
Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Nonintrusive ultrasonic-based occupant identification for energy efficient
smart building applications

Nacer Khalil⁎, Driss Benhaddou, Omprakash Gnawali, Jaspal Subhlok
University of Houston, 4800 Calhoun Road, Houston, TX 77004, United States

H I G H L I G H T S

• A novel method to identify occupants by sensing their shape and movement.

• This method is based on sensing height and width from ultrasonic ping sensors attached to the door.

• The system enables to identify up to 20 people with a 95% accuracy.

• The system does not require any training.
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A B S T R A C T

The ability to non-intrusively identify people will enable smart buildings to customize the environment to meet
occupants’ comfort level while saving energy. Occupant identification can help in energy savings effort in a
building because we can retrieve each occupant’s temperature preference profile and choose the temperature
that minimizes the total discomfort of a group in the building. To enable occupant identification in buildings,
many methods used can be intrusive, such as using cameras or requiring the users to carry mobile gadgets or a
smart phone. Non-intrusive techniques are gaining interest in smart building applications. In this paper, we
present a non-intrusive ultrasonic based sensing technique to identify people by sensing their body shape and
movement. The ultrasonic sensors are placed on the top and sides of doors to measure the height and width as
the occupant walks through the instrumented doorway. Height and width and their related features can give a
unique signature to occupants to identify them. In this study, the proposed system senses a stream of height and
width data, recognizes the walking event when a person walks through the door, and extracts features that
capture a person’s movement as well as physical shape. These features are fed to a clustering algorithm that
associates each occupant with a distinct cluster. The system was deployed for a total of three months. The results
show that the proposed approach achieves 95% accuracy with 20 occupants suggesting the suitability of our
approach in commercial building settings. In addition, the results show that using girth to distinguish between
occupants is more successful than using height. We show that this system generalizes beyond our datasets and
works for different populations of different physical distributions.

1. Introduction

Buildings energy consumption constitutes about 40% of the total
energy consumed in the United States. There are efforts to develop
buildings that are smart and energy efficient. Developing energy effi-
cient buildings requires addressing challenges from different aspects
including energy efficient building material, integrating renewable
energies, and using more efficient Heating, Ventilation and Air
Conditioning (HVAC) systems. The latter is a significant consumer of
power in buildings, especially in warmer or colder areas. By having
accurate estimates of occupancy or human activities inside buildings,

one can develop smarter algorithms to better manage the HVAC
yielding saved energy and increased occupants’ comfort. Occupancy
allows the first order optimization of HVAC use in a building. However,
occupancy does not provide any information about the occupants’
comfort levels. In fact, occupancy is mostly used to adjust the airflow,
but the temperature of the air flowing to the various rooms is not a
function of occupancy but rather constant and predefined by building
managers. As a result, many occupants are uncomfortable in buildings
because of the lack of customization and inability to tailor to the pre-
sent occupant’s thermal preferences. Thus, there is a case for identifying
occupants in a building to customize the HVAC operation to meet the
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occupants preferences and avoiding the too hot or too cold scenarios,
and hence energy waste.

Smart and energy efficient buildings need to tailor the climate to the
occupants’ preferences. This is important because not only can it make
the buildings more comfortable but also save energy. In fact, studies
have shown that we can achieve at least 30% energy savings by having
an accurate estimate of occupancy Erickson et al. [1]. With accurate
occupancy estimate, Erickson and Cerpa [2] show that we can adjust
the HVAC airflow by feeding the occupied areas with just enough air
given the number of occupants. However, even though we can achieve
optimum airflow thus saving energy, there is no way for the occupants
to provide feedback about their comfort given the set temperature. This
leads to increased discomfort and missed energy saving opportunities
because by having the occupants’ comfort profile, we can set the tem-
perature to accommodate as much people as possible. Current HVAC
systems have predefined temperature settings low enough to accom-
modate every occupant’s preference in the case of cooling and vice
versa for heating. However, there are different temperature setting
strategies that can be performed such as choosing the median tem-
perature, mean, or various voting-based strategies as shown in Zhang
et al. [3] or by taking into account thermal occupant comfort con-
straints as shown by Ghahramani et al. [4]. Most importantly, having a
way to retrieve the occupants’ temperature preference is crucial to
making the buildings more comfortable, more adaptable and more
energy efficient than by simply relying on occupancy sensing.

In this paper, we propose a non-intrusive ultrasonic based indoor
occupant identification system that can be implemented in doorways
that scale to accurately identifying 20 users which can be used in
commercial applications such as buildings and nursing homes. The
sensing technique measures the occupant’s shape and movement which
are used by a clustering algorithm to identify people. The proposed
solution mounts three ultrasonic ping sensors at the top and the side of
the door frame to measure occupants’ height and girth. The sensors at
the side of the door are used to compute the width of the person passing
through it. Using the height and width time series, the system extracts a
set of features to infer the occupant’s body shape and movement. We
identity occupants by clustering data from these features to uniquely
characterize occupants. This makes our solution easy to use since it
doesn’t require to train the model because it’s based on clustering. This
solution can easily be integrated into doors and is cost effective since it
uses off-the-shelf ultrasonic sensors.

Given that we rely on height and width which are weak biometrics,
the system is subject to uncertainty as some people may have similar
height and width measures. This paper studies the extent to which such
similarities will affect the system’s performance. Our findings show that
clustering with the body shape and time spent walking through the door
(thus movement) enables us to accurately identify people. The results
show that indeed these parameters are key to differentiating between
people thus achieve 95% accuracy for 20 people and 75% for 50 people.

We introduce the system design which includes sensing methods,
data filtering techniques to minimize noise from the measurements, and
clustering algorithms to identify occupants. We conducted two experi-
ments: a room-scale experiment that lasted one month long involving
20 people in a classroom environment at the University of Houston and
a building-scale experiment involving five door frames for a period of
two months with over 170 participants.

1.1. Contributions

The contributions of this paper are:

• We propose and implement a system that identifies occupants using
height and width measured using ultrasonic sensors mounted in
doors. The system extract a set of useful features which are used by a
clustering algorithm to identify people.

• We Investigate the impact of the computed features on the accuracy

of the system. In particular, our results show that gait contributes
more significantly to identification than height.

• We compare the accuracy of different combinations of features in
identifying occupants. The results show that clustering with girth
and time provide more accurate results than height and time.

• We investigate how the method scales for larger populations of up to
50 people.

• We investigate how would the system perform on different popu-
lations of different physical characteristics. We perform that by
drawing samples that match a physical characteristics and evalu-
ating the performance of our model on it.

Relative to our preliminary work in Khalil et al. [5], we deployed a
new large scale testbed composed of five door frames for a period of
two months with over 170 people participants. This was important to
evaluate how consistent is the system performance when conducted
with more and different participants and in different locations involving
more door frames. We also studied the extent to which such a system
would scale to different populations with different characteristics and
how would the performance change as we scale the population size. We
also explored the use of Spectral clustering on how it performs com-
pared to DBSCAN. We evaluated the walking event performance. Our
research demonstrates that it is possible to identify occupant with 95%
accuracy for 20 people and 75% for 50 people.

2. Related work

2.1. HVAC control

HVAC is one of the main power consumers in buildings in the US. In
fact, it consumes 50% of building energy consumption and 20% of the
total energy consumption Pérez-Lombard et al. [6]. Thus, numerous
research has been done to make these systems more energy efficient. A
few researchers have explored the possibility of augmenting the HVAC
control with occupancy information for the purpose of energy saving
Conte et al. [7], Färber et al. [8], Erickson and Cerpa [2], Erickson et al.
[1]. Also, Brandemuehl and Braun [9] showed that energy could be
saved by adjusting ventilation to maximum occupancy, and Erickson
et al. [10] showed that the majority of current HVAC systems assume
maximum occupancy during normal hours and turn it off during the
evening which is a source of inefficiency because rooms are not always
at maximum occupancy. Therefore, an accurate occupancy estimate
could save energy by adjusting the ventilation to the estimated occu-
pancy rather than maximum occupancy.

However, having an accurate estimate of occupancy is not enough
to save energy. In fact, Hoyt et al. [11] has shown that by increasing the
set point temperature by 1 °C, we can save 7–15% energy consumed by
the HVAC in the summer in three cities namely San Francisco, Miami
and Phoenix. These savings are achievable because a large fraction of
users feel that the temperature set points in their building is too ex-
treme. In fact, in a study at the University of Southern California, Ja-
zizadeh et al. [12] showed that 60% of the users felt cool to cold inside
the building during the summers showing the potential to raise the
temperature which would increase the users’ comfort and save energy.
So one can make the occupants more comfortable as well as save energy
having users comfort preference.

2.2. Setting HVAC temperature

Having an estimate of occupancy is crucial to achieve proper ven-
tilation, but understanding the thermal preference of users would help
save even further by taking into consideration the occupants’ pre-
ferences. In fact, Karjalainen and Koistinen [13] discuss that the lack of
control as well as individual control in buildings increase occupants’
discomfort in offices because the systems are planned without an un-
derstanding of the users which change over time. Erickson and Cerpa
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[14] show that by bringing the users “in the loop”, you can improve the
users’ comfort and save 10% over standard baseline strategies involving
ASHRAE 55 guidelines Standard [15]. Zhang et al. [3] shows a method
to set the temperature based on thermal comfort voting from the oc-
cupants.

2.3. Identification for HVAC control

To set the temperature in the room, understanding not only how
many people are in the room but also who is in the room is important
for increased comfort and savings. Ghahramani et al. [4] show that by
taking into account numerous parameters including the occupants’
comfort constraints, the temperature could be set by solving an opti-
mization problem which tries to maximize the comfort and take into
consideration energy savings. Therefore, for such systems having access
to the occupants’ identity in a given room is important and this is not
trivial because occupants move to different rooms throughout the day
and a good example would be university classroom buildings.

Identification and tracking people has captured interest from the
research community in the last decades and different sensing methods
has been proposed. These sensing technologies rely on sensing strong
biometrics such as facial recognition Lanitis et al. [16], fingerprint
Hrechak and McHugh [17], iris and hand geometry Tisse et al. [18],
Pan et al. [19]. Other technologies make use of weak biometrics such as
height Hnat et al. [20], Srinivasan et al. [21] and weight Jenkins and
Ellis [22].

2.4. Carried and wearable devices

Different proposed technologies have been proposed. Ranjan et al.
[23] make use of RFID-based wearables, Subbu and Thomas [24] track
users’ Smartphones and Hnat et al. [20] make use of iBeacon tech-
nology. In RFID-based wearables, Ranjan et al. propose an RF Doormat
which is an RF sensing system that can identify and track users’ loca-
tions as they walk through doorways. Smartphones have been used as a
mean to identify and track and localize users in buildings. These sys-
tems identify occupants with high accuracy but suffer from missing a
user if she does not have the wearable.

2.5. Strong biometrics

Different systems have been proposed that use facial, fingerprint,
iris and hand geometry and achieved high accuracy as have shown
Lanitis et al. [16], Hrechak and McHugh [17], Tisse et al. [18], Pan
et al. [19]. However, these methods raise privacy concerns and many
require the users to interact with the system. Zhao et al. [25] show that
vision-based person identification approaches for identification namely
face recognition techniques has been explored for decades. In fact, vi-
sion-based system target different sets of applications ranging from
entertainment and virtual reality to security and surveillance. Some
vision-based identification methods rely on gait to identify occupants as
have reported Kale et al. [26]. These systems are energy intensive, in-
vasive and not easily deployed in environments such as buildings as
they are privacy infringing.

Hrechak and McHugh [17], Tisse et al. [18] and Pan et al. [19] use
other systems such as those using fingerprint, iris, hand and retina
sensing require some level of engagement from the user to authenticate.
This requirement is difficult to enforce and if users do not authenticate,
then the identification process fails. These systems though highly ac-
curate are privacy infringing and may not be applicable to large com-
mercial buildings.

2.6. Weak biometrics

Numerous methods involve sensing weak biometrics. Methods that
sense height, weight, footstep vibration and step force for occupant

identification have been proposed by Hnat et al. [20], Srinivasan et al.
[21], Pan et al. [27], Jenkins and Ellis [28], Liau et al. [29], Elrod and
Shrader [30]. These sensing systems are non-intrusive and do not re-
quire effort from the occupant in the identification process. Among
these systems, footstep vibration based systems have been proposed to
detect occupants identity. Pan et al. [27] showed that their system
achieves 96% accuracy for a population of 4–5 people. However, the
system cannot operate when multiple occupants are present in the area
because vibration signals would interfere with each other and it would
be difficult to separate them.

Height as a weak biometric has been proposed in the literature using
ultrasonic sensing by Hnat et al. [20], Srinivasan et al. [21]. In fact,
Hnat et al. [20] introduce Doorjamb which is a system that uses height
information, walking direction, and tracking information to identify
users achieved a high accuracy rate within a population of 2–4 people.
However, our system leverages height and width to sensors to identify
up to 20 people with an accuracy of 95%.

Weight is also a good weak biometric and has been used in research
to identify occupants Jenkins and Ellis [28], Liau et al. [29]. In fact,
Jenkins and Ellis [28] showed that weight can be used as a weak bio-
metric and it can achieve 80% accuracy for up to 15 people.

New systems emerged that directly identify occupants from sensed
RF signals. In fact, with systems such as WiWho, Zeng et al. [45] proved
that their system was able to identify occupants by observing the sig-
nature of the RF signal reflection intensity on the human body. How-
ever, many of these systems fail to identify more than 4 people with
90% and this quickly drops to 70% when the population is 6 people. A
Similar system is proposed by Zhang et al. [31] that also uses WiFi
signals to identify occupants. Table 1 compares some of the work in this
area. These systems are non= intrusive, do not require user’s engage-
ment to authenticate but many of them fail to identify large populations
which make them limited and difficult to use in large commercial
buildings. (see Table 2).

3. System design

The system is designed to sense walkers’ body shape and movement
as they pass through the door. We design a door frame which we install
three ultrasonic sensors (see Fig. 1a and c). One sensor is placed on top
facing downwards referred to as UT (Ultrasonic Top), and other two
sensors are placed on the sides horizontally at 1 meter high referred to
as UR (Ultrasonic Right) and UL (Ultrasonic Left), which is at the right
and left sides of the frame. The sensor-instrumented door is installed in
room 219 at the Technology building at the University of Houston. The
sensor-instrumented door sends the extracted features to the back end
system to run the clustering algorithms and identify occupants.

The system includes four components: Sensing and calibration,
event recognition, feature extraction, clustering and decision making.
Fig. 2 depicts the process. The ultrasonic ping sensors compute the
distance between the sensor and the closest object (in this case a
person) and generate three streams of readings per walker. When a
walking event is detected, the generated data is preprocessed and a set
of features is computed and extracted. These feature instances are then
used to build a clustering model for every user.

Table 1
Table showing a comparison of different non-intrusive identification methods.

Paper Sensor Accuracy (%) population

Hnat et al. [20] Ultrasonic 94 5
Pan et al. [27] Geophone 96 5
Zeng et al. [45] Wi-Fi RF 93 4
Jenkins and Ellis [28] Pressure 80 15
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3.1. Sensor platform

We instrument each doorframe with ultrasonic ping sensors. This is
composed of the following hardware:

• Arduino Uno

• Parallax Ultrasonic Ping sensor

• Raspberry PI 2 model B

The three ultrasonic sensors are connected to the Arduino which
does the data acquisition and preprocessing. Data preprocessing con-
sists of noise detection and correction as well as walking event detec-
tion. The walking event data is sent to the Raspberry PI through USB.
The Arduino and Raspberry PI communicate over USB as opposed to
low power Protocol such as Zigbee because the amount of data gener-
ated is much higher than what is supported by Zigbee. In fact, Zigbee’s
maximum data rate is 256Kbps which is not sufficient given the high
sampling rate, and the transmission delay is larger than the sampling
time making Zigbee a bottleneck. The feature extraction and the clus-
tering algorithm can run on the Raspberry PI. However, during the
experiment and data collection, We sent the extracted features to a
server where the data is both stored and processed by the Machine
Learning algorithm. We send the data to the server over WiFi and we
use RabbitMQ as our message queue mechanism to transfer the data
from the Raspberry PI to the server. The total cost of sensor hardware
per doorframe is $80.

3.2. Sensing and calibration

Sensors need calibration as signal acquisition and sampling in-
troduces errors in calculating the distance. For the sensor UT, the
longest distance the ultrasonic pulse will travel is 4.2 m which is twice
the height of the door frame as the ultrasound signal needs to go back
and forth. Given the speed of sound of 341m/s, we estimate that it will
travel this distance (4.2 m) in 12ms, which represents the maximum
possible delay. For the sensors UL and UR which are separated by a
distance of 1.2 meters, the maximum expected delay is 7ms. The three
sensors are sampled sequentially to avoid cross-talk between sensors.

The way we sense a walking event is as follows: we send a beam from
one sensor and wait for the reflection to reach the sensor, we compare
the time it took with the maximum allocated time for the sensor and set
the node to sleep for the rest of the allotted time. The purpose of this is
to keep the sampling rate at a stable fixed rate regardless of the walker’s
size. This also will prevent crosstalk between three ultrasonic sensors as
it allocates enough time for the beam to be sent and reflected back to
the sensor before operating the next sensor. In fact, synchronization
between sensors is key to avoiding crosstalk and reducing noise in
distance measurements.

The measured delay from UT is converted to height using the fol-
lowing formula:

= −d t d t( ) 34.3
2height UT max height UT

where 34.3 is the distance, in cm, traveled by sound every 1ms. The
variable t is the delay in ms. We divide by 2 because the measured delay
represents the time for the pulse to go back and forth. dmax height refers to
the maximum distance separating the sensor and the ground in the case
of UT. The maximum distance measured by UT, UL, and UR in our
testbed are respectively 212 cm, 124 cm,124 cm.

The measured distances are then converted to the width of the
person passing through the door using the following formula:

= − −d t d t t( ) 34.3
2

34.3
2width maxwidth UL UR

When there is no one under the door frame, then the width formula
returns a negative figure, more exactly −dmax idthw because both dis-
tances computed from UL and UR will be equal to dmaxwidth. To avoid
this problem, we first check if = =t t dUL ULR maxwidth

34.3
2

34.3
2 , if true we

return 0, and if not we compute the width using the formula.
Our first design uses periodic polling with an interval of 29ms to

simplify the implementation. Periodic polling is energy intensive and
impacts the lifetime of the sensors, therefore is not the best way to
operate in real world application. In a real world environment, we
would add a motion sensor to optimize the operation to activate the
sampling of the ultrasonic sensors when the motion sensor detects a
person close to the door frame. Adding a motion sensor wouldn’t sig-
nificantly increase the overall cost of the system since off-the-shelf costs
as low as $5 and wouldn’t add significant complexity to the system. In
addition, activated motion sensing is less energy intensive than running
three ultrasonic sensors continuously.

Table 2
Table showing the needed hardware with their respective quantities and prices
per unit per doorframe.

Hardware Quantity Cost(USD)

Arduino Uno 1 30
Parallax Ultrasonic Sensor 3 15
Raspberry PI 2 Model B 1 35

Fig. 1. Figure showing the sensor instrumented doorframe schematic figures and a photo of our current testbed.

Fig. 2. Sequence of operations for occupant identification in a building.
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3.3. Walking event recognition

A Walking event refers to the stream of {UT, UL, UR} readings.
Every time a person walks through the door frame, we receive a stream
of data and the number of readings varies between 35 and 40 de-
pending on the speed of the person. Fig. 4a illustrates the data stream.
The faster the person walks, the fewer the readings. This stream of data
will contain noisy points and errors. These noisy points need to be
corrected and recovered before processing the features.

Since our testbed is in periodic polling, we get continuous data
stream from the ultrasonic sensors. To detect a walking event, we look
at the height as a detection mechanism. When there is no one under UT,
we expect the maximum value. Algorithm 1 shows how we extract the
walking event from a stream of data.

It has been shown that the average height of people in the United
States is 169 cm with a standard deviation of 7.5 cm Ogden et al. [32].
So a height interval of 3 standard deviations from the mean should
statistically cover 99% of the walkers assuming height follows the
Gaussian distribution. The lower end of the interval would be 146.5 cm
and we chose 140 cm as a lower bound. The reason is that height
measured by UT is not necessary the ground truth and many times it is
lower because of how the person walks, especially if the walker is
looking a bit downwards or holding a backpack or just using a smart-
phone. The walking event starts when the measured height is at least
140 cm and stops when the height is less than 140 cm by allowing at
most 4 consecutive points that are out of this interval. This last con-
dition is chosen to prevent erroneous readings from making the system
think the walker is no longer at the door and gives the impression we
have multiple events. We chose 4 consecutive experimentally because it
yields the most accurate walking event.

Algorithm 1. Extract Walking Event

1: procedureEXTRACT WALKING EVENT

2: ←missed 0
3: ←minheight 140
4: ←maxmissed 4
5: ←queue FIFOQueue
6: ←walkingevent emptyFIFOQueue
7: do
8: ←reading queueDequeueelementfrom
9: ifreading.height > min_heightthen

10: Enqueue reading to walkingevent
11: ←missed 0
12: els ifmissed < max_missedthen
13: ← +missed missed 1
14: else
15: return walking event
16: end if
17: whilequeue not empty
18: end procedure

3.3.1. Person direction recognition
The width sensors UL and UR are displaced in parallel to the

walking direction line. As the person is walking, one sensor is closer to
her than the other and therefore the closest will be the one to detect her
by returning a non-default (a default value means max width when no
one is under the door) value indicating it came in contact with a person.
Fig. 1b shows how sensors UL and UR are displaced and how this dis-
placement helps detect the person’s direction. This displacement helps
not only with person direction recognition but also for more accurate
width measurement as shown in Section 4.11.

The direction is set when setting up the door frame in the room. In
our testbed, we positioned our door to have the sensor UR closer to the

entrance, so if a person is entering the room, the first non-default
reading will be from UR and when exiting the first non-default reading
will be coming from UL. If a person intentionally rotates the door, then
our system will start giving wrong directions, but in a real deployment,
the sensors will be mounted on the door frame by drilling a hole into
the door and such an intentional rotation would not be possible.

3.4. Noise canceling and correction

Once the walking event is recognized and its respective sensory data
stream is detected, we preprocess the data to filter noisy points before
the event is further processed. We filter out the readings that are out-
side the interval [0, Max Height] and more than 30% difference be-
tween adjacent points. The reason is that we have observed that the
width varies approximatively by 15% and the latter is higher when a
person is carrying a purse. Fig. 3 is a Histogram that depicts the dis-
tribution of adjacent readings.

Once noisy points are identified, we need to either remove or re-
cover them. Since the height measure uses only UT, then removing
would not affect the overall height data. However, data from UL and UR
are computed in pairs and removing one UR implies removing its
equivalent UL or vice versa. For example, if we remove UL at t1 but not
UR at t1, we will end up with more UR measures than UL measures and
most importantly, we will end up with pairs that did not occur at the
same time. Therefore, the best approach is to use linear interpolation to
replace the noisy values. Therefore, after receiving the raw walking
event data stream, we identify the noisy values and replace them using
linear interpolation. The new stream of data is then used for feature
extraction.

3.5. Main features

To detect occupants, we first use the preprocessed stream of data to
extract a set of features that will be used to detect and identify users. It
is illustrated in Fig. 4a and Table 4b. We experimented with several
features including max, min, average, bounce, girth, and time under the
door. Girth and time under door gave the best results for occupant
identification.

3.5.1. Girth
Girth is a circumference measurement around a person’s waist. In

order to compute the girth, we use the stream of width data to create 2
point clouds where y is the instance number multiplied by the distance
traveled each sampling interval and x is equal to width

2
. We generate two

Fig. 3. Histogram of the distribution of adjacent width measurements rate of
change.
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points, (x,y) and (−x, y). We then construct the convex hull for all the
point clouds and calculate its perimeter using Euclidean distance as the
distance measure. Assuming an average speed of 5 km/h, a person will
walk 3.6 cm every 29ms. The pseudo-code for constructing the girth is
presented in Algorithm 2.

Algorithm 2. Girth Calculation Algorithm

1: procedureCOMPUTE GIRTH

2: ←distancewalkedper iteration 3.6
3: ←edge 0
4: ←xt

width t[ ]
2

5: ← ∗y iteration distancewalkedper iterationt t

6: ← + − + −− −edge edge x x y y( ) ( )t t t t1
2

1
2

7: Return: ← ∗girth 2 edge
8: end procedure

3.5.2. Time
Since everyone has a different walking speed, we measure time

indirectly by counting the number of interval time the person spent
under the door. Given the sampling rate, s, (s= 35Hz in the testbed),
we calculate the time by dividing the number of height measurements

= …H h h{ , , }n1 by s and width measurements = …W w w{ , , }n1 by s. We
select the result that gives the max time spent under the door, t, is
therefore given by:

=t max H W(| |,| |)s
1 We take the maximum because noise may alter

the length of the H or W and therefore select the longest since it was the
least affected by noise.

3.5.3. Bounce
Bounce is a gait measure of how a person bounces as she walks.

Some people tend to bounce more than others when walking. We
capture bounce from the height measurement by subtracting the
minimum from maximum height. Given height measurements

= …H h h{ , , }n1 , we set = −Bounce max H Min H( ) ( ).

3.6. Other features

3.6.1. Maximum, minimum, and average height
From the stream of height measures, we compute the minimum,

maximum and average height. To decide which of the three features is
most appropriate for identification, we need to find which metrics has
the least variance for the same person and ideally closer to the ground
truth. To do that, we conducted a small experiment where the same
person performs 7 walking events under the door. We compute for
every event the minimum, maximum and average height. Fig. 5 is a box
plot illustrating the data from the trials. Given a ground truth of
180 cm, maximum feature is the closest to the ground truth. However,
we note that the average height is the feature with the least variance
and this means it is more consistent for the same occupant. As con-
sistency is important for identification, we choose average height.

3.6.2. Average width
Once a person passes through the door, we compute the person’s

width. The width measure is independent of the position of the occu-
pant in the door i.e. if he is closer to one edge of the door as opposed to
the other, the width measurement is still the same.

3.6.3. Body-hand distance (WH)
This feature captures how close a person’s hands are to her body as

she walks. As the Walker swings her arms, the UR or UL sometimes
measure the distance to the waist and sometimes to the arm. To com-
pute this feature, we divide the measurements into 2 groups. The ones
closer to by at most 10% of the minimum width and the others that are
farther by at least 15%. We calculate the average of every group and
return the difference. We do this for both sides using UL and UR and
take the maximum. The reason for taking the maximum as opposed to

Fig. 4. Figure showing an instance of a walking event height and width readings and the extracted Features.

Fig. 5. Box plot showing variance in average, minimum and maximum height
for 7 trials.
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the minimum or average is that you have people on one hand in the
pocket.

3.7. Feature selection

Given the feature set generated by the system, choosing a subset of
features has been extensively discussed in the literature. In this study,
we use two methods to find the most successful subset of features to use
to identify occupants. First, we evaluate how would a feature set
composed of one feature perform and then evaluate pairs of features’
accuracy. This approach is very similar to the sequential search
methods Liu and Yu [33] where we start with one feature and add a
second one to increase the goodness of our dataset.

In the second method, we perform feature selection using the
Recursive Feature Elimination (RFE) algorithm Doak [34] whose goal is
to find a subset of features that maximize accuracy and increase the
robustness of the identification. Since we have 3 degrees of freedom,
namely height, width and time, we derive one feature from every de-
gree of freedom to minimize interdependence between the features.
Principal Component Analysis (PCA) has been widely used as a di-
mensionality reduction method that leverages the variance to measure
the importance of features. In fact, we use PCA to generate a new set of
features that are a combination of the input features to maximize the
variance Ghodsi [35]. Therefore, we first run RFE on the experimental
dataset presented in Section 4. We found that the 3 most important
features are girth, time and bounce. Then, we use PCA to create a new
set for building our model. To validate the model, we search for the
important features by forming a model for all possible feature pairs and
evaluate each model’s accuracy.

3.8. Occupant identification

We use clustering for occupant identification rather than rely on a
supervised learning algorithm that requires training. Supervised
learning would require users data for training the system and that could
be cumbersome in a real-world building-scale deployment with dy-
namic and changing population. Hence, we rely on clustering and
search for a set of features computed from the walking event that would
cluster for the same user and do not cluster for different users. In other
words, if a feature computed for a given person is consistent across
different instances of walking trials, this feature can be used as a unique
signature to identify the person. However, the feature should also meet
an additional requirement: a feature computed for different people
should be different. We process all sensor data stream and extract a set
of features for the person. Since the system is unaware of the walker but
rather tags her with a feature set, we treat this occupant identification
problem as a clustering problem rather than classification, where every
user will have her own cluster. In addition, the system does not need
training to work and therefore is able to differentiate between people
without prior information about the walkers. The way this method
could help retrieve the occupant’s profile to adjust the HVAC is to do
the following; Have the person walk once through the door. The system
will output the cluster id. Afterwards, we associate the cluster id with
the profile, so whenever the person walks through any of the doors, the
profile id could be retrieved.

Some of these features such as Girth and Bounce have been shown to
be very consistent for the same user while other features did not meet
this requirement. Other features such as Body-Hand distance did not
vary much among different people and therefore are not be able to
differentiate between different users. To address this issue, we decided
to combine features into pairs and evaluate each pair to find the one
that yields the highest identification accuracy.

There are many clustering algorithms in the literature designed with
different goals in mind. We selected two algorithms, DBSCAN and
Spectral clustering, which are different enough from each other.
Experimenting with these two algorithms allows us to understand the

performance achieved by these different clustering algorithms that
were designed with different trade-offs in mind: DBSCAN is good for
finding dense clusters but spectral clustering looks for connected
graphs. In our preliminary work Khalil et al. [5], we explored the ef-
fectiveness of DBSCAN for clustering and showed promising result,
achieving up to 95% accuracy with 20 people. We found two main
weaknesses with DBSCAN::

• DBSCAN finds the number of clusters and the clusters at the same
time which makes it sensitive to misidentification by wrongly esti-
mating the number of clusters and also by finding the wrong cluster
delimitations.

• DBSCAN assumes that most clusters have the same density which is
not applicable to this problem as people can walk through the door
at different frequencies depending on how often they come to the
building. Therefore the clustering algorithm may fail in cases where
the participation frequency is not homogeneous among Occupants.

While these weaknesses may not be important in some cases (largely
uniform density distribution of population and events over time), we
next explore Spectral clustering for scenarios in which these weaknesses
may be critical (for example, when there is large variation in population
and events and weather/behavior). In those cases, Spectral clustering
would generally outperform DBSCAN. However, spectral clustering
cannot make an accurate estimate of the number of clusters in the da-
taset. This is essential in our problem since we do not know at any time
how many different people have walked through the door. To solve this
problem, we refer to the paper by Zelnik-Manor and Perona [36]. The
authors propose an improvement to Spectral clustering by self-tuning
numerous parameters to improve the performance of the algorithm.
Thus, these two algorithms represent unique trade-offs in design of our
system.

To find the correct number of clusters, we use the method provided
by Zelnik-Manor and Perona [36]. The main idea of spectral clustering
is to find the connected regions rather than dense ones. To do that, the
algorithm defines an affinity matrix and constructs a Laplacian Graph.
Then an Eigenvector problem is solved. The idea behind finding a good
number of clusters in the dataset is to sort the eigenvectors and analyze
them by counting the number of eigenvectors with magnitude 1. We
refer the reader to the paper by Zelnik-Manor and Perona [36] for
further details. Once we have a good estimate of the number of clusters,
we build our clustering model by making use of all the features defined.

4. Evaluation

We describe the setup used for evaluating the occupant identifica-
tion system followed by evaluation results. The experiment protocol
was approved by the University of Houston Committee for the
Protection of Human Subjects.

4.1. Testbed

The sensing testbed is composed of five door frames. Fig. 1 shows
one of the doorframes we built for this study. We connect an off-the-
shelf Logitech C310 camera to each door to collect the ground truth.

The sensors are attached to a board that is attached to the frame as
illustrated in Fig. 1c. However, this is not required by the system, it was
designed for convenience but it would work similarly if the sensors
were actually mounted inside the frame. The system is not susceptible
to crosstalk because the sensor sampling is performed sequentially
giving enough time for each sensor’s signal to travel to the target and
back. If installed in a wider door, this time parameters must be changed
but could be computed given the dimensions of the door as shown in
Section 3.2.

In order to compute the width of a person, we need both UL and UR
readings to be at the same time in order to have accurate width
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measure. To achieve this, we displace the sensors by 1.2 cm on the
walking direction in order to account for the temporal difference be-
tween the consecutive samplings of UL and UR. This specific displace-
ment distance (1.2 cm) is chosen to account for the temporal difference
in sampling. Assuming the walker walks at an average speed of 5 km/h
and having a sampling rate of 35 Hz, the Walker travels a distance of
1.2 cm every 8ms. Also, the order to sampling the sensors is:

→ →UT UL UR with a 8ms time difference between UL and UR. Thus,
this displacement is crucial because though UL and UR are sampled at
different times, the width measurements of the walker though taken at
different times are the same points as if the person was standing.

4.2. Single-door experiment

We conducted our experiment in lab room 219 (see Fig. 6) in
Building T2 at the University of Houston for a month. We recruited
students from one of the classes scheduled in the room as participants.
Their age varies between 18 and 30 years old. We informed them about
the purpose of the experiment and we asked them to walk naturally.

The door frame was at the entrance of the room and there was
enough space for others to bypass it in case they don’t want to parti-
cipate. The camera was always recording. Whenever a person walks
through the door, a walking event is recorded with the start and end
time. Since we only keep records of when a person walks into the door
frame, every minute, the video footage is processed and only the times
when the walker(s) passed is extracted. We keep the video recording
starting 3 s before the walking event start time. This extra time is added
on purpose so that we can see the whole event when annotating the
data.

Every time a person walks through the door, a stream of data {UT,
UL, UR} as shown in Fig. 4a and video is captured. Each stream is then
converted to the set of features extracted from the dataset. After one
month which marked the end of the experiment, we annotated the data
manually by looking at the video footages for every event and marked
the data with the person that walked. This manual annotation was done
twice by the same person and we believe it is 100% accurate.

The number of people that participated in this experiment is fifty-
three. However, many of these participants passed through the door
only once or twice. We discard data for those participants from our
dataset as the clustering algorithm expects at least four points per
cluster. We decided to take top 20 people in terms of the number of
walking events. This group averaged 7.5 passes per person, with a

maximum of 17 passes and a minimum of 4; Fig. 7 shows the dis-
tribution. Eleven participants were male. 9 were female. We did not
measure the participants’ true heights or width but it appeared to us
that there was a fair distribution of body shapes.

4.3. Building-scale experiment

We performed a set of experiments involving more participants,
more door frames and over a more extended period of time. We de-
ployed five door frames on the second floor of the Technology-2
building at the University of Houston for two months. Fig. 6 show the
locations of the five door frames as shown in blue dots. People were
invited to participate in the experiment by simply passing through the
doors and encouraged to walk as naturally as possible. There was no
direct communication with the participants with the exception of
banners inviting them to participate. Most of the participants were
students, faculty, and staff. The experiment lasted for two months and
data of over 13000 walks through the door were collected during this
period. We discovered that almost 4000 events were false positives
(when a person does not walk through the door and the system thinks
the person did). Fortunately, it is quite easy to identify the false posi-
tives where we can observe them having no more than 2 samples per
event. Also, after annotating the data, we found that over 215 partici-
pants walked more than once. All the data from the people who par-
ticipated once or twice were discarded as our model cannot predict
anything from a few occurrences of a person with the exception of the
system understanding that this person was never seen before. Although
we did not compute an exact gender mix among the participants,
manual inspection of a small subset of ground truth video showed a
good mix of participants from both genders.

Given the large number of walks through the door, it is not feasibly
to manually tag the data from each walk by watching the video. We use
automated annotation face identification technology developed by the
computer vision research community. We used Facenet Schroff et al.
[37] which provides an algorithm that consumes an image composed of
a face and provides the end user with a vector of 256 dimensions using
Deep Learning. This vector is a mapping of the Face in the Euclidean
space and similar faces have a Euclidean distance of less than 1. This
Algorithm is well established in the field and was tested under nu-
merous well-known face recognition datasets achieving an accuracy of
over 99.63% in the Labeled Faces in the Wild Huang et al. [38] dataset
that is composed of 13,000 different faces. An implementation of Fa-
cenet is provided using Openface Amos et al. [39].

As a person walks towards the door, we extract 30–100 images
containing the face, depending on the door position and how far was

Fig. 6. Figure showing the floor plan for both Experiments. The circle shows the
location of the doorframe of the first experiment and the blue dots show the
location of the doorframes of the second large scale experiment. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 7. Histogram showing the number of participants by number of passes
under the door frame during the study.
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she initially. We collected a total of over 700,000 face images. Once,
these images are collected, we clustered them such as each cluster refers
to one person making sure that similar images of the same person are no
farther than 1 Euclidean distance from another in the 256-dimensional
feature space.

We convert every image to a 256-dim vector and note the ID of the
walking event. We then search for the number of clusters in the dataset
using Gaussian Mixture Model (GMM) estimation using Expectation-
Maximization (EM). The parameter we vary is the distance between
different images, which is initially set to 1. For each walking event, we
look for the percentage of the largest cluster of the set of captured
images (30–100) and compute their average. We then vary distance
value parameter passed to the GMM model until we find local maxima.

For sanity check, we manually checked three images in every cluster
and checked if they are of the same person. We checked 30 events. We
did not find any errors in the annotation. Thus, the automatic asso-
ciation process is robust. We believe this annotation could scale to a
larger deployment at the multi-building level or more.

4.4. Evaluation metric

Since we model our system using an unsupervised method, training
data is not required. Evaluation metrics such as Purity Manning et al.
[40] have been proposed in the literature. In fact, Purity is calculated as
the ratio of the count of the most frequent label as a total number of
labels in a particular cluster. However, this metric is unsuitable to
evaluate our system because knowing how pure our clusters do not
indicate how well our algorithm is able to identify occupants. We de-
cide to evaluate it by dividing the dataset into a training and a testing
dataset: 1/3 of the data for training and the remaining 2/3 for testing.

The issue with clustering is that it can create the correct number of
clusters but may end up having different people in one cluster thus
creating impure clusters. That said, we need to first find the feature pair
that is able to generate the correct number of clusters and for those
pairs, we then associate a cluster label with the class with the majority
class. For instance, if a cluster is composed of instances of different
classes, then we label the cluster with the most frequently observed
class in the cluster. Even if some clusters may be less pure, then this
would affect the overall accuracy at the testing phase. Therefore the
most successful feature pair would yield the purest clusters and highest
accuracy.

Ideally, we should expect two instances of the same class to belong
to the same cluster. In other words, we would like two different walking
events of the same person to belong to the same cluster. All the in-
stances of possible True/False Positives/Negatives are illustrated in
Table 3: We define accuracy as:

=
+

+ + +
accuracy TP TN

TP FP TN FN

.

4.5. Clustering with pairs of features

We combined pairs of features in DBSCAN and for every pair using
the training set and test the accuracy of every model based on a pair of
features. Table 4 illustrates the result. The pair (girth, time) achieved
the highest accuracy. Clustering with Girth achieved the highest accu-
racy in single feature clustering, so pairing it with another feature

seems to increase accuracy. However, time is not accurate, but com-
bining it with girth is most accurate because they do not commit the
same mistake and people with close girth values appear to have dif-
ferent time values and vice versa. We should note that the pair (Bounce,
Average Height) performs better than (Average Height, Average Width)
which proves that it is better to use Bounce over Average Height.

In Fig. 8, the confusion matrix of clustering with the pair (Girth,
Time) is illustrated. The darkness of the color indicates the percentage
of the trace of the ith person =P i( , 0. .19)i which was recognized as the

=i jth person =P j( , 0. .19)j Using the confusion matrix, we can observe
how each person is identified and misidentified. The confusion matrix
shows that most of the occupants are correctly identified all the time
with the exception of person 2 and 9 which seem to confused with 2
other occupants. We also observe some misidentification for 14 and 16.

4.6. Model scaling with increasing number of occupants

To evaluate the performance of the technique as a function of the
number of users, we calculated the accuracy of the technique in dif-
ferent population sizes. Fig. 9 shows the accuracy as a function of the
number of occupants. As expected, the accuracy decreases as the po-
pulation size increases. We can observe that using the pair (Girth, time),
we are able to differentiate between people with an accuracy of 97% in
the case of 5 people. Our system achieves a slightly higher accuracy for
the same number of people compared to systems such as Doorjamb
Hnat et al. [20] which achieves 93% accuracy and Pan et al. footstep
induced identification system which achieves 96.5% accuracy Pan et al.
[27]. Fig. 9 shows the plot of accuracy as a function of the number of
occupants for 2 clustering models. We show how the accuracy of
clustering with (Girth, Time) changes as the number of occupants in-
creases. We also compare it to clustering with Average Height. We

Table 3
Different outcomes from clustering.

Same cluster Different cluster

Same Person True Positive False Negative
Different Person False Positive True Negative

Table 4
Accuracy (in %) achieved by clustering with feature pairs constructed from the
features in row and column.

Height Width Bounce Time Girth WH

Height 84.3 89.5 89.5 90.5 93.2 86.4
Width 87.6 90.5 91.0 93.7 87.2
Bounce 88.1 87.6 94.7 89.4
Time 82.6 95.4 85.2
Girth 89.5 90.3
WH 76.9

Fig. 8. Confusion matrix showing the identification and misidentification of the
occupants and how which occupants was identified as another.
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observe that clustering with the (Girth, Time) not only achieves higher
accuracy but does maintain higher accuracy compared to clustering
with average height when we increase the number of occupants.

4.7. Evaluating spectral clustering

We built the Spectral clustering model using 2/3 of the data as in
the experiment with DBSCAN. We evaluated the accuracy on rest of the
data. The model achieved an accuracy of 94.6% which is slightly lower
than clustering with DBSCAN where we achieved 95.5%. Though it
appears that DBSCAN outperforms the spectral clustering, we note that
the dataset is not large enough to show the weaknesses of DBSCAN
mainly its inability to cope with varying densities throughout different
clusters.

4.8. Comparing spectral clustering and DBSCAN with increasing number of
occupants

In this section, we compare the performance of DBSCAN and
Spectral clustering using the new dataset as we vary the number of
occupants. We select subsets from the dataset with populations of 5, 10,
15, 20, 25, 30 up to 50 with increments of 5. We evaluate how the
performance of clustering changes as the number of occupants increase.
First, we select subsets from the larger dataset such that we match the
population size we target. To draw a subset, we do the following:

1. Arbitrarily select a person from the dataset and select all her walks
2. Repeat operation until we meet the subset population size.

Then we divide each subset into training and testing set as done
previously and evaluate the performance of both models with regards to
the size. In Fig. 10, we plot the model accuracy of both models as we
vary the population size. We observe that the spectral clustering per-
forms better than DBSCAN at larger scale.

4.9. Statistical significance of achieved model accuracy

We have shown that we achieved 95% accuracy in clustering in our
dataset. We also used 3-fold cross validation to show that this result
generalizes. To further make sure that the results are statistically sound
and generalizable, we conducted further evaluation on a bigger and
different data set that we generated using the statistical bootstrapping
technique. It consists of random sampling method with data replace-
ment. In this test, the goal is to generate subset data different than the

original dataset and compute achieved accuracy. Each subset is used to
evaluate the model’s performance. The process goes as follows:

1. Arbitrarily draw with replacement a subset from the original dataset
2. Divide subset into training and testing with respective proportions

of 2/3 and 1/3
3. Measure Accuracy of model trained on the training set and tested on

the testing set
4. Repeat the process for 1000 times.

To determine the statistical significance of the 95% accuracy on our
dataset and its generalization, we created 1000 subsets with replace-
ment. For each subset, we calculated the model’s accuracy using the
same method described in Section 4.4. We plotted the histogram of the
distribution of the model’s accuracies computed over the 1000 subsets.
From Fig. 11, we measured the mean and standard deviation which are
respectively 94.5% and 1.4%. This means that our accuracy of 95% is
statistically sound and achievable.

4.10. Accuracy for different population height-width distribution

We have shown that our system achieves 95% accuracy for a group
of up to 20 people. We have also shown that we would expect such
accuracy to degrade as the population size increases. However, the
model’s accuracy is not only affected by the population size but also by
the height-width distribution in the dataset.

Fig. 9. Plot showing identification accuracy of clustering with (Girth, Time)
and clustering with Average Height as a function of the number of occupants.

Fig. 10. Plot comparing Spectral Clustering and DBSCAN with three features as
we increase the population from 5 to 50 people.

Fig. 11. Histogram showing the expected accuracy distribution of the model.
This accuracy distribution is generated using the statistical bootstrapping
method.
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We run a simulation where we select subsets of the occupants from
our large scale deployment to match a target height, width spread to
evaluate how our model performs for different groups and population.
Some countries have more height, width variance than others and
therefore the expected model’s performance may differ.

To run this simulation, we define a height and width spread in-
terval. This spread refers to the variance in a population. We set the
height and width intervals to be respectively [0,15 cm] and [0,5 cm].
This defines a 2-dimensional spread space. We then define points by
incrementally moving with a step of 0.5 cm. Therefore we select all
(height, width) points between (0,0) and (15,5) by incrementally
moving with a step of 0.5 cm. Each point in this space is referred to as a
spread target. For every spread target, we simulate 10 different popu-
lations whose variance is the spread target. To do that, we perform the
following operation.

1. Choose target spread =s s s[ , ]h w
2. Arbitrarily select a person from the population. This person x would

at the center of the dataset.
3. Define a Bivariate Normal Distribution ∼X N μ( ,Σ) where

=μ x x[ , ]h w
T and = sΣ which is the target spread.

4. Arbitrarily select another person y with replacement. Calculate
average height and width from all walks of user we call y y( , )h w .

5. Calculate probability of point being generated by the Normal dis-
tribution = =p P X y( )

6. We duplicate the data belonging to person y by a factor of ∗p 1000
7. repeat for another 18 people.

The reason we duplicate the data is to be able to match the target
spread as explained in Step 5. All the retrieved people’s data is dupli-
cated to match the target spread. The extent to which they are dupli-
cated is defined by the probability that the person belongs to the de-
fined distribution. Therefore, the farther the person’s height-width from
the mean of the distribution, the smaller is the duplicate factor. With
this process, even though we select people of various height and width
arbitrarily, we are able to match our target spread by varying the du-
plication factor according to the probability of being observed in such
spread distribution.

In total, we generated ten populations per spread and we have 30
spread points. We chose ten populations instead of simply one because
the mean of the bivariate distribution is dependent upon the first ar-
bitrarily sampled person. So if the first person chosen is very tall or very
short, then the other randomly sampled people would more likely be
farther on average and therefore would be duplicated with a smaller
factor and therefore the instances of peoples’ walks would be dis-
proportionately distributed. To mitigate this issue, we simulate ten
datasets per target spread instead of one. This will mitigate the risk of
sampling the person with “anomalous” physical shapes. There is a risk
to chose the same person as the first for different distributions but since
our population of 170 is large enough, this would rarely happen.

Each simulated dataset is divided into two subsets: training and
testing set of sizes 2/3 and 1/3 respectively. We calculate the accuracy
for every dataset which are then grouped by spread target. For every
spread target, we compute the mean and standard deviation of the
accuracy over the datasets associated with it.

In Fig. 12, we plot a heat map of the mean accuracy as a function of
height and weight spread. Note that the original model based on
DBSCAN did not make use of height to construct the model. However,
we observe from Fig. 12 that as the height spread increases, which
indicates that the model gives more weight to the height as the spread
increases.

In Fig. 13, we plot a heat-map of the standard deviation of accuracy
as a function of height and weight spread for a certain population
spread. We observe that as the accuracy increases, the variance de-
creases. Even though the figure depicts that the variance is higher to-
wards the middle, it is an absolute value and the lower spread varies as

much but since the absolute accuracy is low then it varies less. So we
can conclude that the model’s accuracy becomes more stable as the
spread increases.

4.11. Width sensors positioning evaluation

The objective of this section is to evaluate if displacing the sensors
UL and UR (as depicted in Fig. 1b) or aligning them for measuring the
Walker’s width is useful. We conducted an experiment where one
person performed 6 passes through the doorway with the sensor aligned
and repeated the same procedure having the sensors displaced.

With the width sensors were aligned, the occupant performed 6
passes under the door with the hands raised. The hands are raised to not
bias the width measurements. The same operation is repeated but with
the sensors, UL and UR displaced by 1.2 cm as explained. The same
occupant walked for 6 times. Fig. 14 illustrates the result of the ex-
periment.

We can see that displacing the sensors improves the accuracy of
width measurement. However, if we install the sensors in an aligned
fashion, we get more variation in width measurements. In addition, the
average width for all 6 passes is 40.25 cm and 38.50 cm respectively for
the displaced sensors and aligned whereas the ground truth is 40 cm.

The reason why the aligned sensors generate more variation is that
since we sample sequentially, after sampling from UR, the Walker’s

Fig. 12. Heat map showing the expected accuracy of the model as a function of
the height and width spread as observed in the dataset.

Fig. 13. Heat map showing the expected standard deviation of the expected
accuracy of the model as a function of the height and width spread as observed
in the dataset.

N. Khalil et al. Applied Energy 220 (2018) 814–828

824



position has changed by the time sample with UL. Therefore, both
readings do not refer to the true width and depending on how fast the
person walks or the direction (for example if he gets closer to one side
as he walks), the width measurement will vary more.

4.12. Robustness to walking angle

Girth is the most successful feature in differentiating between oc-
cupants as is shown in Table 4. One of the strengths of girth as a feature
is its ability to not change the direction of the walker. In fact, all width
measure (minimum, maximum and average) suffer from the direction of
the walker. The measures change drastically if a walker walks straight
towards the door or at an angle relative to the door. However, girth
does not appear to suffer from the direction because it represents a
circumference of the person’s waist and therefore is insensitive to the
angle of walking when we make the measurements. We conducted an
experiment where one Walker walks through the door at the angles
relative to the door of 0,45 degrees and 90 degrees. For each angle, the
Walker passed six times. For each pass, we computed the Walker’s girth
having the sensors UL and UR displaced. Fig. 15 shows a box plot of the
girth computed for every pass and every angle. We observe that the
mean girth does not vary much regardless of the angle at which you
walk. Also, most of the girth measures fall within less than 1 cm away
from the mean. We conclude that the girth is not sensitive to the angle
at which the person walks which make it a practical feature to differ-
entiate between walkers.

4.13. Accuracy of walk-through detection

To evaluate the performance of detecting walking events, we con-
duct an experiment in which we have a subject walk through the door
40 times and along side of the door 40 times as follows. First, we have
the subject walk 20 times through the door in one direction and 20
times through the same door in the opposite direction to emulate a
scenario of walking into a room and out of the room. Then, we have the
same subject walk along the door (not through) ten times each at a
distance of 15 cm, 30 cm, 45 cm, and 60 cm from the door to emulate a
scenario in which the subject passes through a hallway without entering
a room but possibly triggering the ultrasonic sensors and generating
false positives. Fig. 16 shows the experimental setup and the different
walking scenarios.

We achieved a precision of 100% and a recall of 81.6% in this ex-
periment. There is a significant difference between precision and recall.
In fact, Table 5 shows the individual performance of each scenario
depicted in Fig. 16. Note Table 5, we measure the correct detection and
in the case of walking along the door, a correct detection is when the
walker did not walk through the door and door did not trigger the
event. There is a strong justification for such results. Our system sam-
ples at 35 Hz, therefore it is almost impossible to walk through the door
without affecting the measured distance triggering the walking event.
Secondly, if we walk close enough to the door but not through it, the
ultrasonic wave will reach the walker and be reflected back to the re-
ceiver triggering the start of the walking event. However, these false
positives are easily detected because when UR and UL measuring the
person’s width, it is less than 20% of the width of the door, which is rare
when a walker walks through the door. Typical width observed for a
real walk-through is in the range 26%-52%. Thus, we can use a simple
filter to eliminate these false positives.

Fig. 14. Box plot comparing width measurements when the sensors UL and UR
are aligned Vs Displaced.

Fig. 15. Box Plot showing Girth sensing distribution for three walking multiple
angles relative to the door.

Fig. 16. Figure showing the experimental setup of walking scenarios to de-
termine the accuracy of walk-through event detection. The arrows shows the
directions of the walks and the number of times each direction was taken as
noted by a number next to each arrow.

Table 5
Table showing the accuracy of correct walk detection performance when
walking through the door and along the door at different distances as illustrated
in Fig. 16.

Walk Accuracy of Correct detection (%)

Through the door 100
Along the door: 15 cm 30
Along the door: 30 cm 60
Along the door: 45 cm 100
Along the door: 60 cm 100
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4.14. Accuracy of walking direction

In an experiment with 30 walk-throughs (15 times each direction),
we found that the system can determine the direction of walk-through
at 90% accuracy for walking speed faster than 5 km/h and 100% ac-
curacy for slower walk-throughs.

4.15. Evaluating energy savings from identification

The result of occupant Identification can be used to retrieve people’s
temperature preference profiles as they walk through the door and set
the temperature accordingly. In current commercial buildings, the
temperature is set cool enough to accomodate most people but that
leads to many people feeling too hot or too cold.

A better approach is to extract the people’s preference and set the
temperature using one of the following strategies for the population
currently in the building:

• Set the temperature to the mean temperature

• Set the temperature to the median temperature

There are other strategies discussed in the literature for setting the
temperature for a group of people but for the purpose of evaluating how
setting the temperature according to the automatically retrieved tem-
perature preference of the occupants can make the room more energy
efficient, we will consider only the mean and the median. We note that
in most buildings in the United States, the temperature is usually set to
around 22 °C following the ASHRAE standard for thermal comfort set-
ting ASHRAE [42].

In this study, we focus on the percentage of people who feel com-
fortable at various temperatures (as shown in Fig. 17) and assume that
for that portion of people, that is their ideal temperature setting. We
rely on an experiment performed by Kim et al. [41] in a school in
Australia. They collected over 3356 samples where For every tem-
perature interval, we obtain the number of people who feel comfortable
at that temperature interval and assign the temperature preference to
be that preference of all those people. This makes up a population of
people appreciating different temperatures. In our paper, we consider
different subsets of these people of populations of up to 20 people sit-
ting in the same room with their individual temperature preference. We
would like to set the temperature for the room using the two strategies
discussed. Given the proportions of people of each temperature setting,
we arbitrarily select 20 each with from one of the temperature setting
groups while respecting the proportions of each temperature. Then for
each group we measure the median and mean temperature which we
would set in the room. We redo this operation for 1000 times to

measure the distribution of temperatures that would be set in the room.
Clearly these strategies will not make everyone happy and there are

better ones discussed in literature, but the user communicates with the
room as he walks through the door using our identification as opposed
to current commercial buildings where there is either no user input in
temperature selection and setting (controlled by the central plant) or
there are techniques such as Thermovote Erickson and Cerpa [14] re-
quires active intervention from the user on a mobile device or control in
the building. Compared to these techniques, we do not require the users
to carry any device or push buttons on the physical controls in the room
while we are able to customize the room temperature automatically
depending on the occupant population in the room. However, in all
1000 trials the preferred temperature setpoint for the group of occu-
pants is around 23 °C on average for both the mean and median strategy
as shown in the boxplots in Fig. 18. Thus, our system would keep the
temperature in the rooms at least 1 °C warmer in the summer compared
to the standard baseline of 22 °C as recommended by ASHRAE [42].
Results from Hoyt et al. [43] and Ghahramani et al. [44] suggest HVAC-
related energy savings of 7–15% and 4–10% when we keep the rooms
warmer by 1 °C.

5. Discussions

We discuss a set of challenges that we face in real world deployment
of the door frame. We also discuss ways to tackle these issues.

5.1. Multiple entries

In this study, we assume that only one occupant passes through the
door at a time. The features extracted assume that there is only one
person. If more than one person walks through the door simultaneously,
the whole stream will be seen as one person with an unusual width and
time. To deal with multiple simultaneous entries per door, our system
needs to disaggregate the data into multiple walkers. In the case of large
doors that are designed for multiple entries, we can extend them by
adding an extra UT to capture the second walker.

5.2. Higher number of users

Previous methods have scaled their system up to 5–6 people
whereas we were able to accurately identify up to 20 people. However,
as the number of users increases past 20, the identification accuracy
would decrease because the similarity between different features tends
to become more probable. However, Height was not used for identifi-
cation and therefore could be used to push further the number of people
by grouping them by height and considering them as different groups.

Fig. 17. Plot showing the change of percentage of people feeling cold, warm or
like the current temperature as we vary the temperature in the room. This data
is based on study performed by Kim et al. [41].

Fig. 18. Boxplot showing the median and mean temperature distribution when
choosing 1000 subgroups each of size 20 people of different temperature pre-
ferences.
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5.3. Impact of belongings

A person carrying a backpack or a woman holding a purse will be
reflected in the data and drive the overall identification accuracy down.
However, the bias arising from extra objects follows a pattern and can
be removed. For instance, a purse can be detected by noting a higher
body-hand distance on the hand carrying the purse compared to the
other hand. In the case of a backpack, the height sensor will show a
unique pattern showing a person carrying a backpack. These cases
could be solved individually by identifying them first and pruning the
data from such a bias.

5.4. Impact of walking pattern

If a person walks faster or slower, the data stream length will be
impacted because she will spend more/less time under the door.
However, in our studies we make two observations: (1) speed among
the same person rarely varies outside of the average mean time ±

sampling time, (2) it was observed that only three participants had
different speeds. Sometimes the features from one subject created
multiple (in our data up to three) clusters corresponding to different
walking speeds and patterns for that subject. However, each cluster
always was associated with a single subject. Thus there was never an
ambiguity in mapping from a cluster to an individual. We believe this
result holds in general but we have not performed experiments in other
settings to confirm.

5.5. People with disability

Our current deployment does not account for people with special
disability. For instance, people with wheelchairs would appear as
having the same width and height and may fail to distinguish between
them. Moreover, People with crutches usually walk slower. However,
we may be able to detect such cases by observing a more square shaped
girth rather than a regular oval shaped one.

5.6. Location of door frame

Having the door frame at a hall will force people to walk differently
than having the door frame right by a corner where people have to turn.
We guess that identification will be consistent for the same door. But
taking the same clusters generated for one door and using them in
another door may not yield the same identification accuracy observed
at the previous door even if the participants are the same.

5.7. Low power sensing

In the current setup, the sensors sample continuously and in-
dependently of whether there is an occupant. However, this would pose
a problem in a real-world deployment because the current setup is
energy inefficient. We suggest adding a passive motion detector and
only when a person is detected, we activate the ultrasonic sampling.
This would make the system much more energy efficient because only
when a person approaches the door that we start sampling.

5.8. Multi-people door

In this work, we have deployed our system in single person doors. In
other words, we assumed the door is able to fit no more than one walker
at a time. Though the vast majority of doors only allow one person at a
time, most buildings contain a few wide doors that allow more than one
person to walk through it. Deploying our solution in such door will not
work out of the box and we would want to consider more sensors and at
different placements to achieve that. Also, there are other door types
that we didn’t consider such as circular doors which turn and let go
more people at once. Even though our system would not fit these

various door types, we believe that the vast majority of doors in
buildings and homes are single-person doors and our system is designed
for such doors.

5.9. Adding more ultrasonic sensors

Adding more sensors will likely improve the performance of the
system, but the significance of the improvement is questionable. Having
these three sensors, we are able to capture three dimensions: height,
width and time. Adding more width sensors at a different placement
will probably be in a way correlated with the original ones (and will
capture only marginally different aspects of height, width, and time we
already capture) whereas the top and side sensors are uncorrelated
which makes them useful. A more rewarding approach may be to use a
completely different type of sensor to capture aspects of motion ultra-
sonic sensors are not able to capture.

6. Conclusions

Occupant identification plays an important role in smart building
management systems. In particular, non-intrusive identification is ex-
pected to enable many new applications in which buildings can be
customized to the occupants preferences making the buildings more
comfortable and energy-efficient. Non-intrusiveness will enable build-
ings to actively identify occupants without engaging them with a de-
vice.

This paper developed and implemented a non-intrusive and device-
free ultrasonic-based doorway system that identifies occupants in
commercial building applications. The door is composed of ultrasonic
sensing components that collect data about the height and width of a
passing by an occupant, then the system computes body shape in-
cluding height, width, and girth as well as movement. The sensors
generate a stream of data whenever an occupant passes under the
doorway and the features are extracted from each stream. Using the
feature sets, the doorway system uses a clustering machine learning
algorithm to determine the identity of the occupant. The developed
system is able to identify a person among a population of 20 people
with an accuracy of 95%.

The system is subject to uncertainty that is due to the fact that some
people may exhibit similar features and the clustering algorithm may
confuse some of them. The paper investigated the combination of dif-
ferent features and measured their impact on identification. The com-
bination that was able to distinguish most between people is girth and
walking speed, with an accuracy of 95%. The results also showed that
bounce is more accurate in clustering occupants. However, bounce did
not contribute significantly to increasing the accuracy when included as
a third feature for clustering. However, in the initial experiment, height
was not a strong contributing factor to the model. On the other hand,
Spectral clustering was able to make use of all the features and we
observed that height seems to become more important as the height
spread in the population increases. We evaluate the statistical sig-
nificance of such performance and how it would generalize in different
populations of different height-width distributions. We finally evaluate
the energy savings potential of identification and how it can increase
thermal comfort by raising the temperature in the summer while saving
up to 15% of energy.
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