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Abstract—Indoor localization has many applications in the
context of smart buildings that interact with objects and humans.
Due to their resilience to multipath fading, high penetration rate
and low duty cycles, Ultra-wideband (UWB) radio have been
utilized in indoor localization. In the presence of Line-of-Sight
(LoS) signals, UWB-based indoor localization system can locate a
target with small errors (< 5cm) but in situations with Non-Line-
of-Sight (NLoS) signals, UWB systems work at a much reduced
accuracy. In this work, NLoS signals are utilized to improve the
robustness of the positioning system. The proposed system uses
the statistical characteristics of Reflected Multipath Components
(RMCs) of UWB signals in different locations as fingerprints
and locates the target node based on previously seen locations.
We implement and evaluate our proposed system on Decawave
platform. Our evaluation shows that the proposed solution can
locate objects within squares of 20cm×20cm, with an accuracy of
96% using only one anchor which outperforms existing solutions
in robustness and accuracy.

Index Terms—Indoor Localization, UWB, Channel Impulse
Response

I. INTRODUCTION

Indoor localization is a critical component of many smart
building applications. Due to their exceptional accuracy,
scalability, and communication capabilities, wireless indoor
localization solutions are dominant techniques in the indoor
localization area. The fundamental technique in wireless in-
door localization relies on accurately estimating the distance
between transmitter and receiver of the signal by using Line-
of-Sight (LoS) signal.UWB signals are sent in short pulses in
a very large frequency bandwidth (>500 MHz) which makes
them resilient against multipath fading. Features like high
penetration rate, resilience to multipath fading, and low power
consumption make UWB signals an excellent choice for many
applications including indoor localization.

The recent studies in UWB-based indoor localization have
reported errors of less than 40 cm for 3d localization [1]. Most
of UWB-based indoor localization techniques need to process
LoS signals to accurately locate the target. However in indoor
environments, the reception of LoS signals is not guaranteed
in every location e.g. LoS either is blocked by obstacles
or is not distinguishable from NLoS signals. Recent work
in UWB-based positioning approached this challenge either
by increasing the chance of receiving LoS signal through
addition of extra antennas and channels, or utilizing NLoS
signals to improve the robustness of the localization system.
Despite these improvements, creating a UWB-based indoor
localization solution that is robust, reliable, scalable, and
accurate remains unsolved. Most of existing works require

a large number of UWB anchors and communication links to
achieve accurate results and perform poorly when the network
is sparse.

In this work, we increase the robustness of UWB-based
indoor localization by reducing the number of required an-
chors. Most of existing works are not able to locate the
target without having data from at least 3 anchors. Our
approach requires only one node with known location (anchor)
to locate the target node. Our main idea is utilizing the
unique features of UWB signals by extracting high-resolution
images of Reflected Multipath Components (RMC) to accu-
rately estimate the location of the target node. Shape and
number of received RMCs are dependent on the location of
sender and receiver of the signal. Our hypothesis is that the
differences in RMC patterns in different places can be utilized
as reliable fingerprints to locate targets based on previously
seen patterns. We study the characteristics of each reflected
multipath components in each location and extract and use
statistical features of those components as fingerprints. Later
on, to find the location of a target, the RMCs in the received
signal are compared with a list of previously seen clusters in
the same area and the best match is selected as the estimated
target location.

We designed and implemented our single anchor UWB-
based indoor localization system on Decawave platform and
evaluated its performance in different indoor environments.
Our results show that the proposed system can locate the target
within a 20cm × 20cm area with an accuracy of 96% using
only one anchor node. Our contributions are:

• Proposed a robust single anchor UWB-based indoor
localization technique by utilizing differences in statis-
tical characteristics of reflected multipath components in
different locations using only one anchor node.

• Generated fingerprints using statistical characteristics
of amplitude and phase information for each reflected
component which increases the resilience of generated
fingerprints to temporal changes in the environment and
also significantly reduces the model size.

• Evaluated the reliability and accuracy of using reflected
multipath components as fingerprints in different envi-
ronments with frequent temporal changes.

II. RELATED WORK

Literature in NLoS handling area can be categorized in two
groups: Avoiding NLoS signals [2]–[4] and utilizing NLoS



signals [5], [6]. In avoiding NLoS category, the key idea
is increasing the chance of receiving LoS signal by adding
more channels and links. In utilizing NLoS category, the
main idea is estimating the error caused by presence of NLoS
signals then correcting it in range measurements. Despite the
accurate results achieved by approaches in both categories,
the scalability of such techniques is under question. These
approaches require at least 3 anchors to work. To reduce
the number of required anchors to make indoor localization
system more robust, the idea of using virtual anchors has
been explored in the literature [5], [7]. These techniques hold
a lot of assumptions about the environment, such as prior
knowledge about room geometry, highly reflective surfaces,
and insignificance of the effects like diffraction and diffuse
scattering. Although as shown in [8], other effects like diffrac-
tion and attenuation can severely impact the ranging accuracy
and consequently, the overall performance of such systems.

Our proposed solution as a single anchor localization so-
lutions utilizes the unique shape of combination of NLoS
and LoS signals received in each location to generate reliable
and robust fingerprints. Feasibility of using information from
wireless links (Bluetooth and WiFi) to generate fingerprints
has been studied before [9], [10]. Features like Received Sig-
nal Strength Indicator (RSSI), Channel Frequency Response
(CFR), and Channel Impulse Response (CIR) have been
utilized previously. CFR is an estimation of the impact of envi-
ronment on wireless signals across their bandwidth while they
travel from sender to receiver. CIR is the equivalent of CFR
in time domain. CIR is a very good representative of reflected
multipath components (RMC) which can be used to generate
fingerprints. The advantage of using CIR compared to CFR
is that CFR is very dependent on temporal frequency fading
and simple changes in one of the sub-carriers changes the
CFR model, but CIR information is more resilient to temporal
changes, since each impulse response is based on response
across all the bandwidth [11]. Existing wireless fingerprinting
techniques can locate the target within 75cm×75cm spot with
90% accuracy [12]. The key benefit utilized in our approach
to improve accuracy is the larger bandwidth and the shorter
wavelength of UWB signals compared to WiFi and Bluetooth.

Feasibility of using UWB signals to generate fingerprints
has been studied before [13], [14], but the evaluation focused
on signals with very large bandwidth (3 GHz to 7 GHz),
and high sampling rates in the lab environment. Studies [15]
showed that bandwidth of UWB signals has a huge impact
on the reliability of fingerprinting approaches. To the best of
our knowledge, there is no prior work in the literature that
evaluates the reliability of CIR information, captured from
UWB signal (IEEE802.15.4-11 standard) with the bandwidth
of 500 MHz using commercial off-the-shelf DW1000 chips,
to generate reliable and persistent fingerprints.

III. SYSTEM DESIGN

A. Reflected Multipath Components in UWB

UWB refers to signals with bandwidth larger than 20%
of their center frequency [16] and usage of them in WPAN
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Fig. 1: RMC Distinguishably across Spatial Change
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Fig. 2: Correlation of RMCs across Spatial Change

networks has been standardized in IEEE 802.15.4-11 standard
[17]. In UWB communication, accurate estimation of CIR is
possible due to the unique shape of UWB signals (sequence
of short pulses). The CIR contains high-precision information
about reflected multipath components which includes first
arriving path and other reflected paths. We analyze the CIR
information and use information about reflected paths in dif-
ferent locations to generate unique fingerprints. CIR contains
information from both LoS and NLoS signals and we utilize
uniqueness of this combination as a key feature for generating
unique fingerprints.

B. RMC Distinguishability across Spatial Changes

Two assumptions need to be true to reliably fingerprint a lo-
cation using UWB. Our first assumption is RMC information
in different locations are different enough and this difference
can be utilized to generate unique fingerprints per location.
Our second assumption is RMC information at the same lo-
cation is relatively stable across time which means RMCs are
resilient to temporal changes. We perform several experiments
to validate our assumptions. In all the experiments, there is a
pair of sender and receiver nodes. The location of the sender
(anchor) is fixed but the receiver (target) is placed at different
locations. Figure 1(a) shows the amplitude values for first the
100 RMC components collected from two different locations
(400 samples in each location) which are 30 cm away from
each other. Figure 1(b) is the cumulative amplitude of RMC
samples. From Figure 1 two clusters of RMCs are clearly
distinguishable. This observation supports our first assumption
about distinguishability of RMCs over short spatial changes.

To validate our second assumption, we collected RMC
samples at 4 different locations (each location for 1 hour).
The CDF of autocorrelation between amplitude values seen
for first 50 RMC components is reported in Figure 2(b) and
the CDF of cross-correlation between amplitudes of first 50
RMC components in pairs of spots (distance > 20 cm) are
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Fig. 3: Classification Accuracy-CIR Extracted Features

reported in Figure 2a. As shown in Figure 2, cross-correlation
between RMCs in two different locations is much lower
compared to autocorrelation across the samples collected from
one location which means our second assumption is also
valid in these datasets. It is also shown in Figure 2(a) that
cross-correlation between RMC components decreases as the
distance between the spots is increased. In conclusion, RMCs,
which are reported in the form of CIR samples, are reliable
sources to generate unique fingerprints per location.

C. RMC Classification

In this section, we evaluate the feasibility of using standard
classification algorithms to generate fingerprints using RMCs
and accurately distinguish different spots from each other.

1) Feature Extraction: We extract the following features
from RMC values: First Path Delay & power: The time
it takes for the first arriving path to travel from sender to
receiver and its received power. Power: Amount of power in
the received signal. Average & Std of Noise: Average and
standard deviation of the ambient noise. Preamble Count:
UWB packets start with preambles. The accumulative correla-
tion between received signal and expected preamble is used to
estimate the CIR. The number of preambles used to estimate
the CIR depends on the quality of the received signal. We
utilized the number of preambles used for estimating the CIR,
as a feature.

We divided the target area to grids with different sizes
(5cm × 5cm to 50cm × 50cm). To perform data collection
consistently and systematically, we used a robot (turtlebot
[18]) to move around with a constant speed (0.05 cm/s) while
the receiver is mounted on top of it. The sender (anchor) is
in a static location and sends beacons every 50 ms. Figure 3
shows the classification accuracies achieved by running neural
networks (MLP Classifier with quasi-Newton solver and with
network size (5 layers, 5 neurons per layer)) and random forest
(number of estimators = 10, criteria=entropy) classification
algorithms on the features collected from different spots (15
spots which are at least 30 cm apart) with the same size
(in each spot, at least 2000 packets used for training). The
accuracies are reported after running 10-fold-cross-validation
on the dataset.

As shown in Figure 3, the best result which is approxi-
mately 84% accuracy is achieved by the random forest algo-
rithm with the spot size of 50cm × 50cm. The classification
becomes less accurate as we decrease the size of squares.
Overall, the collected features are not reliable enough for
generating fingerprints. Using other classification algorithms
like SVM and Bayes Nets in scikit-learn 0.19.1 also could not
improve the accuracy.
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Fig. 4: Classification Accuracy using Raw CIR Information
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Fig. 5: Histogram of First 3 RMCs over 1000 Samples

2) Over-fitting with Raw CIR: Next, we study the feasibil-
ity of using raw CIR information as classification features in-
stead of extracting general features from CIR samples. Figure
4 shows the accuracy reported by neural net (MLP Classifier
with quasi-Newton solver and with network size (5,10)) and
random forest (number of estimators = 20, criteria=entropy)
algorithms after feeding them with raw CIR values from
previous experiment (15 spots). We also changed the number
of RMCs used in training phase from 5 components up to 100
components.

As shown in Figure 4, overall accuracies improved (in
average 25%) compared to previous approach (using extracted
features). This observation is expected since CIR information
contains more details about each location. Despite improve-
ments in the reported accuracy, Figure 4 shows that the
classification using raw CIR data suffers from overfitting. As
we increase number of reflected components above 50, the
accuracy starts decreasing. In other words, those algorithms
do not benefit from the rest of RMC samples in the data.

3) Modeling RMCs: In next step, we try to extract gen-
eralized statistical features of each RMC component in each
location. Our hypothesis here is that statistical distributions
are more resilient to temporal changes and can improve
the robustness of localization solution. Figure 5 shows the
histogram of amplitude and phase for first three RMCs
calculated from sampling 1000 packets while the locations
of sender and receiver are fixed. Figure 5(a) shows that the
amplitude information on each reflected component follows a
mixture of Gaussian distributions. Also, the collected phase
information (Figure 5(b)) follows the Beta distribution which
is reasonable due to the nature of UWB signals. They are
sent as sequence of 0,+1 and -1 values [17] which means
the phase values are mostly around +90 degrees and -90
degrees phases. We observe the same pattern in rest of RMCs
across different locations. Amplitude values for each RMC
is modeled as Gaussian Mixture model. Variational Bayesian
Gaussian Mixture [19] is used to find optimum number of



Gaussian components for each RMC component. In summary
the proposed fingerprinting approach works as follow. For
each location RMC information (CIR) is collected across
several beacon packets sent from nearby anchor; for each
RMC component, the amplitude is modeled as a Gaussian
Mixture model and phase is modeled as Beta distribution
with α and β parameters. We store these models for each
component as fingerprints. For instance, if we decide to use
information for 50 RMC components as fingerprint, at each
location, we store set of 50 pairs of models (amplitude model
and phase model). Later, in the online phase, to locate the
target, after receiving beacon message from a specific anchor,
the CIR information from test packet is investigated to find its
best match with previously seen clusters which are associated
with same anchor. To measure the similarity, we define the
following metric:

S(P,U t, V t) =

N∑
i=1

LogLK(U t
i , Ampi)+

N∑
i=1

LogLK(V t
i , Phasei)

(1)
in which, P is the received test packet, U t is set of Gaussian
Mixture models for amplitude values in location t (one GMM
per RMC), V t is the set of Beta distributions for phase
values at location t (one Beta distribution per RMC) , LogLK
stands for log likelihood function, Ampi and Phasei are
amplitude and phase values of ith RMC component at test
packet P respectively and N is number of RMC components
considered for generating fingerprint. After calculating the
similarity of received test packet from specific anchor to all
clusters associated with the same anchor, the location of the
target is the most similar cluster. It is essential to mention
that since for each spot the proposed approach only saves
distribution parameters and not the raw data, the database size
is significantly decreased. Small database size improves the
required search time.

IV. PERFORMANCE EVALUATION

A. Experiment Setting

We used EVB1000 [20] nodes which are evaluation kits
manufactured by DecaWave company and include DW1000
chips. DW1000 chips estimate CIR with 1 ns resolution. We
collected data from different locations including office space
in (i) our lab, (ii) a crowded coffee shop on campus and (iii) a
large dining hall with lots of furniture. In each experiment, we
compared the performance of proposed solution in accurately
classifying at least 15 different spots. In each location, we
collected data from up to 3 different anchors. As expected
results from anchors with LoS condition outperform results
from NLoS anchor; We focus on the results with the NLoS
anchor. Our dataset contains 223366 packets collected from
200 different spots. The target node is placed on top of a
robot which moves with constant speed (0.05 cm/s). The
anchors broadcast beacons every 50 ms. The target node
estimates and saves the CIR information from received beacon
messages. In each environment, we made sure one of the
anchors is in the NLoS condition (no visual Line-of-Sight,
error in distance measurement at least twice the error in LoS
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Fig. 6: Impact of Increasing Number of RMCs and Spot Size
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Fig. 7: Minimum Reliably Distinguishable Spot Size

condition with the same distance). In the all following sections
(except those in which source of data is clearly mentioned)
reported results are average performance results over all three
tested environments. The anchors are deployed at the height
of 160 cm and the target is deployed at the height of 70 cm.

B. Impact of Contributing Factors

1) Number of RMCs and Spot Size: There are two main
factors which determine the accuracy of the proposed system:
number of used RMCs and spot size. Figure 6 shows the F1
score calculated from training and testing data in the coffee
shop. As shown in figure 6, as we increase the number of used
RMCs in fingerprint, the score goes higher but this trend stops
after using 100 RMC components. Also, increasing spot size
improves the performance. With spot size of 5cm× 5cm, the
maximum score is around 0.8 which is not good enough but if
we increase the spot size to 15cm×15cm, the score increases
to 0.95. Another interesting observation is the fact that the
best classification score happens at spot size 7cm × 7cm.
The data were collected while the nodes were communicating
over channel 2 with center frequency of 3.993 GHz. The
wavelength of this frequency is approximately 7 cm which is
the reason spot size of 7cm×7cm has very high classification
scores (0.88 with 100 RMC components in use). It is essential
to mention that we verified that in average the difference
between power level of 100th RMC component and noise is
bigger than 10 DB in our dataset.

2) Minimum Spot Size: Instead of using just one packet,
we evaluated the possibility of using multiple packets and
considering the majority vote as the final detected location.
Figure 7 shows the F1 scores reported from window sizes of
3 and 5 packets. As we expected, the score increases to 0.96
after considering the last 3 samples for deciding the location
with the spot size of 7cm × 7cm. Average human walking
speed is 130 cm per second [21] and we are collecting data
every 50 ms which means to receive 3 samples, the target has
moved around 20 cm. In other words, our solution locates the
target within the spot of 20cm× 20cm with the F1 score of
0.96.
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C. Overall Accuracy

1) Compared to ToA Ranging: We also run two-way
ranging application provided by Decawave company in the
coffee shop area (15m× 10m) with 3 anchors and measured
its accuracy over 12 test points. The average error was
approximately 45 cm.

2) Maximum Localization Error: There are cases in which
the system makes misclassifies the target’s location, now we
study, how far is the detected location from the real location.
Figure 8 shows the CDF of maximum errors. As shown in
figure 8, in 92% of the times the maximum error is below 6
cm and in 97% of times, the maximum error is below 10 cm
making the system useful in indoor localization applications.

3) Resilience to Temporal Changes: To evaluate the re-
silience of proposed method to temporal changes, we collect
data from the coffee shop one week after collecting the
training data creating four different scenarios: in each scenario
we reorganized some pieces of furniture like tables and chairs
and collected data from the same spots as training data was
collected. Figure 9 reports F1 scores and maximum errors
calculated from our proposed method. Despite sometimes F1
score going down to 0.6 even with window size of 3, the
maximum error remains under 20 cm in all the scenarios.
Periodic training could improve the classification score.

V. DISCUSSION

The main advantage of proposed approach is reducing the
number of required anchors from 3 to 1 while keeping the
accuracy reasonably comparable with state of the art solutions.
Also, data collected by robot is only used for training; our
solution is able to locate the target with 96% accuracy by
using only 3 consecutive packets which makes it practical
for indoor object/human tracking. In addition, we conducted
experiments using channel 2 but DW1000 chip supports
4 more frequency channels with higher central frequencies
(shorter wavelengths), which means the size of the spot that
reliably distinguishable from other spots can be smaller in
higher frequency channels.

VI. CONCLUSION

In this work, we studied the feasibility of using reflected
multipath components extractable from CIR information from
UWB signals to implement a robust single anchor indoor
localization applications. Our evaluations show that the pro-
posed approach can locate a target inside a spot with size
of 20cm × 20cm with F1 score of 0.96. Our solution uses
just one anchor, which is not necessarily LoS, to locate the
target which significantly increases the robustness of indoor
localization systems.
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