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Abstract—Routing protocols for low-power wireless networks,
such as CTP and RPL, use explicit control traffic between
nodes to find neighbors, construct and maintain routing paths.
To conserve power and reduce network congestion, the control
traffic frequency must be kept low. Reducing control traffic will
not only reduce power consumption, but also affect the quality
of the routing paths constructed by the routing protocols, in
terms both of delivery ratio and power consumption. Several
existing protocols use control traffic reduction mechanisms such
as Trickle. Trickle uses two mechanisms to achieve efficient
routing: (1) rate adaption where the nodes send control traffic
less often when the network is stable, and (2) suppression where a
node avoids sending control traffic if the information has already
been recently sent by neighboring nodes. In this work, we present
scenarios that cause these mechanisms to result in pathology in
control packet timing. We also present a modification to Trickle
to address the pathology.

I. INTRODUCTION

Routing protocols for low-power wireless networks send
control traffic for topology maintenance. Examples of such
control traffic are neighbor reachability information [5] and
routing beacons with path cost [1], [2]. Control traffic must
reach all neighbors and is therefore sent using broadcast. In
duty cycled low-power wireless networks, however, broadcast
is significantly more power consuming and requires signifi-
cantly more bandwidth than unicast transmissions.

Because of the expensive broadcast transmissions, routing
protocols for low-power wireless face a fundamental trade-
off: by sending more control traffic, the quality of the routing
graph may be increased, but excessive control traffic signif-
icantly reduces network lifetime and also results in network
congestion.

Many routing protocols use mechanisms such as Trickle [3]
to minimize the number of control packets in the network
while maintaining certain agility to network dynamics. Rout-
ing protocols such as CTP [2] and RPL [4], [5] use Trickle to
time their control packets: decrease the control traffic interval
when the routing cost change little or the network is not
dynamic. They also suppress transmissions of control traffic
when other nodes have already transmitted the same message.

The problem has an inherent complexity caused by the in-
tricate interactions between the behavior of the radio medium,
duty cycling mechanisms, the control traffic rate, and the data
traffic. For example, although a routing protocol may create
better routing paths by rapid dissemination of large number
of control packets, the control traffic will cause a significant

congestion that interferes with the data traffic, causing lower
application performance.

In this work, we describe the pathologies caused by the use
of Trickle as mechanism for keeping control traffic at a low
rate at stable topologies while maintaining a fast adaptation
to changes. We also offer possible solutions to address these
pathologies.

II. THE TRICKLE DISSEMINATION PROTOCOL

Trickle was originally designed for data dissemination in
a multi-hop network. The data could be software version, or
similar slow-changing data which is an ideal case for Trickle
with its increasing intervals and suppression of already seen
data. Later, Trickle was also used for timing the routing
beacons. The Trickle protocol is specified by the pseudo-code
in figure 1.

τ expires → τ = min(τ × 2, τmax), c = 0, t = [ τ
2
, τ ]

t expires ∧ c < k → transmit Mi

receive Mi → c = c+ 1
receive Mj>i → τ = τstart, c = 0, t = [ τ

2
− τ ]

Fig. 1. The rules of the Trickle mechanism. When the maintenance interval (τ )
expires, τ is doubled if not already at its maximum (τmax). The redundancy
counter c is also set to zero. When t expires, a metadata message is sent if c
is less than k. When an incoming metadata message is received, c is increased
if the message is consistent with the current metadata; otherwise the timers
and intervals are reset.

Trickle disseminates new information fast, sends very little
information when there is no new information available for
dissemination, and does load balancing between the nodes.

III. TRICKLE TRICKED

When all nodes have synchronized intervals, i.e., Trickle
timers are approximately aligned across the nodes, Trickle
handles propagation of meta-data efficiently and load balances
the propagation between the nodes in the network. Unfortu-
nately, the load balancing fails when the nodes start to lose
synchronization with each other. In a network with bottleneck
topology and desynchronized Trickle timer, information prop-
agation can be slow.

One case where Trickle load balancing fails is when there
is a large network of synchronized nodes and a new node
joins by listening to the network beacons. The first beacon
will be sent very close to half the interval which will cause
this node to be unsynchronized with the other nodes. Figure 3



shows the consequence of having an unsynchronized node in
a single-hop network consisting of 10 nodes.

Fig. 2. Results from a simulation in a 2500-node network. On the top, we run
the unmodified Trickle. We use the node in the lower left corner as reference
to visualize the timer phase. White corresponds to nodes that have the same
interval phase as the reference node. The darker the color, the more out of
synch the interval. On the bottom figure, we run the modified Trickle that
resynchronizes its interval.

IV. TRICKLE WITH RESYNCHRONIZATION OF INTERVALS

The desynchronization in Trickle can be eliminated by
adding a synchronization mechanism that resynchronize the
time intervals in Trickle. This mechanism makes all nodes
execute their Trickle listen and transmission intervals at the
same time which improves the efficiency and also removes
any lack of load balancing that may appear in a network. The
algorithm described in Figure 4 achieves this goal.

The efficiency of the modified Trickle at a steady state when
the intervals have been synchronized will approach “perfect”
(e.g. k packet per interval in a network with full reachability)
and in the worst case, assuming that the synchronization fails
completely, it will be as efficient as Trickle with an interval of
τ − ws

1
4τ . By resynchronizing, the Trickle protocol becomes

both more efficient and better load balanced which reduces
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Fig. 3. Results from a simulation of a 11-node network. The network is setup
with 10 synchronized nodes and one node that is out of phase with the other
10. k is set to 2. The phase is shifted from 0% to 100% of the maximum
interval τmax. The load balancing of Trickle breaks quite dramatically around
50% phase shift. Some nodes end up sending packets almost every interval
while one did not perform any transmission.

τs expires → τ = min(2τ, τmax), τs = τ − δs,
c, δs = 0, t = [ τs

2
, τs]

t expires, c < k → transmit Mi

receive Mi → c = c+ 1
receive Mi, T ∈ [ τ

4
, τ
2
] → δs = ws(T − τ

2
)

receive Mj>i → τ = τstart, c = 0, t = [τ/2− τ ]

Fig. 4. Trickle modified for resynchronization of intervals. The idea is to start
the next interval earlier if this node got a Trickle message during its second
half of its listen only period.

the propagation delays in bottleneck topologies. Figure 2
compares the synchronization properties of the original and the
modified Trickle. We find that the modified Trickle was able
to synchronize the schedules of the nodes across the network
while the original Trickle was not.
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