
MPI/FT TM: Architecture and Taxonomies for Fault-Tolerant,
Message-Passing Middleware for Performance-Portable Parallel Computing*

*Work performed in part with support from NASA under
subcontract, 1219475, from the Jet Propulsion Laboratory,
California Institute of Technology.

Rajanikanth Batchu£§, Jothi P. Neelamegam§, Zhenqian Cui£,
Murali Beddhu£, Anthony Skjellum£§, Yoginder Dandass§, Manoj Apte§

MPI Software Technology Inc£

101 S. Lafayette, Suite 33
Starkville, MS 39759 USA

{raj,murali,tony,zcui}@mpi-softtech.com

Mississippi State University§

Department of Computer Science
HPC Laboratory

{jothi,yogi,manoj}@cs.msstate.edu

Abstract
MPI has proven effective for parallel applications in
situations with neither QoS nor fault handling. Emerging
environments motivate fault-tolerant MPI middleware.
Environments include space-based, wide-area/web/meta
computing, and scalable clusters. MPI/FT, the system
described here, trades off sufficient MPI fault coverage
against acceptable parallel performance, based on mission
requirements and constraints. MPI codes are evolved to
use MPI/FT features. Non-portable code for event
handlers and recovery management is isolated.
User-coordinated recovery, checkpointing, transparency
and event handling, as well as evolvability of legacy MPI
codes form key design criteria. Parallel self-checking
threads address four levels of MPI implementation
robustness, three of which are portable to any multi-
threaded MPI. A taxonomy of application types provides
six initial fault-relevant models; user-transparent parallel
nMR computation is thereby considered. Key concepts
from MPI/RT – real-time MPI – are also incorporated into
MPI/FT, with further overt support for MPI/RT and
MPI/FT in applications possible in future.

1. Introduction
The MPI standard has proven effective and sufficient for
high-performance applications, in situations without
either QoS or fault-handling requirements. COTS
technology applied in relatively harsh as well as emerging
environments motivates practical fault-tolerant MPI
extensions, denoted MPI/FT here. These environments
include deeply embedded, space-based, web/meta-
computing, and production clustering. MPI/FT expands
MPI in novel ways to include scope for fault/error
detection and recovery. Process, node, and network
failure are some of the faults that present themselves.

Degree of user transparency, user-coordinated recovery,
checkpointing services, and event handling, as well as
evolvability of legacy MPI codes form key design criteria
for MPI/FT. Parallel self-checking threads (SCTs) are
introduced to address four levels of MPI implementation
robustness, three of which are portable, that utilize the
idea of “algorithmic-based fault tolerance” (ABFT) [1] as
well as exploit voting on distributed, replicated state
inside MPI itself. The MFT taxonomy of application-
relevant models provides six specializations for parallel
applications. MPI interoperation with nMR redundant
computation in a user-transparent manner is considered.
MPI/FT offers a practical architecture for trading off
sufficient MPI fault coverage against acceptable parallel
performance, based on actual mission and environmental
requirements and constraints.
Briefly, here are areas where MPI applications can benefit
from fault-handling capabilities:

• Space-based and similar constrained settings exist
where single-event upsets (SEUs) cause transient
failures.

• Node and network failures arising in long-running,
scalable production systems.

• Computing on the Internet bears all the issues of
intranet (or cluster) computing, plus the added
transient issues of a complex, multi-owner, multi-site
system.

The key demand on applications in such environments is
that they run in a fail-through mode as opposed to fail-
stop [2] mode that is typical in traditional environments.
Here, fail-through mode is defined as the ability of an
application to detect and recover from repeated failures,
caused by extraneous events, until it completes
successfully. In order to use legacy applications in such
new environments and to facilitate the ease of



development of new applications one needs to develop
additional support mechanisms/systems (“middleware”)
than what the traditional operating system can provide.
Designing such a middleware suitable for scientific and
other applications is the motivation of this paper.
Section 2 contains the background and related work.
Section 3 presents the problem formulation, Section 4
introduces the self-checking MPI-layer and Section 5
introduces the various execution strategies. Parallel MPI
is discussed in Section 6. Early experiments and
preliminary results are presented in Section 7.
Conclusions are presented in Section 8 with pointers for
future work.

2. Background
The MPI [3] standards require that successful completion
of an MPI application imply that all processes complete
successfully, and that the default behavior in case of a
process failure is the immediate termination of the
application. MPI-1.2 allows users to attach an error-
handling function to each communicator, which would be
invoked in case of an abnormal return. However,
performance constraints prevent MPI from detecting
certain errors, and “catastrophic” errors may prevent MPI
calls from returning to the caller, thereby preventing
invocation of the user error-handler. MPI/Pro[4], MPICH
[5], LAM [6] are some of the existing implementations of
MPI, and none currently address fault issues.
The MPI/RT [7] standard is designed specifically to
address issues related to Quality of Service (QoS),
resource management and scheduling of communication
tasks, which are not addressed in the other MPI’s. Though
the error handling capability of MPI/RT is much more
sophisticated MPI-1.x and 2.x, it is still inadequate for
fault-tolerance purposes. Notably useful to fault-tolerance
is the Dynamic Process Management (DPM) capability of
MPI-2 [8]. DPM is, however, insufficient to handle
failures such as process crashes.
Cocheck [9] is among the earliest efforts towards
incorporating a limited fault tolerance capability in MPI.
It is a checkpointing library layered over MPI, and is an
extension of the single process checkpointer of Condor
[10] with a protocol for synchronous checkpointing. A
single control process is used to send messages to all the
processes to initiate checkpointing. This causes all the
messages in transit to be flushed to arrive at a consistent
global state after which the application is checkpointed.
Cocheck uses a coarse-grain approach and is primarily
developed and optimized for process migration.
Limitations include scalability issues because of the
control process and the high overheads associated with
the flush protocol. Cocheck cannot consequently provide
effective transient faults coverage.

The Starfish [11] environment for execution of static and
dynamic MPI programs is based on the Ensemble [12]
system. Starfish provides hooks to handle dynamic cluster
changes and for checkpointing. It uses an event model
where processes and components register to listen on
events. This event bus provides messages reflecting
changes in cluster configuration, and process failures.
FT-MPI [13] is a partial implementation of MPI-2
including DPM features, and uses a fault model that
assumes fail-stop behavior of dying processes. FT-MPI
concentrates on shrinking and growing communicators,
based on the PVM model, which reflects terminations and
creations of processes. Evripidou et al [14] use a similar
approach where redundant processes are created a priori
in order to replace processes that fail. This approach
reduces complexity by having a fixed-size communicator.

3. Formulation
Here it is assumed that the application is well written and
well tested so that abnormal behavior can be primarily
attributed to an error/fault that doesn’t originate in the
application itself, (e.g., a node failure). Such faults may
manifest as application errors; for example, random bit
flips causing an overflow of an integer. It is also assumed
that the main memory and L2 cache are ECC protected
and so are considered safe from random single bit errors.
The fail-through operation envisioned in this paper of
such an MPI-application is shown in Figure 1. Typically,
an MPI-application is started using the mpirun command.
Once the mpirun starts the application, various scenarios
are possible. In the event of a successful run the
application would return success and then mpirun would
return success. On the other hand, it is possible that the
MPI-library might detect an error that would terminate the
application, since all MPI errors are treated as fatal by
default. Thus, the application would return unsuccessfully
following which mpirun would return successfully. As a
yet another possibility, one or more processes might crash
which might lead to a hung application and thereby to a
hung mpirun. A “hung” application is also possible even
when all the processes are alive, in abnormal situations.
Since the user is mainly interested in the successful
completion of the application, one needs to recover from
various failures and continue operation until successful
completion. When mpirun returns, one needs to
determine whether the application was successful or not.
If not, then application restart is needed, possibly from a
checkpoint. When an application hangs, then one needs to
detect this, to terminate the application, and then to restart
in an appropriate, consistent manner.
In order to automate this process of guiding an application
to successful completion, fault/error detection and
recovery are needed at various stages. These stages are
identified in Figures 1 and 2. MPI/FT is proposed here as
the middleware/tool that incorporates the above



mentioned automation. To guard against data errors
caused by random bit flips leading to scientific

inaccuracies of computed results, techniques such as
ABFT have been used. Similarly, the concept of a self-
checking MPI layer that seeks out inconsistencies in the
internal state of MPI is introduced here.
Scientific programs mostly fall either under the category
of a Master/Slave (M/S) model or under the category of
an SPMD model. Thus, the current efforts of MPI/FT are
focused in providing fault-tolerant coverage to these
models. This approach leads to the identification of six
different execution strategies as shown in Table 1. Central
to all the six strategies is the idea of a Coordinator. For

SPMD applications, the Coordinator is a separate entity
that is transparent to the application. For M/S applications
the root (master) node can itself be the Coordinator. The
Coordinator will be run in an n-Modular Redundancy
(nMR) mode whether the rest of the application itself is
run in nMR mode or not. The disadvantage of the
Coordinator is that it may not be scalable beyond an
O(10) processors. The roles of the Coordinator are
described in Section 5. All the models support user-
assisted checkpointing.

4 Self-checking MPI layer
In addition to passing application-generated messages, the
messaging layer can be used for many other purposes
such as monitoring application progress, detecting
inconsistencies in its internal state (for example, a corrupt
communicator-table in one of the processes), propagating
unrecoverable, local error information detected by various

layers globally, assisting in the recovery process,
message-logging, responding to queries from other
processes and so on. These additional tasks are
collectively called self-checking tasks. Some of the self-
checking tasks may be of a periodic nature in time and
others may be in the nature of an interrupt service. The
self-checking tasks need to be performed while in
addition to transmitting application-generated messages.
This requirement naturally leads to the idea of using
additional threads, denoted the self-checking threads
(SCTs), in order to perform the self-checking tasks.
Using SCTs the above mentioned tasks could be
implemented so that SCTs would:
1) Vote on the global data structures periodically across

processes.
2) Maintain multiple copies of local data and vote on

them periodically.
3) Implement a non-blocking collective barrier with a

timeout that would also be invoked periodically. The
purpose of the non-blocking collective barrier is to
detect failed processes.

Figure 1. Fail-through Operation of an MPI Application

mpirun –np NP my.app
no error

my.app finishes

mpirun finishes

(success)

MPI-lib error

my.app aborts

mpirun finishes

(failure)

process dies

my.app hangs

mpirun hangs

(failure)

MPI APPLICATION my.app

aborted run ?

Successful Completion

n

y hung job ?

continue waiting

n

abort my.app
y

DETECTION

RECOVERY
RECOVERY

ABFT error

Figure 2. Detection and Recovery From Extraneously Induced Errors

Application

MPI

Error due to extraneous sources

Network, Drivers, NIC

Application Recovers

application
execution

model
specifics

Recovery Process

OS, RT, Monitors

ABFT/aBFT

MPI saniity

Watchdog/BI
T/Other

DETECTION

N/W Sanity
Table 1. Overview of Models

App Sys
MFT-I No ranks nMR Yes Yes
MFT-II Several ranks nMR Yes Yes

No ranks nMR Yes

Several ranks nMR Yes

MFT-IIIs Rank 0 nMR Yes Yes

MFT-IIIm Several ranks nMR Yes Yes

MFT-IVs Rank 0 nMR Yes Yes

MFT-IVm Several ranks nMR Yes Yes

No ranks nMR Yes

Several ranks nMR Yes

Cp/Recov

SPMD

With MPI-1.2

No MPI

Application
Style

MPI Support nMRModel
Name

Master/Slave

With MPI-1.2

With MPI-2
DPM

No MPI



4) Check queues for aging of messages.
5) Check for corrupt data structures, and performing

other MPI consistency checks.
6) Monitor the health of internal dynamic memory

allocation.
7) Watch the progress of the progress thread.
8) Watch the progress of messages between pairs of

processes.
An SCT itself can be implemented in several ways: (i) a
parallel user-level thread that allows any user program to
access it, (ii) an internal thread visible to the MPI
implementation only, (iii) both (i) and (ii). Design
choices for an SCT vary from a trivially non-portable
version to a non-trivially non-portable version with
increasing functionalities and complexities as follows:
1) Trivially non-portable: Use existing internal data

structures of a particular MPI implementation, and
perform trivial/obvious checks on them. It is not
visible to the user.

2) Trivially portable: (a) Use the PMPI profiling
interface provided by the MPI standard to extend the
previous approach across all MPI implementations.
The complexity of operations that can be achieved is
still trivial. It is visible to the user. (b) Adhere to the
specifications of TotalView [15], and provide access
to MPI internal structures across all MPI
implementations. These structures include the send,
and receive queue. It is visible to the user.

3) Non-trivially portable: This extends the functionality
in (1), (2) and (3) by incorporating intelligence into
the consistency checks. Can be visible to the user.

4) Non-trivially non-portable: This approach provides
the most general functionality by defining new
internal structures to aid consistency checks, etc.
Such structures, and checks are specific to an MPI
implementation.

As an example of adding “intelligence” to the error
detection process, consider encoding the MPI header
fields using Hamming codes. At a source this would
prevent the message being sent to a wrong destination
because of a transient error that corrupts the header while
in the sending NIC. At a destination, this would prevent a
potential non-delivery of messages to upper layers
because of a mismatch of the source field between the
incoming MPI header and the MPI call.
Since the data that passes through DMA engines is
susceptible to corruption by extraneous sources, the data
transfer at the MPI layer becomes unreliable even though
the transfer at the data link level is reliable. To safeguard
data transfer between MPI layers, either message-level
CRC or time-based nMR could be used on MPI messages.

5. MFT Application Execution models
The various Middleware Fault Tolerance (MFT)
Execution models are listed in Table 1. The roles of the
Coordinator, introduced in Section 3, are as follows
1) Monitor the progress of the application.
2) Act as a virtual channel for messages. All messages

from any rank to any other rank including itself will
be routed transparently through the Coordinator
which will maintain a log of the messages

3) Restart a failed process from a checkpoint and bring
it to a consistent state with respect to the other ranks
by replaying message logs to it and once it reaches a
consistent state then allow the computations to
continue in all ranks.

4) Send out periodic control messages to SCTs
requesting information to be voted on.

5) Respond to information requests from SCTs.

MFT-I & II: SPMD WITH MPI

In MFT models I and II, shown in Figures 3 and 4, the
Coordinator is transparent to the application. In model
MFT-I, the application ranks are strictly in the simplex
mode whereas in model MFT-II one or more of the
application ranks would be run in the nMR mode. This
feature would be useful if one or more ranks are more
critical than others. These models work with MPI-1.2.
Note that as data transfer through the DMA engines could
potentially be unreliable, one may choose to use MPI-

Figure 4. MFT-I SPMD with MPI-1.2

Coordinator
(nMR)

Rank 1
(non-
nMR)

Logical flow of
MPI messages

Actual flow of
MPI messages

Rank
0Rank

0Rank
0

nMR
Rank

Rank 0 Rank 1 Rank n

Coordinator
(nMR)

ÿ

Figure 3. MFT-I SPMD with MPI-1.2

Logical flow of
MPI messages

Actual flow of
MPI messages



level reliability measures as mentioned earlier even for
the simplex mode. On the other hand, one may allow the
data errors to pass through and be detected by the ABFT
techniques. Similarly, for the nMR mode, where multiple
copies of each message are generated by default, voting
can take place either at the Coordinator or at the
destination ranks depending upon the reliability of the
MPI-level transfer. These choices are shown in Figure 5.

MFT-IIIs & IIIm: MASTER/SLAVE WITH MPI-1.2
In these models, portrayed in Figure 6 and 7, the master
plays the role of the Coordinator and hence is in nMR
mode. The nMR nature of the master node would still be
kept mostly transparent to the application. In Model
MFT-IIIs, all the slaves are strictly in the simplex mode,
whereas in Model MFT-IIIm, one or more slaves may be
in nMR mode. Various choices for message exchanges
exist as mentioned before and a trade-off study is
underway. Since MPI-1.2 is used, the master node by
itself cannot create a slave node in case a slave dies. This
functionality, needed for efficient fail-through operations,
must be provided by other middleware services. The
recovery of only failed node(s) would be quicker
compared to the case where one has to restart every node
including the master each time a node fails.

MFT-IVs & IVm: MASTER/SLAVE WITH MPI-2
In Models MFT-IVs and MFT-IVm, the DPM capability
of MPI-2 would be added to MPI-1.2 standard to permit
the master node in nMR mode to dynamically re-spawn a

slave node in case it dies during computation. In Model
MFT-IVs, all the slave nodes will be run strictly in the
simplex mode whereas in Model MFT-IVm, one or more
slaves can be in the nMR mode. Sketches for Models
MFT-IVs and MFT-IVm would be identical to Figures 6
and 7 and are not shown separately.

6. Parallel nMR
Consider a parallel execution in nMR mode using np
processes. In this mode, one would create a set of n copies
of an application with np number of ranks. Consider
Figure 8, with n=3 and np=4 (chosen for the sake of
illustration), where the three copies are named as A, B
and C. For the sake of clarity only messages sent from
node 0 to node 1 are shown. Moreover, this
communication from node 0 to node 1 is shown from a
sender’s perspective using solid lines and from a
receiver’s perspective using dotted lines. The sender’s
perspective is shown only from node A0. Similar sender’s
perspectives from nodes B0 and C0 are not shown for
clarity. Also elided are the receiver’s perspectives for
nodes A1 and B1. An MPI_Send call that used to send a
message from rank 0 to rank 1 in the simplex mode would
now send messages from each of the ranks A0, B0 and C0
to all of the ranks A1, B1 and C1 as shown in Figure 8. In
other words, each of the nodes A1, B1 and C1 would
receive messages from all of the nodes A0, B0 and C0.
Nodes, A1, B1 and C1 would individually vote on the
three messages they received and use the result of their
vote on further computations. Thus, during normal
computations, voting is needed only on the messages
usually exchanged by a legacy application. This is in
sharp contrast to the sequential-nMR mode where voting
is needed on the entire computational state during each
global iteration.

Rank 1
(Slave)

Rank 2
(Slave)

Rankn
(Slave)

Logical flow of MPI messages
Actual flow of MPI message

Rank 0Rank 0Rank 0

Rank 0 (nMR)

Message
from 1 to 0

Message
from 0 to 2

Figure 6. MFT-IIIs Master/Slave with MPI-1.2

Rank 2
(Slave)

Rankn
(Slave)

Logical flow of MPI messages
Actual flow of MPI message

Rank 0Rank 0Rank 0

Rank 0 (nMR)

Message
from 0 to 2

Figure 7. MFT-IIIs Master/Slave with MPI-1.2

Message
from 1 to 0

Rank
1Rank

1Rank
1

nMR
(slave)

Rank 1
(non-
nMR)

Rank
0Rank

0Rank
0

nMR
Rank Rank 1

(non-
nMR)

Rank
0Rank

0Rank
0

nMR
Rank

(a) (b)

Rank
0Rank

0Rank
0

nMR
Rank

Rank
1Rank

1Rank
1

nMR
Rank

(c) (d)

Rank
0Rank

0Rank
0

nMR
Rank

Rank
0Rank

0Rank
1

nMR
Rank

Figure 5. Design Choices for Exchange of Messages



Another advantage of parallel-nMR mode is that local
errors are contained within the nodes in which they occur.
This is because voting would eliminate a single error
(since n=3) at other nodes. As long as this single, local
error remains non-fatal, the computation would continue.
In the most general case, up to np local errors can exist
simultaneously, subject to the condition that in every set
of received messages only one message be erroneous.
Thus, in Figure 8, one evident configuration of
simultaneous faulty nodes that would not hinder the
correct execution of the application is A0, A1, A2 and
A3. An example of a possible configuration of faulty
nodes that would lead to failure of the voting would be
A0, B0, A2 and A3. Thus, parallel nMR can tolerate more
local errors than the sequential nMR. However, every
node failure increases the chances of the failure of the
nMR mode. Thus, the allowable or tolerable number of
node failures in the nMR mode before one falls back on a
checkpoint depends upon a number of factors such as
time between application checkpoints, rate of occurrence
of the extraneous errors and ABFT error tolerance.
Since non-fatal local faults are confined to the local nodes
in the parallel-TMR mode, voting on the entire
computational state is unneeded until one wants to
checkpoint the results, which is a big advantage over the
sequential nMR method. In addition, if enough storage is
available, one could store the results from all the nodes in
which case voting on global data is never needed. Note
that a restart from such a checkpoint would maintain the
faulty nodes. Thus, whether one saves only one copy of
the computation or n copies, it might be advantageous to
do a global voting before checkpointing.
In the particular case of saving triplicate copies of the
computation, one could do the global voting off-line
while the application is running (cf., Figure 8). Each of
the three sets, A, B and C of the user program runs
continuously and periodically checkpoints in triplicate to

FILE_A, FILE_B and FILE_C respectively. A separate
voter program then reads these files and votes on them
and saves the output to FILE_D. Whenever there is a need
to rollback to the previous checkpoint, all the three sets
will read FILE_D. Alternately, in order to be strictly in
the nMR mode, one could do this voting three times and
create three copies, FILE_D1, FILE_D2 and FILE_D3
which will be read by, say, sets A, B and C respectively
whenever there is need to rollback.
Finally, running an application in parallel-nMR mode
may not significantly increase the computational time,
assuming sufficient network resources. The overhead is in
sending and receiving n-1 additional copies of each
message and in voting on each set of n received messages.
With high-speed networks such as the Myrinet, the cost of
sending n-1 additional messages for each message is not
expected to significantly affect the performance of
applications over running them in simplex mode,
especially for small values of n. The availability of
enough computing nodes and potential power restrictions
could possibly be the deciding factors to determine
whether to run an application in nMR mode or not.

7. Early Experiments and Initial Results
There is considerable interest in using MPI/FT to provide
fault-tolerant support to applications running in simplex
mode in harsh environments replete with transient faults.
In order to preserve the data integrity in messages, one
could add a CRC to the entire message or use the time-
based nMR technique. In order to compare the
performance characteristics of the two approaches, the
following timing study was conducted using two different
MPI implementations, MPI/Pro (version 1.6.1-1tv) and
MPICH (version 1.2.1).
For CRC messaging, the test constitutes the following
operations: Calculate a 32 bit CRC and append it to the
message and send the appended message to the receiver.
After receiving the message at the receiver, compute the
CRC again and compare with CRC included in the
message. Then send an ACK to the original sender. The
test is complete when the original sender receives the
ACK. Sending and receiving was done using the blocking
MPI_Send and MPI_Recv calls.
For time-based nMR messaging, the test constitutes the
following operations: The sender sends the same message
n times to the receiver. The receiver receives n copies of
the message, buffers them and then votes on the n copies.
After the voting is complete the receiver sends an ACK to
the sender. The test is complete when the original sender
receives the ACK. Sending and receiving was done using
the blocking MPI_Send and MPI_Recv calls.
For all the results shown, the sizes of the message sent
varied from 32 bytes to 512 kilobytes. For all the cases,
the time reported is the total time it took for repeating the
test 10,000 times.

32

10
B C

Figure 8. Application running in nMR mode

FILE_A FILE_B FILE_C
(These checkpoints may contain errors due to SEU)

Independent voter program reads checkpoints and votes

FILE_D (SEU-Error free checkpoint)

32

10

32

10

n=3
np=4

Sender’s perspective
Receiver’s perspective



In Figure 9, total times for 10,000 runs using MPI/Pro are
shown for the cases of nMR (with n=3), CRC and no-
CRC. Note that for short messages, that is message sizes
up to 32 KB, 3MR is more expensive that CRC. However,
for long messages it takes more time to compute CRC
than to send the message multiple numbers of times.
Figure 10 magnifies the differences between CRC and
time-based nMR messaging, shown in Figure 9, further.
In this figure, the time ratio of the total time taken for
CRC-messaging to the total time taken for no-CRC
messaging is plotted, as is the ratio of the total time taken
for 3MR messaging to the total time taken for no-CRC
messaging. The spike at 32 KB in the 3MR/no-CRC ratios
is an artifact of switching to long message protocol from
short message protocol. Note that as seen in Figure 10,
CRC-messaging takes virtually the same time as no-CRC
messaging. However, as the message size increases, CRC
takes more and more time compared to the no-CRC time.
In fact, when the message size is 512 KB, CRC-
messaging takes about 5 times the no-CRC time. On the
other hand, nMR-messaging always takes more time than
no-CRC messaging. However, even at message size 512
MB, it only takes about 2.5 times the no-CRC time, which
is about two times faster than the CRC time.

Figure 11 shows a similar comparison as shown in Figure
9 with MPICH instead of MPI/Pro. Note that the ordinate
in Figure 11 is an order of magnitude higher than in
Figure 9. Also note that 3MR-messaging using MPICH is
always more time consuming than CRC-messaging. In
order to make the comparison between MPI/Pro and
MPICH clearer, ratios of the time values shown in Figure
11 with the no-CRC time values shown in Figure 9 are
obtained. Thus, the no-CRC time values of MPI/Pro are
used as the basis. See Figure 12.

In Figure 13 and 14, MPI/Pro results are presented
comparing measured timings for various nMR values as a
function of message size. In Figure 13, actual time values
are presented and in Figure 14 time ratios are presented
using the MPI/Pro no-CRC result as the basis. As before
the peaks occurring at the message size of 32 KB is an
artifact of switching protocols from short message to long
messages. Various interesting observations can be made
from Figures 13 and 14. In Figure 13, note that as the
value of n increases from 3 to 9, the time required to send
and receive multiple copies also increase. It is interesting
to see in Figure 14 that 9MR takes almost three times the
time 3MR takes for short messages where as 9MR takes
almost the same time as 3MR for long messages. This is
because voting takes more time than network transit time
for the network and CPU combinations considered. The
fact that voting time dominates network transit time can

Figure 9. Comparison of nMR, CRC with No CRC
using MPI/Pro

0
20
40
60
80

100
120
140

32
128

512
2048

8192

32768

131072

524288

size (bytes)

T
ot

al
tim

e
(s

ec
) no crc

crc
3mr

Figure 10. MPI/Pro Comparisons of Time Ratios

0
1
2
3
4
5
6
7

32
128

512
2048

8192

32768

131072

524288

size (bytes)

T
im

e
ra

tio

crc/nocrc

3mr/nocrc

Figure 12. MPICH Comparison of Time Ratios Using
noCRC MPI/Pro Timings as Basis

0

10

20

30

40

50

60

70

32
128

512
2048

8192

32768

131072

524288

size (bytes)

tim
e

ra
tio

s

nocrc_mpich/nocrc_mpipro

crc_mpich/nocrc_mpipro

3mr_mpich/nocrc_mpipro

Figure 11. Comparison of nMR and CRC with no CRC
using MPICH

0
500

1000
1500
2000

32
128

512
2048

8192

32768

131072

524288

size (bytes)

T
ot

al
tim

e
(s

ec
)

no crc
crc
3mr



also be seen from observing in Figure 13 that timings for
the pairs (4MR, 5MR), (6MR, 7MR) and (8MR, 9MR)
are closer to each other than other values of nMR. This is
so because in both 8MR and 9MR there are at least five
message copies that must agree.
The results obtained for MPI/Pro indicate that both CRC-
messaging and time-based nMR-messaging can play a
role in different scenarios. For short message sizes CRC-
messaging has a clear advantage. However, for long
messages sizes, time-based nMR-messaging has the
advantage over CRC-messaging. This advantage holds
true even at 9MR levels, which is quite unexpected.

8. Conclusions
A fault-tolerant methodology leading to new MPI
implementations is presented that provides support for
successful completion of MPI applications in the presence
of recurring, random, transient faults, induced
extraneously. Depending upon the fault-tolerant coverage
requirements, and other specifications and/or restrictions,
the applications themselves can be run either in the
simplex mode or in the parallel-nMR mode. Alternately,
applications can be run in a mixed mode where critical
nodes (as defined by the user) can be run in the nMR
mode and non-critical nodes can be run in the simplex
mode. The framework developed here supports message

passing between all these possible configurations using a
Coordinator which itself functions in the nMR mode. The
present methodology introduces the idea of Self Checking
Threads. The architecture presented is general and a
restricted version of it that is suitable for applications
running only in the simplex mode is currently being
developed. A “shifted API” strategy for MPI is also being
developed that would support additional fault recovery
options for applications and would address evolvability.
Future extensions include support for nMR mode.
Practical use of MPI/FT is expected to be possible by end
of 2001.

References
[1] S.J. Wang and N. K. Jha, “Algorithm-based fault tolerance
for FFT networks,” In Proc. of Int’l Symp. on Circuits and
Systems, San Diego,CA, May 1992.
[2] R. D. Schlichting, and F. B. Schneider, “Fail-Stop
Processors: An Approach to Designing Fault-Tolerant
Computing Systems”,ACM Trans. on Computer Systems, Vol.
1, No. 3, Aug. 1983, pp.222-238.
[3] http://www.mpi-forum.org/docs/mpi-11.ps.
[4] MPI Software Technology, Inc., MPI/Pro, 1999. http://mpi-
softtech.com/.
[5] W. Gropp, E. Lusk, N. Doss, A. Skjellum, “MPICH: A
High-Performance, Portable Implementation of the MPI
Message Passing Interface Standard” , Parallel Computing, Vol
22, No. 6, Sep 1996, pp 789-828.
[6] G. Burns, R. Daoud, and J. Vaigl, “ LAM: An open cluster
environment for MPI,” In Proc. of Supercomp. Symp. 94,
Toronto, Canada.
[7] Real-Time message Passing Interface (MPI/RT) Forum.
MPI/RT 1.0: Real-Time Message Passing Specification,1997.
http://www.mpirt.org/drafts/mpirt-report-6mar00.ps
[8] Message Passing Interface Forum. MPI-2: Extensions to
the Message Passing Interface, 1997.
http://www.mpi-forum.org/docs/mpi-20.ps.
[9] G. Stellner, “CoCheck: Checkpointing and Process
Migration for MPI,” Proc. of the Int’l Par. Proc. Symp.,IEEE
Computer Soc. Press, Los Alamitos, C.A., 1996, pp. 526-531.
[10] T. Tannenbaum, and M. Litzkow, “Checkpointing and
migration of Unix processes in the Condor distributed
processing system,”Dr. Dobbs J., Feb. 1995, pp 40-48.
[11] A. Agbaria and R. Friedman, “Starfish: Fault-tolerant
dynamic MPI programs on clusters of workstations,”In Eighth
IEEE Int. Symp. on High Perf. Dist. Computing, 1999.
[12] M. Hayden,The Ensemble System. Doctoral dissertation,
Cornell Univ., Dept. Computer Sciences, 1997.
[13] G.F. Fagg, and J.J. Dongarra, “FT-MPI: Fault Tolerant
MPI, Supporting Dynamic Applications in a Dynamic World”,
EuroPVM/MPI User’s Group Meeting 2000, Springer-Verilag,
Berlin, Germany, 2000, pp. 346-353.
[14] P. Evripidou et al, “ A Portable Fault Tolerant Scheme for
MPI,” Proc. Int’l. Conf. on Par. and Dist. Proc. Techniques and
Applications, Las Vegas, N.V., 1998, pp 690-697.
[15] ETNUS Inc, TotalView User’s Manual. Available from
http://www.etnus.com/

Figure. 13 Total Time for 10000 Runs vs Message Size
for Various nMR

0

10

20

30

40

50

60

70

80
32 64 12

8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

1E
+

05

3E
+

05

5E
+

05

size (bytes)

tim
e

(s
ec

)

3mr
4mr
5mr
6mr
7mr
8mr
9mr

Figure 14. MPI/Pro Time Ratio Comparisons for various
nMR

0
2
4
6
8

10
12
14
16
18
20

32
128

512
2048

8192

32768

131072

524288

size (bytes)

T
im

e
ra

tio

3mr/nocrc

4mr/nocrc

5mr/nocrc

6mr/nocrc

7mr/nocrc

8mr/nocrc

9mr/nocrc


