick up the data at the stashing nodes. A certain
class of applications may require time-sensitive packet delivery
to mobile users. To take into account the factor of how far
the selected stashing nodes are located currently from mobile
nodes in the predicted trajectory, we apply the regularization
technique [8] by a factor of α. We aim to minimize the
weighted sum of the objective functions: (1) the total routing
cost from data sources to the selected stashing nodes and
(2) the average trajectory distance from mobile nodes to the
selected stashing nodes.

We set up a weighted version of an integer program as
follows:

f ′ =
∑
N

I(N) ·
[
C(A,N) + α

∑V
i=1 dist(Mi, N)

V

]
(9)

where V is the number of mobile nodes, and dist(Mi, N) is
the sequence distance between the mobile node Mi and the
stashing node N in the predicted trajectory of Mi.

We find a set of stashing nodes that minimizes the weighted
sum of the objective functions Eq. (9), while satisfying the
same constraints of guaranteeing data delivery on each pre-
dicted trajectory as in Eq. (8).

V. EVALUATION

We conduct experiments with real-world wireless traces to
validate our trajectory clustering algorithm (Sec. V-A). We
evaluate our data delivery scheme in a real-world testbed
(Sec. V-B) and a larger network simulation (Sec. V-C) by
comparing our technique against direct routing which immedi-
ately delivers data directly to mobile sinks in terms of routing
efficiency and robustness.

We evaluate routing in terms of routing cost, energy saving,
packet delivery, and load balance metrics, and compare our

optimization scheme (Stash) to two other protocols: a point-to-
point proactive distance-vector routing protocol (Direct) based
on [47] where each static sensor node delivers its data to the
currently connected static relay node of each mobile sink,
and the idealized stashing scheme that is given the perfect
set of future locations for all sinks (Stash(opt)). We note that
all three protocols that we evaluate use the same underlying
point-to-point routing protocols. While more advanced routing
protocols (such as [12], [13], [40], [44]) can be integrated with
our data stashing algorithm, the evaluation of data stashing
benefits for different static protocols is out-of-scope for this
paper. The Direct protocol compares performance of our
optimization scheme to traditional data delivery methods. The
Stash(opt) scheme serves as an upper bound on what our
algorithm could achieve, given perfect prediction. Note that
this is not only a theoretical bound; it is achieved if the
trajectories of nodes are known in advance — for example
because the mobile sink announces them.

When we evaluate the routing cost, we count how many
packets were used to deliver data from sensor nodes to
destination nodes, after sensors learn the identity of the correct
relay or possible relay candidates. In the evaluation of testbed
experiments (see Fig. 9) and a larger network simulations
(see Fig. 11 and 12), we demonstrate that even without
considering the control cost, our Stash scheme requires far
fewer data packets than the Direct scheme. We also compare
energy efficiency of Direct and Stash schemes. It has been
observed that energy consumption for one-off computation
tasks in sensor networks is typically dominated by the energy
consumed for radio transmissions [31], [51]. We thus focus
on evaluating energy efficiency in terms of routing cost in our
evaluation.

In our experiments, we measure whether packets arrive at
the stashing node (or in the direct routing case, at the current
relay node), we do not take into account packet loss on the
last hop, from the stashing or relay node to the mobile node.
Since this affects Stash and Direct equally, it does not change
the comparative analysis, however, it might lower the overall
reliability of both methods. Consequently, we only count a
packet as delivered if it is stashed at a node that is visited by
the mobile node, i. e., if the stashing node is the associated
node to the mobile node at any point in time. In reality, even
if the stashing node is never selected as the associated node, it
might still be within range. While this would slightly increase
the reliability of data stashing, we do not believe it would
change the qualitative results. We show that benefits of our
technique are better load balancing and more even utilization
of network resources, such as energy.

Regarding the load balance metric, we measure the number
of packets sent by each node and show it in a potential plot
and in a cumulative distribution function.

A. Clustering and Trajectory Prediction

First, we validate our probabilistic trajectory model used for
prediction using real-world mobility data traces from UMass
DieselNet [6] (shown in Fig. 7). The traces consist of time
series of wireless access point (AP) IDs that wireless cards

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 9

Fig. 7. Typical trajectories of moving buses in UMass from the DieselNet
dataset. When a bus is associated with a nearby access point, the access point
is shown with a marker.

1 5 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L

fr
ac

ti
o

n
 o

f
co

rr
ec

t
st

as
h

ed
 p

ac
ke

ts

Stash
Stash(opt)

Fig. 8. Fraction of packets stashed on nodes that are actually visited by the
mobile node depending on number of nodes L used for prediction in the
DieselNet dataset.

installed in buses connect to. There are 34 buses, 4198 access
points, and 789 bus trips in the dataset, covering an area in
and around the UMass campus. We evaluate how reliably the
selected stashing nodes can connect to mobile sinks. Note that
we did not use any bus identification information, but used
only wireless association list of each bus trip as the input of
our trajectory model.

We tested the hierarchical clustering algorithm described in
Sec. III-A. The algorithm ended up with clustering the set of
789 bus trips into 23 clusters. Even though we have no ground
truth to compare these clusters against, we visually evaluated
the clusters and found them of good quality.

We use the clusters we found in the DieselNet traces to
predict likely trajectories for a partial trajectory (which was
not part of the training data). Since there is no network data
available, we assume that nodes are connected by perfect links,
and that routing cost between two nodes is proportional to the
Euclidean distance between them. While these idealized as-
sumptions do not allow us to draw conclusions about network-
related quality metrics, they help us evaluate the quality of our
prediction algorithm in the context of data stashing.

Using the predicted trajectories and the cost metric de-
scribed above, we select stashing nodes for ten randomly
chosen data sources in the network, and measure what per-
centage of packets the mobile sink is able to retrieve. As

Fig. 9. 41 stationary sensors (marked with red circle) distributed over 65
× 100 m2 and moving paths of mobile sinks in Clark building at Stanford
University. 10 different moving paths including the opposite direction are
explored while a mobile sink carries a sensor device and communicates with
the networks.

Fig. 8 shows, if we base our predictions on a very short
historical trajectory, the prediction quality suffers (underfitting
problem). For accurate prediction, we need longer series of
past movement patterns that will allow us to identify future
paths. On the other hand, if the historical trajectory is too
long, this constrains the possible future user locations to a
small set, as few historical trajectories in the training set fit the
current data. The error of prediction then increases as a result
of overfitting. The results show that our prediction method
performs well in real-world scenarios for L between 10 and
30.

B. Small-Scale Real-World Network Experiment

We evaluate our algorithms in a real testbed deployed in
Clark Center at Stanford University as in Fig. 9. We used
TinyOS 2.1 [1] and configured 41 stationary TelosB sensor
nodes [49] to form a sensor network in an 65 × 100 m2

area. We set transmission power to 0 dBm that resulted in
the radio range of approximately 20 – 30 m. We asked users
to carry a TelosB node in the network along 10 different
moving paths as shown Fig. 9. The users moved at a speed
of approximately 1.4 m/s, and the mobile node exchanged
packets with stationary nodes at a rate of 1 Hz. The node
that replies back to the mobile node with the highest signal
strength is considered as the association node at every beacon
time. In these experiments, all of sensor nodes send data to
mobile sinks. It should be noted that each unique moving
path is highly overlapped with others in part, and also the
resulting association nodes are dynamically varying even with
the exact same moving path due to the real wireless vagaries.
Any mobile node identification or trajectory information other
than associated node IDs is not used. Hence, this experiment
setup makes the future trajectory prediction neither obvious
nor trivial. For evaluation results, the number of nodes for
prediction, L = 10 is used.

We examine how the number of mobile sinks affects the per-
formance of these algorithms in terms of routing cost, packet
delivery reliability, and storage overhead. As the number of
mobile sinks increases, routing cost of the Direct scheme is
proportional to the number of the sinks, whereas stashing algo-
rithms are affected much less, because they exploit overlaps
in the different trajectories (Fig. 10(a)). In terms of packet

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 10

1 2 3 4
20

40

60

80

100

120

140

160

180

200

of mobile sinks

o

f
p

ac
ke

ts
 s

en
t

Stash
Stash(opt)
Direct

(a) Routing cost

1 2 3 4
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

of mobile sinks

p
ac

ke
t

d
el

iv
er

y
ra

ti
o

Stash
Stash(opt)
Direct

(b) Reliability. Shown are mean, error bars are standard
deviation

0 5 10 15 20 25 30 35
0.7

0.75

0.8

0.85

0.9

0.95

1

maximum # of packets stored at node

fr
ac

ti
o

n
 o

f
se

n
so

r
n

o
d

es

Stash
Stash(opt)
Direct

(c) Fraction of nodes storing less than a certain number
of packets

Fig. 10. Routing cost, delivery reliability, and storage cost depending on the
number of mobile sinks in Clark testbed.

delivery, our stashing algorithm achieves high reliability above
95%, whereas the Direct scheme suffers due to independent
packet delivery directly to each mobile sink while traveling
over a larger number of hops (Fig. 10(b)). Regarding storage
overhead, our Stash scheme requires only 10 % of sensor
nodes to store 10 or more packets (Fig. 10(c)).

C. Large-Scale Network Simulation Experiment

We also test the algorithms in a larger simulated network of
downtown San Francisco. The network consists of 716 sensor
nodes in an 830×790 m2 area (see Fig. 11). We generated 20

(a) Connectivity graph over 716 sensor nodes
where links are shown for PRR > 75%.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance (m)

P
R

R

(b) Wireless connectivity characteristic in sim-
ulation.

Fig. 11. Wireless sensor network in downtown San Francisco for simulation.
716 sensor nodes are distributed over 830× 790 m2.

different trajectories, a subset of which we show in Fig. 12.
Each vehicle moves at a random speed of N (30, 52) km/h and
broadcasts beacons at 1 Hz. To derive radio signal strengths
for transmitted packets, we use a combined path-loss and
shadowing model with a path-loss exponent of 3, a reference
loss of 46.67 dB, and an additive Gaussian noise of N (0, 52)
in dB. These parameters have been derived from measurements
in urban environments [20]. We model interference effects
using the CPM (Closest-fit Pattern Matching) model [30] in
TinyOS 2.1 [1] with meyer-light noise traces.

We implemented our routing algorithm in the TinyOS
TOSSIM simulator [34] using idealized static shortest-path
routing. In our scenario, it is often the case that we route
several packets along similar paths. We use multicast to reduce
redundant packet transmissions. We ran all of the experiments
10 times, and draw mean values with standard deviation error
bars wherever applicable.

Our evaluation shows that Stash has lower control overhead
than Direct. Both Stash and Direct require flooding that
reaches the entire network to announce the presence and
paths to the mobile sink. However, there is a key difference:
the Direct scheme requires continuous flooding to announce
each mobile sink’s current relays, while in the Stash scheme,
the mobile sinks need to announce the anticipated trajectory
node IDs only once (unless the network needs re-stashing for
difficult prediction scenarios). In our 716 node topology, it
took 682 packet transmission to disseminate one packet from a
mobile sink to the entire network using the Drip dissemination
algorithm in TinyOS 2.x. In our simulation setting, the Direct
method requires one position update every 2 seconds for
the sink speed of 30 km/h. This position update needs to

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 11

Fig. 12. Moving paths of mobile vehicles where each unique moving path is highly overlapped with others in part. Each vehicle moves at a speed of
N (30, 52) in km/h. We generate 20 different moving paths including the opposite direction as well. All of 20 vehicles are moving over the networks while
communicating with sensor nodes as in Fig. 11(a).

be disseminated throughout the network. Hence, the control
overhead of Direct for this setting is 341 packet transmission
per second. On the other hand, in Stash, the encoded set of
trajectory nodes can be disseminated throughout the network
with a total of 7502 packet transmissions per mobile sink.1

Thus, the control overhead of Direct exceeds that of Stash
after 22 seconds of operation and continuously increases at
341 packet transmissions per second while the overhead for
Stash remains constant.

Note that the protocols use global knowledge of the network
and deliver data to mobile sinks along shortest routes. A
specialized protocol like S4 [40] might be a better choice
for the dynamic routing environment in sensor networks.
To understand the implications of using a scalable routing
protocol such as S4 to route packets to the stashing nodes, we
ran the S4 protocol in TOSSIM on the same topology with 20
beacon nodes in which we ran Stash. We computed the cost
of the paths selected by S4 to route packets from the sensor
nodes to the stashing nodes. The result shows that the routing
cost of Stash using S4 is 1.27 times higher than if using an
ideal shortest path routing. We do not expect this change in
routing algorithm to lead to significantly different results of
our comparative evaluation.

We demonstrate that given even limited information about
future trajectories of sinks, optimization of routing paths leads
to significant improvements in routing performance.

1) Network Performance: We evaluated our network opti-
mization scheme against the direct point-to-point and perfect
stashing algorithms using the simulated network. In these
experiments, all 716 sensor nodes are transmitting data to 1 –
20 mobile sinks. Given the moving paths of mobile vehicles
as shown in Fig. 12, we constructed trajectory clusters and
their profiles. The average length of a cluster profile is 513.

We first analyze how the number of mobile sinks affects
the performance of these algorithms. Even though the per-
formance of all algorithms degrades as the number of sinks
increases, stashing algorithms are affected less, because they

1The size of the encoded trajectory requires 11 packets due to 110 byte
payload limit in TinyOS packets. Thus, it takes 7502(= 682 × 11) packet
transmissions per mobile sink.

exploit overlaps in the different trajectories (see Fig. 13(a)).
This effectively prevents network congestion. In fact, data
stashing requires only 19% of packets to deliver the same data,
compared to direct routing, achieving an energy saving of over
80%. Consequently, congestion in the network causes direct
routing to drop a significant number of packets while stashing
algorithms deliver above 80% of the packets even for 20 sinks
(see Fig. 13(c)). The Stash routing algorithm uses up to 30
retransmissions just like the state-of-the-art collection protocol
CTP [19]. Note that the performance of stashing algorithms
also decreases due to increased network congestion, but at a
much lower pace.

The performance of the predictive stashing scheme is close
to the upper bound set by perfect prediction. This means that
the combination of probabilistic prediction and data stashing
performs well even under a degree of uncertainty (or prediction
error). Direct scheme, on the other hand, requires a large
amount of packet transmissions and suffers from poor packet
delivery performance. This demonstrates that Stash algorithm
can improve routing performance through predictive data
dissemination even with a limited knowledge of the future
user location.

We also evaluate how the length of predicted trajectories
affects performance. If the trajectory prediction is very un-
certain far in the future, or if there are some constraints on
permissible packet delivery delay, it might be preferable not
to use the full predicted trajectories, but only allow stashing
at the first W nodes. The results of these experiments are
summarized in Fig. 14. Intuitively, longer trajectories give the
network optimization more choice to select future stashing
nodes. Consequently, sensors are more likely to find stashing
nodes close to their own location, decreasing routing cost
and congestion, while significantly increasing energy saving
in routing. Note that our optimization scheme can only coun-
terbalance the effects of imperfect trajectory prediction if it is
given enough choice. In our experiments, the break-even point
is at W = 10. Achieving high reliability and efficiency of data
delivery to the sinks, however, has its cost in increased delay.
As W increases, it is more likely that the stashing nodes are
located far in the future along the sink’s trajectory.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 12

1 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3
x 10

5

of mobile sinks

o

f
p

ac
ke

ts
 s

en
t

Stash
Stash(opt)
Direct

(a) Routing cost

1 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

of mobile sinks

en
er

g
y

sa
vi

n
g

 (
%

)

(b) Energy saving

1 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of mobile sinks

p
ac

ke
t

d
el

iv
er

y
ra

ti
o

Stash
Stash(opt)
Direct

(c) Reliability. Shown are mean, error bars are standard
deviation

Fig. 13. Routing cost, energy saving, and delivery reliability depending on
the number of mobile sinks.

There is another interesting tradeoff between transmission
cost and computation cost depending on W . As W increases,
each sensor node receives a larger number of anticipated
trajectory nodes from mobile sinks, and needs to solve a more
complex linear program. Also, a larger W means a longer-
term prediction given the same information about trajectory. In
practice, especially in large networks where we would expect
very long trajectories, one would set a limit of W ≈ 100.

We investigate the impact of prediction performance with
data stashing on packet delivery reliability. The prediction

1 10 25 50 75 100 125 150 175
0

0.5

1

1.5

2

2.5

3
x 10

5

W

o

f
p

ac
ke

ts
 s

en
t

Stash
Stash(opt)
Direct

(a) Routing cost

10 25 50 75 100 125 150 175
0

10

20

30

40

50

60

70

80

90

100

W

en
er

g
y

sa
vi

n
g

 (
%

)

(b) Energy saving

1 10 25 50 75 100 125 150 175
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W

p
ac

ke
t

d
el

iv
er

y
ra

ti
o

Stash
Stash(opt)
Direct

(c) Packet delivery ratio to mobile sinks, representing
the mean value and error bars of standard deviation

Fig. 14. Routing cost and delivery reliability depending on the number of
predicted trajectory nodes W for 10 mobile sinks.

algorithm uses the first L nodes of the sink trajectory to predict
the rest. Fig. 15 shows the performance of our prediction
algorithm with data stashing (we use packet reception ratio
as a proxy) as a function of L. Too little information about
the trajectory leads to worse performance as prediction quality
suffers. However, waiting for more information is only useful
up to a point: waiting for information also results in fewer
choices for stashing, since some of the trajectory has already
been visited. In our setting, L = 20 appears optimal.

We evaluate the timing of packet delivery of each scheme

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 13

1 5 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L

p
ac

ke
t

d
el

iv
er

y
ra

ti
o

Stash
Stash(opt)
Direct

Fig. 15. Packet delivery reliability depending on number of nodes L used
for prediction. Shown is data for 10 mobile sinks, with mean value and error
bars showing standard deviation.

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

of hops

d
is

tr
ib

u
ti

o
n

(a) Distribution of the number of hops
throughout the sensor networks

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

transition time (s)

d
is

tr
ib

u
ti

o
n

(b) Distribution of sensor node transi-
tion time of mobile sinks

1 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

of mobile sinks

p
ac

ke
t

d
el

ay
 (

s)

Stash
Stash(opt)
Direct

(c) Packet delay, representing the mean time
and error bars of standard deviation

Fig. 16. Distributions of the number of hops and node transition time of
mobile sinks in evaluation data, and packet delay performance. Large packet
delay in Direct scheme would lead to a critical performance degradation in
the dynamic transitions of mobile nodes.

to emphasize why the Direct scheme inherently lacks data
timeliness. In our simulation setting, the stationary sensor
network lead to an average communication hop count of 10,
spanning from 1 hop to 26 hops (the distribution of the number
of hops is shown in Fig. 16(a)). For a mobile sink speed of
30 km/h, the average transition time of mobile nodes is 2.2
seconds (see the distribution of transition time in Fig. 16(b)).
Fig. 16(c) shows that the Direct scheme actually needs much
longer than that to send a packet to the association node of
the mobile node. This means that when the packet arrives at
the destination relay node, the mobile node would likely be

1 2 4 6 8 10
0

50

100

150

200

250

300

350

400

450

500

of mobile sinks

ru
n

n
in

g
 t

im
e

(m
s)

MATLAB (pc)
Gurobi (pc)
Gurobi (emb)

Fig. 17. Running time for a sensor node to solve an optimization problem
for stashing in each platform/tool depending on the number of mobile sinks.

−122.43 −122.428−122.426−122.424−122.422 −122.42 −122.418−122.416
37.749

37.75

37.751

37.752

37.753

37.754

37.755

37.756

37.757

37.758

37.759

0

50

100

150

200

250

300

350

400

(a) Potential plot of the number of
packets sent by a node for Direct
scheme

−122.43 −122.428−122.426−122.424−122.422 −122.42 −122.418−122.416
37.749

37.75

37.751

37.752

37.753

37.754

37.755

37.756

37.757

37.758

37.759

0

50

100

150

200

250

300

350

400

(b) Potential plot of the number of
packets sent by a node for Stash
scheme

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

maximum # of packets sent by node

fr
ac

ti
o

n
 o

f
se

n
so

r
n

o
d

es

Stash
Stash(opt)
Direct

(c) Fraction of nodes sending less than a cer-
tain number of packets

la
tit

ud
e

longitude

of packets

longitude

Fig. 18. Load balancing throughout the networks (for 10 mobile sinks case).

out of range already. In our Stash scheme, stashing data at
some intermediate storage nodes (somewhere between the data
source and the mobile sink) significantly reduces the number
of travel hops, and therefore the packet travel time. Because
the intermediate storage node will be visited by the sink in
the future, travel time is less of an issue.

To evaluate the feasibility of efficiently computing the stash-
ing nodes through optimization on the sensor node platform,
we measured the running time for solving the binary integer
program described in Sec. IV-B. The results for different
platforms are shown in Fig. 17: we tested the performance
on a Dell Precision 390 PC with Ubuntu Linux and a 2.4
GHz Core 2 Duo processor, and an embedded platform: a fit-
PC2 with Ubuntu Linux and Intel Atom Z530 1.6GHz. We
also tested two solvers: the bintprog optimization toolbox in
MATLAB and the AMPL/Gurobi solver. The solution time for

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 14

30 50 70 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

moving speed (km/h)

p
ac

ke
t

d
el

iv
er

y
ra

ti
o

Stash
Stash(opt)

Fig. 19. Packet delivery reliability depending on speed of mobile sinks. Shown
is data for 10 mobile sinks, mean value and error bars showing standard
deviation.

0 0.2 0.4 0.6
102

104

106

108

110

112

114

penalty factor α

av
er

ag
e

d
at

a
p

ic
ku

p
 t

im
e

(s
)

(a) Average data pickup time by mo-
bile nodes at the stashing nodes with
respect to α

0 0.2 0.4 0.6
2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1
x 10

4

penalty factor α

o

f
p

ac
ke

ts
 s

en
t

(b) Routing cost with respect to α

Fig. 20. Impact of the penalty factor α on the data pickup time and the
routing cost in the advanced optimization for 10 mobile sinks.

the optimization problem each node has to solve is less than
500 ms on an embedded platform.

Another strength of data stashing is implicit load-balancing.
Fig. 18 shows that data stashing spreads packet transmissions
more evenly, as opposed to the tree-like routing patterns seen
in direct routing to the current position of the mobile sink. In
the Direct scheme, there are many hot regions which transmit
a large number of packets (see Fig. 18(a)); the Stash scheme
performs much better (see Fig. 18(b)).

We have also tested the robustness of our data stashing
scheme against differences in the speed of mobile sinks.
Because the trajectory matching algorithm implicitly compen-
sates for speed differences, changes in the speed of mobile
sinks do not have a large impact on reliability. After training
with a speed of 30 km/h, varying the speed between 30 and
90 km/h in the testing phase has no significant impact on
reliability, which remains above 80% for 30, 50 km/h and
above 70% above for 70, 90 km/h in Fig. 19.

We explore how the penalty factor α in Sec. IV-C affects
network performance in Fig. 20. As the optimization procedure
gives a larger penalty to a set of stashing nodes that are further
away from mobile nodes with a larger α, the data pickup
time can be improved as shown in Fig. 20(a). To achieve this
benefit, the routing algorithm needs to sacrifice the routing
cost as in Fig. 20(b). As the penalty factor increases from 0
to 0.2, the reduced rate of data pickup time is the most drastic

100 200 300 400 500 600 700
0

20

40

60

80

100

120

140

160

180

node ID

o

f
st

as
h

ed
 p

ac
ke

ts

(a) Storage cost throughout the sen-
sor nodes

•  Data stashing requires some 
storage cost 

•  There exist “favorite” stashing 
loca8ons, such as the busy 
intersec8on of several 
trajectories 

•  Trade‐off: 

Radio energy cost vs.  Storage cost    

Storage Overhead 

37 

“favorite” stashing loca2ons 

(b) Favorite storage node distribu-
tion over the networks where •: ≥
150 packets, •: ≥ 100 packets, •: ≥
50 packets, •: ≥ 10 packets, pre-
sented with mobile sinks’ moving
paths

Fig. 21. Storage overhead over the sensor nodes for 10 mobile sinks.

given the similar trend in increasing routing cost.
Finally, we evaluate the storage requirements that data

stashing algorithms impose on sensor nodes (see Fig. 21).
It is likely that data stashing requires more storage than
direct routing schemes; the node stashing most data needs to
store around 200 packets in our scenario. Such peaks occur
at “favorite” stashing locations, which turn out to be the
intersections of several trajectories as shown in Fig. 21(b).
In our opinion, data storage is generally less problematic than
radio transmission in sensor networks, making this a good
trade-off.

VI. DISCUSSIONS

In this section, we try to answer the following questions:
(1) how can the data stashing be integrated with duty cycle
MAC protocols? (2) what are differences in empirical results
between simulated dataset and real-world dataset? (3) what
are the scenarios in which the data stashing scheme may not
work well?

A. Integration with Duty Cycle MAC

Although this paper focuses on improving energy efficiency
of routing in the network layer, a cross-layer integration with
low duty cycle MACs will lead to a more significant energy
saving effect. There are two main types of duty cycling MACs
in sensor networks: synchronous duty cycle MACs such as
S-MAC [66], DMAC [37], Z-MAC [50], and asynchronous
duty cycle MACs such as B-MAC [48], X-MAC [9]. Our
data stashing scheme allows sensor nodes to receive trajectory
announcement from a mobile sink at the same time and
perform data stashing simultaneously to multiple stashing
nodes. For this reason, synchronous MAC protocols are more
suitable to data stashing than asynchronous MACs with respect
to control overhead for managing all the wake-up schedules.

To integrate the data stashing scheme with synchronous
MACs, the optimization problem of stashing node selection
needs to be reformulated considering wake-up schedules of
sensor nodes. Data source nodes should choose a set of nodes
that are only awake at the same time for stashing, while

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 15

keeping a low routing cost. By sorting the nodes awake at
a specific time among possible trajectory nodes and simply
using them as input in the network optimization (Sec. IV-B),
it can make our data stashing scheme easily compatible with
synchronous duty cycle MAC protocols.

B. Comparison of Empirical Results between Simulation and
Real-world Evaluation

Both empirical results with simulated dataset and real-world
dataset (Fig. 10 and Fig. 13) show similar trends in routing
cost and packet delivery reliability with respect to the number
of mobile sinks in the network. When we take a closer look at
routing cost results in Fig. 10(a) and Fig. 13(a), the reduction
of routing cost (between Direct and Stash) is more substantial
in simulated dataset compared to real-world dataset as the
number of mobile sinks increases. This is related to the variety
of stashing node choices from predicted trajectories. Since the
Clark testbed forms a relatively small network, the length of
wireless traces along the moving paths is smaller compared
to wireless traces in simulation dataset. Consequently, finding
stashing nodes closer to data sources that are also overlapped
with other mobile sinks’ future trajectories would be more
likely in longer wireless traces. Therefore, our data stashing
scheme seems to be more suitable to large scale networks or
densely deployed networks in terms of energy efficiency.

If we compare the routing cost between Stash and Stash(opt)
from simulation and real-world evaluation, the gap between
Stash and Stash(opt) is relatively larger in real-world evalua-
tion compared to simulation. This result is related to prediction
quality. Because real-world traces embed a higher variability
in association sequences due to more dynamics in wireless
vagaries, and walking habit and moving speed variations of
humans, the predicted trajectory nodes would be represented
with more dynamic probabilities. By selecting a larger number
of stashing nodes to balance the guaranteed packet delivery,
the real-world evaluation causes a higher routing cost.

C. Limitation in Applicability

One of the most important components in our data stashing
scheme is the long-term mobility prediction algorithm that is
enabled from intensive pattern learning along moving paths
with a certain degree of regularity. If we are given test
sequences obtained from new moving paths that do not share
most of path segments with paths in the training set, the
performance of data stashing would degrade. As an extreme
example, our long-term mobility prediction would fail to pro-
vide meaningful predictions for test sequences from random
motions.

To construct a characteristic database of mobile trajectory
clusters, it is important to learn the mobility model from many
complete long trips that can be differentiated from one another.
If training sequences from only short trips are given in the
learning phase, it would harm the quality of our clustering
algorithm, making data stashing inefficient.

VII. CONCLUSION

We have presented algorithms for extracting mobility pat-
terns using association updates over stationary sensor net-
works, and predicting long-term trajectories of mobile sinks.
We focused on the common case that the data is delay-
tolerant. We have designed a routing scheme which routes
data not to the mobile sink directly, but instead to relay nodes
along a predicted path of the mobile sink that are also close
to the data source in terms of communication hops. These
techniques significantly reduce radio energy consumption for
packet routing while ensuring high packet delivery ratios.

Our experiments indicate that our scheme provides much
better load-balancing, avoiding collisions and consuming en-
ergy resources evenly throughout the network, leading to
longer overall network lifetime. More importantly, we demon-
strate that given limited information about future trajectories
of sinks, optimization of routing paths leads to significant
improvements in routing performance. The proposed method
provides not only a mobile routing protocol, but a way to
improve any existing protocol by learning and exploiting
mobility patterns.

Currently, we only select stashing nodes once, and do
not monitor the progress of the mobile sinks as they move
through the network. In scenarios where prediction is more
difficult, recomputing the set of stashing nodes and correcting
prediction errors by re-stashing at newly predicted nodes could
significantly increase robustness.

The trajectory clustering algorithm is currently executed in
an off-line learning phase. However, our proposed scheme
does not necessarily require a separate off-line phase. As each
mobile device keeps updating its own trajectory model, each
mobile node can predict its own anticipated trajectory using
a local model. If the network size is very large, it may not
be feasible to maintain huge databases of mobility trajectories
in a mobile device. In the future, we anticipate working on
distributed or hierarchical computation and storage of the
mobility models.

Interesting directions for algorithmic improvements include
a more sophisticated clustering method that explicitly repre-
sents partial trajectories and is able to partition long trajec-
tories into short pieces that can be clustered more efficiently.
A multi-tier or hierarchical approach to deal with extremely
large networks is another avenue for future work.

ACKNOWLEDGMENTS

This research was supported by the Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT and Future
Planning (NRF-2013R1A1A1009854).

REFERENCES

[1] TinyOS 2.1.0. http://www.tinyos.net/tinyos-2.1.0/.
[2] H. Abou-Zeid and H. S. Hassanein. Predictive green wireless access:

Exploiting mobility and application information. Wireless Communica-
tions, IEEE, 20(5):92–99, 2013.

[3] J. Akbari Torkestani. Mobility prediction in mobile wireless networks.
Journal of Network and Computer Applications, 35(5):1633–1645, 2012.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 16

[4] K. Almi’ani, A. Viglas, and L. Libman. Mobile element path planning
for time-constrained data gathering in wireless sensor networks. In
Advanced Information Networking and Applications (AINA), 2010 24th
IEEE International Conference on, pages 843–850. IEEE, 2010.

[5] J. A. Alvarez-Garcia, J. A. Ortega, L. Gonzalez-Abril, and F. Velasco.
Trip destination prediction based on past gps log using a hidden markov
model. Expert Systems with Applications, 37(12):8166–8171, 2010.

[6] N. Banerjee, M. D. Corner, D. Towsley, and B. N. Levine. Relays, base
stations, and meshes: enhancing mobile networks with infrastructure. In
ACM MobiCom, 2008.

[7] Z. Becvar, P. Mach, and B. Simak. Improvement of handover predic-
tion in mobile wimax by using two thresholds. Computer Networks,
55(16):3759–3773, 2011.

[8] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, New York, NY, USA, 2004.

[9] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-mac: a short
preamble mac protocol for duty-cycled wireless sensor networks. In
Proceedings of the 4th international conference on Embedded networked
sensor systems, pages 307–320. ACM, 2006.

[10] A. Chakrabarti, A. Sabharwal, and B. Aazhang. Using predictable
observer mobility for power efficient design of sensor networks. In
ACM/IEEE IPSN, 2003.

[11] I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas. Sink mobility
protocols for data collection in wireless sensor networks. In Proceedings
of the 4th ACM international workshop on Mobility management and
wireless access, pages 52–59. ACM, 2006.

[12] J. Chroboczek. The babel routing protocol. RFC 6126, April, 2011.
[13] T. Clausen and P. Jacquet. Optimized link state routing protocol (OLSR),

2003.
[14] R. Coltun, D. Ferguson, and A. L. J. Moy. Rfc 5340 ”OSPF for IPv6”,

2008.
[15] G. E. Crooks, G. Hon, J.-M. Chandonia, and S. E. Brenner. WebLogo:

A sequence logo generator. Genome Research, 14:1188–1190, 2004.
[16] M. Di Francesco, S. K. Das, and G. Anastasi. Data collection in wireless

sensor networks with mobile elements: A survey. ACM Transactions on
Sensor Networks (TOSN), 8(1):7, 2011.

[17] D. Feng, C. Jiang, G. Lim, L. J. Cimini Jr, G. Feng, and G. Y. Li. A
survey of energy-efficient wireless communications. Communications
Surveys & Tutorials, IEEE, 15(1):167–178, 2013.

[18] J. Ghosh, M. Beal, H. Ngo, and C. Qiao. On profiling mobility and
predicting locations of campus-wide wireless network users. Technical
Report: SUNY at Buffalo, Jan 2005.

[19] O. Gnawali, R. Fonseca, K. Jamieson, M. Kazandjieva, D. Moss, and
P. Levis. Ctp: An efficient, robust, and reliable collection tree protocol
for wireless sensor networks. ACM Transactions on Sensor Networks
(TOSN), 10(1):16, 2013.

[20] A. Goldsmith. Wireless Communications. Cambridge University Press,
New York, NY, USA, 2005.

[21] Green ICN, http://www.greenicn.org. Green ICN.
[22] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion:

a scalable and robust communication paradigm for sensor networks.
In Proceedings of the 6th annual international conference on Mobile
computing and networking, pages 56–67. ACM, 2000.

[23] U. Javed, D. Han, R. Caceres, J. Pang, S. Seshan, and A. Varshavsky.
Predicting handoffs in 3g networks. In Proceedings of the 3rd ACM
SOSP Workshop on Networking, Systems, and Applications on Mobile
Handhelds, page 8. ACM, 2011.

[24] D. Johnson, D. Maltz, and J. Broch. DSR: The dynamic source routing
protocol for multihop wireless ad hoc networks. In Ad Hoc Networking,
2001.

[25] H. S. Kim, T. F. Abdelzaher, and W. H. Kwon. Minimum-energy
asynchronous dissemination to mobile sinks in wireless sensor networks.
In ACM SenSys, 2003.

[26] D. Kotz, T. Henderson, and I. Abyzov. CRAWDAD data
set dartmouth/campus (v. 2004-12-18). Downloaded from
http://www.crawdad.org/dartmouth/campus, Dec. 2004.

[27] J. Krumm, R. Gruen, and D. Delling. From destination prediction to
route prediction. Journal of Location Based Services, 7(2):98–120, 2013.

[28] B. Kusy, H. Lee, M. Wicke, N. Milosavljevi’c, and L. Guibas. Predictive
QoS routing to mobile sinks in wireless sensor networks. In ACM/IEEE
IPSN, 2009.

[29] N. D. Lane, Y. Xu, H. Lu, S. Hu, T. Choudhury, A. T. Campbell, and
F. Zhao. Enabling large-scale human activity inference on smartphones
using community similarity networks (csn). In Proceedings of the
13th international conference on Ubiquitous computing, pages 355–364.
ACM, 2011.

[30] H. Lee, A. Cerpa, and P. Levis. Improving wireless simulation through
noise modeling. In ACM/IEEE IPSN, 2007.

[31] H. Lee, H. Kim, and I. J. Chang. CPAC: Energy-efficient data col-
lection through adaptive selection of compression algorithms for sensor
networks. Sensors, 14(4):6419–6442, 2014.

[32] H. Lee, M. Wicke, B. Kusy, O. Gnawali, and L. Guibas. Data stashing:
Energy-efficient information delivery to mobile sinks through trajectory
prediction. In ACM/IEEE IPSN, 2010.

[33] Y.-S. Lee and S.-B. Cho. Human activity inference using hierarchical
bayesian network in mobile contexts. In Neural Information Processing,
pages 38–45. Springer, 2011.

[34] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Simulating large
wireless sensor networks of TinyOS motes. In ACM SenSys, 2003.

[35] H. Li and N. Homer. A survey of sequence alignment algorithms for
next-generation sequencing. Briefings in bioinformatics, 11(5):473–483,
2010.

[36] Y. Liu and B. Schmidt. Multiple protein sequence alignment with
msaprobs. In Multiple Sequence Alignment Methods, pages 211–218.
Springer, 2014.

[37] G. Lu, B. Krishnamachari, and C. S. Raghavendra. An adaptive energy-
efficient and low-latency mac for data gathering in wireless sensor
networks. In Parallel and Distributed Processing Symposium, 2004.
Proceedings. 18th International, page 224. IEEE, 2004.

[38] M. Ma, Y. Yang, and M. Zhao. Tour planning for mobile data-gathering
mechanisms in wireless sensor networks. Vehicular Technology, IEEE
Transactions on, 62(4):1472–1483, 2013.

[39] G. Malkin. RIP version 2, 1998.
[40] Y. Mao, F. Wang, L. Qiu, S. Lam, and J. Smith. S4: Small state and

small stretch compact routing protocol for large static wireless networks.
IEEE/ACM Transactions on Networking (TON), 18(3):761–774, 2010.

[41] F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an
overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 2(1):86–97, 2012.

[42] A. Nadembega, A. Hafid, and T. Taleb. A path prediction model to
support mobile multimedia streaming. In Communications (ICC), 2012
IEEE International Conference on, pages 2001–2005. IEEE, 2012.

[43] A. Nadembega, T. Taleb, and A. Hafid. A destination prediction model
based on historical data, contextual knowledge and spatial conceptual
maps. In Communications (ICC), 2012 IEEE International Conference
on, pages 1416–1420, 2012.

[44] A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich. Better
approach to ad-hoc networking (batman) draftwunderlich-open-mesh-
manet-routing-00. Network Working Group, 2011.

[45] N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados. Energy-efficient
routing protocols in wireless sensor networks: A survey. Communica-
tions Surveys & Tutorials, IEEE, 15(2):551–591, 2013.

[46] C. E. Perkins, E. M. Belding-Royer, and S. Das. Ad hoc on demand
distance vector (AODV) routing. IETF Internet draft, draft-ietf-manet-
aodv-09.txt, November 2001.

[47] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers. In ACM SIG-
COMM, 1994.

[48] J. Polastre, J. Hill, and D. Culler. Versatile low power media access
for wireless sensor networks. In Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages 95–107.
ACM, 2004.

[49] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power
wireless research. In ACM/IEEE IPSN, 2005.

[50] I. Rhee, A. Warrier, M. Aia, J. Min, and M. L. Sichitiu. Z-mac: a
hybrid mac for wireless sensor networks. IEEE/ACM Transactions on
Networking (TON), 16(3):511–524, 2008.

[51] C. M. Sadler and M. Martonosi. Data compression algorithms for
energy-constrained devices in delay tolerant networks. In Proceedings of
the 4th international conference on Embedded networked sensor systems,
pages 265–278. ACM, 2006.

[52] K. Samdanis and M.Schoeller. Exploiting user context information for
energy management in enterprise femtocell networks. In IEEE/IFIP,
May 2013.

[53] C. A. Santivá nez, R. Ramanathan, and I. Stavrakakis. Making link-state
routing scale for ad hoc networks. In MobiHoc, 2001.

[54] I. F. Senturk and K. Akkaya. Mobile data collector assignment and
scheduling for minimizing data delay in partitioned wireless sensor
networks. In Ad Hoc Networks, pages 15–31. Springer, 2014.

[55] T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. Journal of Molecular Biology, 147(1):195–197, March
1981.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. Y, FEB 2014 17

[56] C. Song, Z. Qu, N. Blumm, and A.-L. Barabsi. Limits of predictability
in human mobility. Science, 327(5968):1018–1021, 2010.

[57] L. Song, U. Deshpande, U. Kozat, D. Kotz, and R. Jain. Predictability
of WLAN mobility and its effects on bandwidth provisioning. In IEEE
INFOCOM, 2006.

[58] L. Song, D. Kotz, R. Jain, and X. He. Evaluating location predictors
with extensive Wi-Fi mobility data. In IEEE INFOCOM, 2004.

[59] J. D. Thompson, D. G. Higgins, and T. J. Gibson. Clustal W. Nucleic
Acids Res, 22(22):4673–4680, November 1994.

[60] W. Wanalertlak, B. Lee, C. Yu, M. Kim, S.-M. Park, and W.-T. Kim.
Behavior-based mobility prediction for seamless handoffs in mobile
wireless networks. Wireless networks, 17(3):645–658, 2011.

[61] R. Wohlers, N. Trigoni, R. Zhang, and S. Ellwood. Twinroute: Energy-
efficient data collection in fixed sensor networks with mobile sinks. In
MDM, 2009.

[62] L. Xiang, J. Luo, and C. Rosenberg. Compressed data aggrega-
tion: energy-efficient and high-fidelity data collection. Networking,
IEEE/ACM Transactions on, 21(6):1722–1735, 2013.

[63] L. Xiang, J. Luo, and A. Vasilakos. Compressed data aggregation for
energy efficient wireless sensor networks. In Sensor, Mesh and Ad
Hoc Communications and Networks (SECON), 2011 8th Annual IEEE
Communications Society Conference on, pages 46–54. IEEE, 2011.

[64] R. V. Yampolskiy and A. El-Barkouky. Wisdom of artificial crowds
algorithm for solving np-hard problems. International Journal of Bio-
Inspired Computation, 3(6):358–369, 2011.

[65] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data
dissemination model for large-scale wireless sensor networks. In ACM
MobiCom, 2002.

[66] W. Ye, J. Heidemann, and D. Estrin. Medium access control with
coordinated adaptive sleeping for wireless sensor networks. Networking,
IEEE/ACM Transactions on, 12(3):493–506, 2004.

[67] Q. Yuan, I. Cardei, and J. Wu. An efficient prediction-based routing
in disruption-tolerant networks. Parallel and Distributed Systems, IEEE
Transactions on, 23(1):19–31, 2012.

[68] L. Zhao and A. Y. Al-Dubai. Routing metrics for wireless mesh
networks: A survey. In Recent Advances in Computer Science and
Information Engineering, pages 311–316. Springer, 2012.

[69] M. Zhao, M. Ma, and Y. Yang. Efficient data gathering with mobile
collectors and space-division multiple access technique in wireless
sensor networks. Computers, IEEE Transactions on, 60(3):400–417,
2011.

HyungJune Lee is an Assistant Professor in the
Department of Computer Science and Engineering at
Ewha Womans University, Seoul, Republic of Korea.
He received his B.S. degree in Electrical Engineering
from Seoul National University, Republic of Korea
in 2001. He obtained his M.S. and Ph.D. degrees in
Electrical Engineering from Stanford University in
2006 and 2010, respectively. He joined Broadcom
as Sr. Staff Scientist for working on research and
development of 60GHz 802.11ad SoC MAC. Also,
he worked for AT&T Labs as Principal Member

of Technical Staff with the involvement of LTE overload estimation, LTE-
WiFi interworking, and heterogeneous networks. His current research interests
include future wireless networks over IoT, 60GHz, 5G cellular, and heteroge-
neous networks.

Martin Wicke is currently working on AI and
programming languages at eddy.systems. He got
his PhD from ETH Zurich working on computer
animation and physical simulations, and worked on
sensor networks while at Stanford University.

Branislav Kusy is a principal research scientist
at Autonomous Systems, CSIRO, Australia. Prior
joining CSIRO, he received his PhD from Vanderbilt
university and spent 2 years at Stanford University
as a postdoctoral fellow. He has more than 10 years
of experience with developing system services for
networked embedded systems, algorithms for spatio-
temporal coordination of nodes, and real-world de-
ployments of sensor network technology. He is cur-
rently focusing on innovative signal processing and
adaptive sampling in distributed embedded networks

operating under various constraints, such as uncontrolled mobility, limited
energy resources, or the lack of physical access to the device. Specifically,
he is working with wearable technology for tracking location, activity, and
environmental factors for various applications, including disease spread in
animal/human populations, biosecurity, and future manufacturing.

Omprakash Gnawali is an Assistant Professor at
the University of Houston, USA. He was a Postdoc-
toral Scholar at Stanford University, got his Ph.D.
from the University of Southern California, and
received his Masters and Bachelors degrees from the
Massachusetts Institute of Technology. His research
lies at the intersection of low power wireless net-
works and embedded sensing systems. His contribu-
tion to wireless sensor network routing, Collection
Tree Protocol, has been widely adopted in research
and academia and has informed the IPv6 low-power

wireless networking standard.

Leonidas Guibas obtained his Ph.D. from Stan-
ford under the supervision of Donald Knuth. His
main subsequent employers were Xerox PARC,
DEC/SRC, MIT, and Stanford. He is currently the
Paul Pigott Professor of Computer Science (and by
courtesy, Electrical Engineering) at Stanford Univer-
sity. He heads the Geometric Computation group
and is part of the Graphics Laboratory, the AI
Laboratory, the Bio-X Program, and the Institute for
Computational and Mathematical Engineering. Pro-
fessor Guibas interests span geometric data analysis,

computational geometry, geometric modeling, computer graphics, computer
vision, robotics, ad hoc communication and sensor networks, and discrete
algorithms. Some well-known past accomplishments include the analysis
of double hashing, red-black trees, the quad-edge data structure, Voronoi-
Delaunay algorithms, the Earth Movers distance, Kinetic Data Structures
(KDS), Metropolis light transport, and the Heat-Kernel Signature. Professor
Guibas is an ACM Fellow, an IEEE Fellow and winner of the ACM Allen
Newell award.

	Introduction
	Related Work
	Long-Term Mobility Prediction
	Routing to Mobile Users

	Long-Term Mobility Prediction
	Constructing the Mobility Model
	Trajectory Representation
	Similarity Measure
	Cluster Representation

	Connectivity Prediction
	Cluster Matching
	Alignment

	Predictive Data Delivery
	Protocol
	Network Optimization
	Optimization to Improve Data Latency

	Evaluation
	Clustering and Trajectory Prediction
	Small-Scale Real-World Network Experiment
	Large-Scale Network Simulation Experiment
	Network Performance

	Discussions
	Integration with Duty Cycle MAC
	Comparison of Empirical Results between Simulation and Real-world Evaluation
	Limitation in Applicability

	Conclusion
	References
	Biographies
	HyungJune Lee
	Martin Wicke
	Branislav Kusy
	Omprakash Gnawali
	Leonidas Guibas

