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Abstract—Human Activity Recognition (HAR) is a fundamen-
tal building block for the current trend of smart devices in
Internet of Things (IoT). Ultra-Wideband RF technology has
been used in localization research while Wi-Fi Channel State
Information (CSI) has been widely investigated for non-obtrusive
activity recognition in the literature. This paper investigates
the feasibility of using UWB technology for Human Activity
Recognition (HAR). The key idea is to use machine learning
classification algorithms most suited to train models to classify
different activities using the Channel Impulse Response (CIR)
data of the UWB signals. Our experiments show that by using
CIR data as features we can classify simple activities such as
standing, sitting, lying with an accuracy of 95%. To compare
this performance, we have also trained statistical models using
Wi-Fi CSI. We found that, for all models UWB CIR significantly
outperformed Wi-Fi CSI. Thus, we believe UWB to be a
very effective technology in the context of device-free activity
recognition.

Index Terms—UWB, activity recognition, machine learning,
device free, Channel State Information (CSI), Channel Impulse
Response (CIR)

I. INTRODUCTION

Human Activity Recognition (HAR) is an active area of
research. The primary goal of activity recognition is to infer
a user’s behavior based on analysis of sensor readings. The
sensors may be worn by the user or installed in the users’
environment. There are applications of HAR in areas such as
healthcare, elderly care, and energy expenditure estimation.

Most current techniques for HAR require users to either
carry sensors [1]–[3]. This main problem with this approach is
it is inconvenient for the users to always carry the device or the
users may forget to carry the device. Other common approach
is to use cameras [4], [5] to find the activities performed by
the users. The main disadvantage of this technique is the loss
of privacy for users. In addition, the vision-based approach
requires generally good lighting and does not work well when
the user is occluded.

One approach for activity recognition is device-free activity
recognition using radio signals [6], [7]. In this approach, radio
devices are placed in the periphery of a monitored area. A
transmitter sends a series of packets. The signals bounce off
the environment (walls, objects, humans, etc.) and arrive at
the receiver. When a human subject performs a different task,
the signal reflections received at the receiver change. Thus,
a change in activity changes the environment which can be
inferred by the change in received signal at the receiver.

Measurements such as radio signal strength indicators
(RSSI) have been successfully used for localization [8], [9]
but are not informative in activity recognition. The different
human activities generally cause negligible change in RSSI.
Recent studies have therefore used Channel State Information
(CSI) or Channel Frequency Response (CFR) for activity
recognition in a device-free setting. However, such approaches
are prone to multipath fading; thus, less reliable for activity
recognition.

In this study, we use Ultra-Wideband (UWB) impulse
signals for activity recognition. The use of ultra-wide fre-
quency bandwidth leads to relatively narrower impulse signals
in time domain compared to Wi-Fi and Bluetooth, which
makes impulse-based UWB radios more accurate in detecting
multipath propagation of signals. Our proposed solution uses
high resolution (1 ns) Channel Impulse Response (CIR) which
is equivalent to time domain CFR.

In this work, we focus on activities in which a subject
is stationary. Examples of such activities include standing,
sitting, and lying. The receiver extracts CIR of the received
packets as the user performs different activities. We then
carefully construct features, based on unique property of UWB
propagation, e.g. first path components. These feature are
used to classify the activity as one of the three activities.
For Random Forest classification, which is commonly used
in the device-free activity recognition literature to classify the
activities, we obtained an accuracy of 95.6%.

Our accurate activity recognition solution demonstrates the
feasibility of a passive, non-intrusive, and more accurate calo-
rie counting application in comparison with most of fitness
tracker watches and devices. Such devices either use activity
dependent metrics like Metabolic Equivalent (MET) [10]
to accurately estimate energy expenditure, or they use hu-
man body-type dependent metrics like Basal Metabolic Rate
(BMR) to only estimate the calories burned for maintaining
vital body functions. Activity recognition methods used by
fitness tracker devices highly rely on the subject being in vig-
orous motion, hence they cannot distinguish between different
activities when the subject is stationary. Our solution does
not require subject to carry any device and it can distinguish
between different activities when subject is stationary, hence
we can make use of MET to provide a more accurate caloric
expenditure in such scenarios.

We make these contributions in this paper:
• We present experiment design, hardware setup, and



software implementation using UWB radios for human
activity recognition. We collected extensive dataset using
our setup.

• We present classification results and show that human
activity recognition is possible with an accuracy of
95.6% using UWB radios with simple machine learning
algorithms.

II. RELATED WORK

We classify all existing Human activity recognition systems
into four broad categories: RSSI based, Radar based, CSI
based, and other wireless techniques.

A. RSSI-Based Activity Recognition

Received Signal Strength Indicator (RSSI) based activity
recognition relies on the fluctuations in the received signal
strength to classify the activity.

WiGest leverages changes in Wi-Fi signal strength to sense
in-air hand gestures around the user’s mobile device [11].
They classified primitive hand gestures like move up-down,
down-up, up-pause-down with an accuracy of 87% for a single
Access Point (AP).

B. Radar-Based Activity Recognition

In some notable works, radar has been used for activity
recognition. WiZ is a prototype that can localize up to five
users with median accuracy of 8-18 cm [12]. Where as,
WiTrack can detects 3D pointing gestures with an orientation
error of 11.2◦ [13]. Radar based systems have a much higher
bandwidth and can extract micro-Doppler information. How-
ever, even these require very specific and expensive hardware.

C. CSI-Based Activity Recognition

More recently, CSI information extracted from Wi-Fi net-
work interface cards (NICs) are being used for human ac-
tivity recognition. Some work for classifying human micro-
movements ha also been done. This includes classifying lip-
movement [14], keystrokes [15], and heartbeat [16]. Other
work such as WiFall [17] can detect fall scenario of a single
person with 94% fall detection precision and 13% false alarm
rate with Random Forest classifier.

D. Other Wireless Techniques

Many activity recognition systems use hardware that has
been specifically designed to serve the purpose. For example,
WiSee uses USRP and measures Doppler shift in wireless
signals [18]. Allsee uses a custom low-power circuit to extract
received signal to recognize hand gestures [19]. It classifies
gestures such as flick, zoom in, zoom out, push, pull etc. with
an accuracy of 97%. All these usually report very fine-grained
signal measurements.

III. SYSTEM DESIGN

This section describes the details of how our system works.
The system architecture is shown in Figure 1.
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Fig. 1: System Architecture

A. CIR Extraction

We use the raw CIR values that were obtained during com-
munication between the nodes. UWB signals are sent in short
bursts of pulses by the sender (every 50 ms). The receiver,
constantly monitoring the channel, records CIR information
upon receiving a packet from a sender. The receiver node
estimates the components of channel’s CIR every 1 ns. It
reports the component in polar coordinates. We treat this
stream of polar coordinate values as our raw data. This raw
data is fine grained and has a very high resolution compared
to Wi-Fi. Figure 2 shows the experiment setup used to collect
the data.

B. Pre-processing

We process the raw data in two steps. For the packets that
are received we determine the first path and use only a part
of the raw data sequence to eliminate noise.

1) First Path: The collected CIR data contains the infor-
mation about the first path delay. This is the channel’s delay
to receive the signal on the first path of propagation. To train
models for activity recognition it is important to remove this
noise prior to data model creation. So we remove the samples
in the data stream before the first path component (e.g., before
the first peak in Fig 1) using the first path delay information.

2) Filtering Noise: Not all the data after the first path is
informative for classification. We tested the amount of data
that is useful after the first spike in amplitude. After careful
analysis, we found that using 200 samples (100 ns) starting
from first path gives the best classification results. Figure 3
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Fig. 2: Experiment Setup

shows the change in the accuracy with different number of
samples that are used as features.

C. Training and testing models

We train four models, one of each algorithm described in
section III-D. We used 10-fold cross validation technique for
this purpose. The trained models are used in application for
activity recognition.

D. Machine Learning Classification Algorithms

We trained models based on some common machine learn-
ing classification algorithms widely used in activity classifi-
cation literature.

1) Naı̈ve Bayes: Our first model was trained based on the
Gaussian Naı̈ve Bayes classifier. It is a popular algorithm for
classifying problems. However, it has a strong independence
assumption between the features. This is not true in our case.

2) Neural Network Multi-Layer Perceptron (MLP): MLP
is a feed forward artificial neural network model that maps
set of input data onto a set of appropriate outputs. It consists
of multiple layers and each layer is connected to the next
one. MLP has shown accuracy over 91% with classification
of activities using cell phone accelerometer data [1].

3) Nearest Neighbors: The principle behind nearest neigh-
bor method is to find a predefined number of training samples
closest in distance to the new point and predict the label from
these. Previous efforts to classify human activities using the
common k-nearest neighbors classifier had an accuracy of
75% [20].

4) Random Forest: Random Forest Classifier is ensemble
algorithm. It creates a set of decision trees from randomly
selected subset of training set. Previous studies that used
multi-sensor data have shown to have accuracy of 92% for
classification of activity category. [21].

IV. EXPERIMENTAL SETUP

In this section we describe the hardware we used, setting
and the parameters for performing the experiment.

The experiments have been performed in different indoor
settings such as different apartments, and a conference room
in our institution. For each of the locations multiple subjects
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Fig. 3: Accuracy comparison for different number of features
using Random Forest classifier: accuracy decreases for more
than 200 features due to overfitting

have performed three activities i.e. standing, sitting, and lying.
Additionally, the empty room has been considered as the
baseline activity. Table I lists some basic information for all
the subjects that performed the activities.

TABLE I: Subject Details

Subject Height (cm) Weight (kg) Girth (cm) Gender
1 178.0 69.8 83.0 Male
2 172.5 71.9 85.0 Male
3 175.1 72.1 89.0 Male
4 147.0 47.6 72.0 Female
5 190.5 122.5 120.0 Male
6 188.0 70.3 85.0 Male
7 172.0 80.0 95.0 Male
8 156.0 56.9 77.0 Female
9 185.4 93.9 100.0 Male

10 172.7 83.9 98.0 Male
11 184.0 78.9 96.0 Male
12 180.5 73.9 92.0 Male
13 165.0 62.2 79.0 Female

Note that we have taken multiple subjects into consideration
so that our system gets trained to identify different subjects
performing the same activity. This makes our system more
robust for user related applications.

Some spatial restrictions have been employed and all the
activities are performed between the two nodes. Moreover, to
ensure a stable environment, 10 meters of area around the
nodes was cleared. This was done to exclude any potential
external interference like passing by subjects.

A. UWB Radio Configuration

We use DW1000 Evaluation Board (EVB1000) by De-
caWave as our UWB transceivers, placed 2 m apart from
each other and configured to operate in channel 2 (4.0 GHz
center frequency and 500 MHz frequency bandwidth). UWB
transmitter is configured to continuously send packets to the
UWB receiver.

B. Wi-Fi Configuration

To compare the performance of UWB CIR, we use Linux
802.11n CSI Tool. We use one wireless Access Point (Buffalo
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Fig. 4: Comparison of UWB CIR and Wi-Fi CSI with different algorithms in activity recognition. Most of the models that
used UWB CIR have higher recognition accuracy than Wi-Fi CSI

WZR-HP-G300NH2) under 802.11 (2.4GHz) and one laptop
with Intel Wi-Fi Wireless Link 5300 NIC running Ubuntu
12.10. We used the Linux 802.11n CSI Tool [22] to extract the
CSI information. Experiments similar to UWB are performed
using the CSI tool. The Wi-Fi hardware is placed right next to
the UWB hardware for the experiment to ensure that models
are trained on the same data.

C. Machine Learning Classification Algorithm Parameters

In our experiment, we used the Gaussian Naı̈ve Bayes
classifier. For neural network MLP we used 1 hidden layer
with 100 hidden units, and alpha of 0.1. Nearest Neighbor
model was trained with number of neighbors set to 3 and leaf
size of 30. In case of Random Forest, we use 50 estimators.

V. RESULTS

In this section, we evaluate the accuracy of activity recog-
nition for both UWB CIR and Wi-Fi CSI.

TABLE II: Naı̈ve Bayes Confusion Matrix

Empty Standing Sitting Lying
Empty 0.856 0.004 0.086 0.054

Standing 0.018 0.308 0.343 0.330
Sitting 0.013 0.088 0.570 0.329
Lying 0.002 0.006 0.127 0.865

A. Activity Recognition Using UWB CIR

The data collected using EVB1000 was analyzed and used
to train models using different classification algorithms men-
tioned in Section III-D.

TABLE III: Neural Networks MLP Confusion Matrix

Empty Standing Sitting Lying
Empty 0.995 0.002 0.002 0.001

Standing 0.001 0.913 0.037 0.049
Sitting 0.001 0.021 0.921 0.057
Lying 0.001 0.009 0.009 0.981

The overall classification accuracy of Naı̈ve Bayes is re-
ported at 65.6%. The confusion matrix for classification ac-
curacy is mentioned in Table II. This accuracy is significantly
low due to the independence assumption between features.

The overall classification accuracy for Neural Network
MLP is 93.9%. The confusion matrix for NN MLP is shown
in Table III.

TABLE IV: K Nearest Neighbors Confusion Matrix

Empty Standing Sitting Lying
Empty 0.996 0.002 0.002 0.000

Standing 0.001 0.881 0.052 0.066
Sitting 0.002 0.020 0.938 0.040
Lying 0.003 0.014 0.008 0.975

The overall classification accuracy for Nearest Neighbors



algorithm is 94.5%. The confusion matrix for nearest neigh-
bors is reported in Table IV.

TABLE V: Random Forest Confusion Matrix

Empty Standing Sitting Lying
Empty 0.993 0.003 0.001 0.003

Standing 0.000 0.929 0.027 0.043
Sitting 0.000 0.018 0.929 0.053
Lying 0.000 0.005 0.007 0.987

The overall classification accuracy for Random Forest is
95.6%. The confusion matrix of random forest is shown in
Table V. Random Forest reports the highest accuracy among
all algorithms.

For comprehensive analysis of the performance of UWB
CIR, we selected four random human activities that are not
related to each other. Further, poor accuracies were reported
with Naı̈ve Bayes largely due to the assumption of feature in-
dependence within a class. The feature set used in the experi-
ment is a component of channel’s CIR monitored continuously
in time. This directly implies a correlation between the large
number of features used to train the machine learning models.
All ensemble learning algorithms perform much better than
simple Naı̈ve Bayes for the collected data. The high accuracy
of Random Forest is attributed to its ensemble techniques.
Further, Random Forest is an ideal classifier due to its lower
susceptibility to over fitting the data.

B. Activity Recognition using WiFi CSI

To compare the performance of UWB CIR, we perform
the same experiments using Linux 802.11n CSI Tool. The
output of the experiment is then modeled using the same four
algorithms.

The overall classification accuracy for Naı̈ve Bayes is
46.8%. The comparison for CSI based Naı̈ve Bayes is depicted
in Figure 4a. The low accuracy of Naı̈ve Bayes is attributed
to its independence assumption.

The overall classification accuracy for Neural Network
MLP is 69.6%. The comparison for NN MLP is shown in
Figure 4b. As compared to Naı̈ve Bayes, NN MLP performs
better in the prediction of all classes. This improvement can
be attributed to the fact that NN MLP does not assume feature
independence.

The overall classification accuracy for Nearest Neighbors
is 61.1%. The comparison for NN is depicted in Figure 4c.

The overall classification accuracy for Random Forest
74.1%. The comparison for a Random Forest is shown in
Figure 4d.

VI. CONCLUSION

In this work, we studied the feasibility of using UWB radios
for device-free human activity recognition. Our results suggest
that using UWB radios is an effective way to recognize
human activities even with one pair of UWB transceivers.
UWB CIR-based models achieved better accuracy compared
to Wi-Fi CSI-based models, since UWB CIR has higher
resolution and it has relatively more information about how

signals propagated in the environment. Only by using simple
machine learning classification algorithms we achieved overall
accuracy of 95.6% for line-of-sight scenarios. The next steps
would be to test this scheme for non line-of-sight path between
the UWB transceivers. Additionally, we identified that our
system with improved accuracy in activity recognition, has
the potential to be used for high-accuracy caloric expenditure
estimation.
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