
Resource Policing to Support Fine-Grain Cycle
Stealing in Networks of Workstations

Kyung Dong Ryu, Member, IEEE Computer Society, and

Jeffrey K. Hollingsworth, Senior Member, IEEE

Abstract—This paper presents the design, implementation, and performance evaluation of a suite of resource policing mechanisms

that allow guest processes to efficiently and unobtrusively exploit otherwise idle workstation resources. Unlike traditional policies that

harvest cycles only from unused machines, we employ fine-grained cycle stealing to exploit resources even from machines that have

active users. We developed a suite of kernel extensions that enable these policies to operate without significantly impacting host

processes: 1) a new starvation-level CPU priority for guest jobs, 2) a new page replacement policy that imposes hard bounds on

physical memory usage by guest processes, and 3) a new I/O scheduling mechanism called rate windows that throttle guest

processes’ usage of I/O and network bandwidth. We evaluate both the individual impacts of each mechanism, and their utility for our

fine-grain cycle stealing.

Index Terms—Grid computing, cluster computing, networks of workstations, parallel computing, resource scheduling, cycle stealing.

�

1 INTRODUCTION

THIS paper investigates local mechanisms and scheduling
policies that allow guest processes to efficiently exploit

otherwise idle workstation resources. The opportunity for
harvesting cycles in idle workstations has long been
recognized [1], since the majority of workstation cycles go
unused. In combination with ever-increasing needs for
cycles, this presents an obvious opportunity to better
exploit existing resources. Two long-term trends are
increasing this opportunity. First, increased connectivity
across the Internet allows for utilization of resources in
much wider domains. Recent integration efforts in Grid
computing [2], [3] further expand both the application
domain and the resource domain for cycle stealing beyond
institution or administration boundaries. Second, new
software technologies are making it possible to better
exploit heterogeneous sets of workstations. For example,
new Java compilers promise to allow write-once/run-
anywhere applications to perform within a small factor of
the best host-code compilers for traditional languages.
These two trends vastly increase the set of candidates for
wide-area computing.

Systems like the Wisconsin Condor [4] system exploit
this opportunity by allowing guest processes to run on idle
participating machines. Existing systems focus on coarse-
grained idle periods when users are away from their
workstations. Returning users, or the start of any significant
local processes, cause guest processes to be migrated off the
local machine in order to avoid impacting the local user.
Despite the increased availability of idle machines thanks to
computational Grid technologies, increased resource de-
mand by large-scale applications necessitates more efficient

use of available resources in host machines. In addition,
process migrations, which are often required in previous
cycle stealing systems, are much more costly when moving
processes and data across institutional or local network
boundaries in a Grid environment.

The thesis of this paper is that running guest processes
only when host machines are idle wastes many opportu-
nities to exploit available resources because of overly
conservative estimates of resource contention. We show
that the potential negative impact of guest processes can be
prevented through the use of a few simple modifications to
existing kernel policies. We have developed a strict priority
scheduling system that ensures that local processes receive
priority in four major resources: processing cycles, memory,
I/O, and network bandwidth. This paper describes these
mechanisms1 and presents both a microbenchmark study to
demonstrate their efficacy, and an application-oriented
workload study to show the overall impact of our policies
on typical interactive workloads.

The resulting systems are suitable for use with Linger-
Longer [6], [7] policies. Linger-Longerdelaysmigrating guest
processes off of machines in the hope of exploiting fine-
grained idle periods that exist even while users are actively
using their computers. These idle periods, on the order of tens
ofmilliseconds, occurwhen users are thinking, orwaiting for
external events such as disks or networks. Our new
scheduling policies are able to effectively use these idle
periods in a way that does not delay much the activity of a
workstation’s primary user.

We presented the design of Linger-Longer in a previous
paper. This simulation study showed the potential of our
approach to improving the throughput of sequential com-
pute-boundprocesses. In tracedata collected fromavarietyof
organizations, we showed that more than 75 percent of the
time machines have CPU utilization less than 10 percent. We
also showed via simulation that we could improve the
throughputofacomputeboundbatchworkloadby60percent

878 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 10, OCTOBER 2004

. K.D. Ryu is with the Computer Science and Engineering Department,
Arizona State University, Tempe, AZ 85287. E-mail: kdryu@asu.edu.

. J.K. Hollingsworth is with the Computer Science Department, University
of Maryland, College Park, MD 20742. E-mail: hollings@cs.umd.edu.

Manuscript received 12 July 2002; revised 19 Aug. 2003; accepted 13 Jan.
2004.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 116939.

1. Preliminary work on some of these mechanisms has been presented
in [5].

1045-9219/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

comparedwith the schedulingpoliciesusedby theWisconsin
Condor system [4] and the Berkeley NOW project [8].

This paper presents the design, implementation and
performance evaluation of mechanisms and policies that
allow the use of Linger-Longer on collections of Linux
workstations. Section 2 reviews the Linger-Longer policy
and summarizes our previous simulation results. Section 3
describes our new CPU scheduling policy and its implemen-
tation in the Linux operating system. Section 4 presents a
novel virtual memory page replacement policy to protect a
host job’s memory. In Section 5, we describe rate windows, a
mechanism to police the I/O and network bandwidth usage
of guest jobs. To validate each of the proposed policies and
mechanisms, we conducted microbenchmarks. The results
are presented in each section. Section 6 evaluates the efficacy
of our policies and mechanisms as a whole in a real cycle
stealing environment. Section 7 reviews related work in the
field and, finally, Section 8 concludes this paper.

2 FINE-GRAIN CYCLE-STEALING

This section introduces the concept of fine-grained cycle
stealing, the Linger-Longer approach to realizing it, and the
requirements that this approach imposes on local schedu-
lers. The key feature of fine-grained cycle stealing is to
exploit brief periods of idle processor cycles while users are
either thinking or waiting for I/O events. Once we have a
mechanism that can take advantage of these short idle
periods, the longer idle periods exploited by previous
systems can be handled automatically. We refer to the
processes run by the workstation owner as host processes,
and those associated with fine-grained cycle stealing as
guest processes.

In order to make fine-grained cycle-stealing work, we
must limit the resources used by guest processes and ensure
that host processes have priority over them. Guest
processes must have close to zero impact on host processes
in order for the system to be palatable to users. Achieving
that goal requires a scheduling policy that gives absolute
priority to host processes over guest processes, even to the
point of starving guest processes. This also implies the need
to manage the memory, I/O, and network bandwidth via a
priority.

A key question in evaluating the overhead of priority-
based preemption is the time required to switch from the
guest process to the host process. There are three significant
sources of delay in saving and restoring the context of a
process:

1. The time required to save registers state.
2. The time required (via cache and TLB misses) to

reload the process’s cache and TLB state.
3. The time to reload the working set of virtual pages

into physical page frames.

We defer discussion of the third overhead until Section 4.
On current microprocessors, the time to restore cache and
TLB state dominates the register restore time. It has been
reported that the time to restore a cache entry requires 12 to
200 cycles [9]. The time to restore a single TLB entry
requires 10 to 100 instructions with software managed TLBs
and much less with hardware managed TLBs [10]. The
simulations in our previous work [7] showed that if the
effective context-switch time is 100 microseconds or less, the
overhead of this extra context-switch is less than 2 percent.

With host CPU loads of less than 25 percent, host process
slowdown remains under 5 percent, even for effective
context switch times of up to 500 microseconds.

In addition, our simulations of sequential processes
showed that a linger-based policy would improve average
process completion time by 47 percent compared with
previous approaches. Based on job throughput, the Linger-
Longer policy provides a 50 percent improvement over
previous policies. Likewise, our Linger-Forever policy (i.e.,
disabling optional migrations) permits a 60 percent im-
provement in throughput. For all workloads considered in
the study, the delay, measured as the average increase in
completion time of a CPU request, for host (local) processes
was less than 0.5 percent.

Previous systems automatically migrate guest processes
off of nonidle machines in order to ensure that guest
processes do not interfere with host processes. A key idea of
our fine-grained cycle stealing approach is thatmigration of a
guest process off of a node is optional. Guest processes can
often coexist with host processes without significantly
impacting the performance of the latter, or starving the
former. This effect will be more significant when processes
need to migrate beyond institution or local network bound-
aries, such as when using Grid computing technologies.

To support our new cycle stealing policy, we need
mechanisms to police the resource usage by guest pro-
cesses. In later sections, we investigate the existing priority
scheme and propose a suite of new resource policing
mechanisms for four major resources: CPU, memory, I/O,
and network bandwidth.

One concern with some of these mechanisms is the need
for kernel modifications. In general, it is much harder to
gain acceptance for software that requires kernel modifica-
tions. However, we feel that modest kernel modifications
are a reasonable burden for two reasons. First, we are using
the Linux operating system as an initial implementation
platform, and many software packages for Linux already
require kernel patches to work. Second, the relatively
modest kernel changes required could be implemented on
stock kernels using the KernInst technology [11], which
allows fairly complex customizations of a UNIX kernel at
runtime via dynamic patching.

3 CPU POLICING: STARVATION-LEVEL CPU
PRIORITY

We need mechanisms to make host processes always have a
higher CPU priority than guest processes. In other words,
the guest jobs need to be preempted as soon as a host job
becomes ready to execute. Also, a guest process should not
preempt or prevent host processes from running for any
reason.

We first investigated the impact of simply using the
UNIX nice command to provide CPU priorities. To do this,
we constructed a compute bound test program that simply
ran an empty loop a fixed number of iterations. We ran two
copies of this process. The first simulates a host process by
running with the default nice value (0), and the other
simulates a guest process by running at the lowest possible
priority, nice level -19. The CPU utilizations resulting from
this experiment for four different versions of UNIX are
shown in Table 1. The table shows the percent of the
processor that each process received. Except when running
under OSF-1, the guest process received a significant

RYU AND HOLLINGSWORTH: RESOURCE POLICING TO SUPPORT FINE-GRAIN CYCLE STEALING IN NETWORKS OF WORKSTATIONS 879

amount of processing time (ranging from 8 percent to
40 percent). This simple experiment demonstrates the need
for our more sophisticated priority mechanism.

First, we investigated the Linux CPU scheduler to under-
stand why a higher priority process loses some CPU cycles.
The scheduler chooses a process to run by selecting the ready
process with the highest runtime priority, where the runtime
priority can be thought of as the number of 10ms time slices
held by the process. The runtime priority is initialized from a
static priority derived from the nice level of the process. Static
priorities range from -19 to +19, with +19 being the highest.2

New processes are given 20þ p slices, where p is the static
priority level. The process chosen to run has its store of slices
decremented by one. Hence, all runnable processes tend to
decrease in priority until no runnable processes have any
remaining slices. At this point, all processes are reset to their
initial runtime priorities. Blocked processes receive an
additional credit of half of their remaining slices. For
example, a blocked process having 10 time slices left will
have 20 slices froman initial priority of zero, plus five slices as
a credit from the previous round. This feature is designed to
ensure that compute-bound processes do not receive undue
processor priority compared to I/O bound processes. The
algorithm is summarized in Fig. 1.

This scheduling policy implies that processes with the
lowest priority (nice -19)will be assigned a single slice during
each round,while normal processes consume 20 slices.When
running two CPU-bound processes, where one has normal
priority and the other is niced to the minimum priority, -19,
the latter will still be scheduled 5 percent of the time. While
this degree of processor contention might or might not be
visible to a user, running the process could still cause
contention for other resources, such as memory.

We implemented a new guest priority in order to prevent
guest processes from running when runnable host pro-
cesses are present. The change essentially establishes guest
processes as a different class, such that guest processes are
not chosen if any runnable host processes exist. This is true
even if the host processes have lower runtime priorities
than the guest process. The modified scheduling algorithm
is shown in Fig. 2.

Second, we verified that the scheduler reschedules
processes any time a host process unblocks while a guest
process is running. This is the default behavior on Linux,
but not on many BSD derived operating systems. One
potential problem of our strict priority policy is that it could
cause priority inversion. Priority inversion occurs when a
higher priority process is not able to run due to a lower
priority process holding a shared resource. This case will be
rare and the blocking time will be very short in our
application domain because guest and host processes
usually do not share locks, or any other nonrevocable
resources and locks for shared kernel resources are typically
held for a very short time.

We first validated our scheduling modifications by
comparing the CPU utilization of a CPU-intensive guest
process competing with that of a host process for three
different scheduling policies. Our independent variable is
the percent utilization of the host process in the absence of
any competing processes. The CPU-intensive guest process
is representative of typical guest processes, such as
scientific simulations, decision support (data mining), and
graphics rendering. This process also provides us with a
worst-case (in terms of contention for the CPU) test of
scheduling policies.

Fig. 3 shows the resulting behavior. Ideally, the CPU
utilization of the host processeswould track linearly with the
utilization of the job in isolation. The “equal” lines show the
default case where guest processes are treated identically to
host processes. The “nice-h” line shows that host process
utilization is unaffected by the presence of a niced guest
process up to approximately 90 percent utilization. The drop-
off at this point corresponds to the 91 percent limit shown for
Linux in Table 1. Note that “linger-h,” included for compar-
ison, accurately tracks expected utilization up to 99 percent.
The data shows that a guest process is unable to significantly
interferewith CPUutilization of a host processwith our CPU

880 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 10, OCTOBER 2004

2. Nice priorities inside the kernel have the opposite sign of the nice
values seen by user processes.

TABLE 1
CPU Utilization with Single Host and Guest

(Niced at Level 19) Processes

Fig. 1. Original Linux scheduler.

Fig. 2. Modified Linux scheduler to support starvation-level CPU priority.

scheduler modifications. Similar modifications to the other
operating systems discussed earlier in Table 1 would
presumably show analogous curves, with the difference
being that “nice-h” utilization would flatten out at 84 percent
for Solaris and at only 60 percent for AIX.

4 MEMORY POLICING: PRIORITIZED PAGE

REPLACEMENT

Another way in which guest processes could adversely
affect host processes is by tying up physical memory.
Having pages resident in memory can be as important to a
process’s performance as getting time quanta on processors.
Our approach to prioritizing access to physical memory
tries to ensure that the presence of a guest process on a node
will not increase the page fault rate of the host processes.

We first investigated the impact of simply using the UNIX
nice command for memory intensive applications. Table 2
shows a simple example of memory thrashing caused by
allowing a guest process to compete with host processes for
physical memory. In all cases, both processes have working
sets of approximately 128 MB, while the total physical
memory of the machine is only 192 MB. Both processes take
82 seconds to run in isolation.When they are run serially (first
row), the total running time is just 164 seconds. The second
row shows that if the two are started simultaneously, and
with equal priorities, the processes thrash and lose efficiency.
We stopped the processes after five hours. The third row
shows the expected result of a late-arriving guest process
being unable to steal pages from the host process, and
effectively being serialized after the host process.However, it
does slow down the host process by about 8 percent. The last
row, however, shows that changing the order in which the

processes arrive dramatically changes the result. The host
process takes a long time to steal enoughpages from the guest
process in order to hold itsworking set.We again stopped the
execution after about five hours. The reason for the thrashing
is that theguestprocesshadmodified itspagesbefore thehost
process started requestingmemory. Each initial page fault by
the host process is delayed while a guest page is flushed to
disk. Meanwhile, the guest process also has page faults that
require host pages to be flushed to disk. Therefore, neither
processmakesmuchprogress sinceCPUpriority does little to
prevent thrashing when two processes desire more memory
than the system has.

This last case is quite common. For example, a user
returning to his workstation and starting GNU Emacs
would often see this behavior if their workstation is running
a large guest simulation. Therefore, handling this case
efficiently is essential to reduce the impact of guest
processes on host processes.

Unfortunately, memory is more difficult to deal with
than the CPU. The cost of reclaiming the processor from a
running process in order to run a new process consists only
of saving processor state and restoring cache and TLB state.
The cost of reclaiming page frames from a running process
is negligible for clean pages, but quite large for modified
pages because they need to be flushed to disk before being
reclaimed. The simple solution to this problem is to
permanently reserve physical memory for the host pro-
cesses. The drawback is that many guest processes are quite
large. Simulations and graphics rendering applications can
often fill all available memory. Hence, not allowing guest
processes to use the majority of physical memory would
prevent a large class of applications from taking advantage
of idle cycles.

RYU AND HOLLINGSWORTH: RESOURCE POLICING TO SUPPORT FINE-GRAIN CYCLE STEALING IN NETWORKS OF WORKSTATIONS 881

Fig. 3. CPU utilization for a single CPU-intensive host process running with a single guest process. “Equal” means the default scheduler policy, “nice”
implies that guest process is niced with parameter -19, and “linger” refers to the use of the Linger-Longer guest priority. “-h” and “-g” identify the host
and guest processes.

TABLE 2
Completion Times for Two Competing Large Memory Jobs

We therefore decided not to impose any hard restrictions
on the number of physical pages that can be used by a guest
process. Instead, we implemented a policy that establishes
low and high thresholds for the number of physical pages
used by guest processes. Essentially, the page replacement
policy prefers to evict a page from a host process if the total
number of physical pages held by the guest process is less
than the low threshold. The replacement policy defaults to
the standard clock-based pseudo-LRU policy up until the
upper threshold. Above the high threshold, the policy
prefers to evict a guest page. The effect of this policy is to
encourage guest processes to steal pages from host
processes until the lower threshold is reached, to encourage
host processes to steal from guest processes above the high
threshold, and to allow them to compete evenly in the
region between the two thresholds. However, the host
priority will lead to the number of pages held by the guest
processes being closer to the lower threshold, because the
host processes will run more frequently.

We now consider applying our new policy to the Linux
VM system. In Linux, the default replacement policy is an
LRU-like policy based on the “clock“ algorithm [12]. The
Linux algorithm uses a one-bit flag and an age counter for
each page. Each access to a page sets its flag. Periodically,
the virtual memory system scans the list of pages and
records which ones have the use bit set, clears the bit, and
increments the age by three for the accessed pages. Pages
that are not touched during the period of a single sweep
have their age decremented by one. Only pages whose age
value is less than a system-wide constant are candidates for
replacement.

We modified the Linux kernel to support this prioritized
page replacement. Two new global kernel variables were
added for the memory thresholds, and are configurable at
runtime via system calls. The kernel keeps track of resident
memory size for guest and host processes. Periodically, the
virtual memory system triggers the page-out mechanism.
When it scans in-memory pages for replacement, it checks
the resident memory size of guest processes against the
memory thresholds. If they are below the lower thresholds,
the host processes’ pages are scanned first for page-out.
Resident sizes of guest processes larger than the upper
threshold cause the guest processes’ pages to be scanned
first and the least recently used guest page to be paged out.3

Between the two thresholds, older pages are paged out first
no matter what processes they belong to. The overhead of
this modification is negligible since it simply changes the
order of page scanning.

The modifications to the page replacement algorithm are
shown in Fig. 4. Correct selection of the two parameters is
critical to meet the goal of exploiting fine-grained idle
intervals without significantly impacting the performance
of host processes. Too high a value for the low threshold
will cause undue delay for host processes, and too low a
value will cause the guest process to constantly thrash.
However, if minimum intrusiveness by the guest process is
paramount, the low memory threshold can be set to zero to
guarantee the use of the entire physical memory by the host
process.

We validated our memory threshold modifications by
tracking the resident memory size of host and guest
processes for two CPU-intensive applications with large
memory footprints. The result is shown in Fig. 5. The chart
shows memory competition between a guest and a host
process. The application behavior and memory thresholds
shown are not meant to be representative, but were
constructed to demonstrate that the memory thresholds
are strictly enforced by our modifications to Linux’s page
replacement policy.

The guest process starts at time 20 and grabs 128MB. The
host process starts at time 38 and quickly grabs a total of
128 MB. Note that the host actually touches 150 MB. It is
prevented from obtaining all of this memory by the low
threshold. Since the guest process’ totalmemoryhasdropped
to the low threshold, all replacements come from host pages.
Hence, nomorepages canbe stolen fromtheguest.At time90,
the host process turns into a highly I/O-bound application
that uses little CPU time. When this happens, the guest
process becomes a stronger competitor for physical pages,
despite the lower CPU priority, and slowly steals pages from
the host process. This continues until time 106, atwhich point
the guest process reaches the high threshold and all
replacements come from its own pages.

We also repeated the experiment shown in Table 2 with
our memory priority system enabled. The results are shown
in Table 3. When the host process starts first and then the
guest process (this is the behavior seen when a user is
working, but not using the processor heavily and a guest
process then arrives), the use of our modified virtual
memory policies reduces the delay seen by the host process
from 8.0 percent seen when nice is used to 0.8 percent. For
the case when the guest process starts and then the user

882 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 10, OCTOBER 2004

3. Similar mechanisms can be applied to most UNIX systems, including
Solaris, which uses unified paging system for virtual memory and file
buffer cache. A modest modification, which simply tags file cache pages to
indicate whether they have been accessed by guest processes or host
processes, can suffice.

Fig. 4. Modified page replacement policy to support memory prioritization.

Fig. 5. Threshold validations. Low and high thresholds are set to 50MB
and 70 MB. At time 90, the host job becomes I/O-bound. Host process
acquires 150 MB when running without contention, and guest process
acquires 128 MB without contention. Total available memory is 179 MB.

process, the delay with nice was larger than 200 times the
original execution time (recall that we gave up after waiting
five hours). In contrast, using linger priority only had a
delay of about 8 percent. These two results demonstrate the
ability of our kernel modifications to limit the overhead
experienced by guest processes.

Host delay is computed relatively to the host job time
of 82 seconds when running in isolation. In the case the
niced guest job starts first, the experiment has been
stopped after five hours due to an excessive delay. In this
section, we demonstrated that the Unix CPU priority is
not effective to promote memory bound host processes.
Thus, a new prioritized page replacement was introduced
and validated by a set of experiments. Our experiments
reported that even in a rare worst case, our mechanisms
can decrease host job slowdown to 8 percent.

5 I/O AND NETWORK POLICING: RATE WINDOWS

Priority mechanisms for I/O and network are also
essential since I/O or communication intensive guest jobs
can significantly slow down host jobs. To protect host
jobs’ I/O performance, a new I/O scheduling mechanism,
called rate windows, is proposed as a simple, portable,
and effective option. Many real-time systems provide rate-
based scheduling which is similar to our rate windows.
However, none of those mechanisms is suitable for our
use since they all require new I/O job queues inserted
into an operating system and, hence, imposes an extra
scheduling overhead. The rest of this section describes our
rate-window policies, and the mechanisms that are
needed to support I/O and network throttling. Then, we
validate our mechanisms with a series of experiments.

5.1 Rate Windows Mechanisms

First, we distinguish between “unconstrained” and “con-
strained” job classes. The default for all processes is
unconstrained; jobs must be explicitly put into constrained
classes. The unconstrained class is allowed to consume all
available I/O. Each distinct constrained class has a different
threshold bandwidth, defining the maximum aggregate
bandwidth that all processes in that class can consume. As
an optimization, however, if there is only one class of
constrained jobs, and no I/O-bound unconstrained jobs, the
constrained jobs are allowed unfettered access to the
available bandwidth. In the context of cycle stealing, host
processes are unconstrained and guest processes are
constrained.

We identify the presence of unconstrained I/O-bound
jobs by monitoring I/O bandwidth, moving the system into

the throttled state when unconstrained bandwidth exceeds
threshhigh, and into the unthrottled state when uncon-
strained bandwidth drops below threshlow. Note that
threshlow is lower than threshhigh, providing hysteresis to
the system to prevent oscillations between throttled and
unthrottled mode when the I/O rate is near the threshold.4

The state of the system is reflected in the global variable
throttled. Our measurement of unconstrained bandwidth is
not instantaneous; it is measured over the life of the rate
window, defined below.

The implementation of rate windows is straightforward.
We currently have a hard-coded set of job equivalence
classes, although this could be easily generalized for an
arbitrary number. Each class has two kernel window
structures, one for file I/O and one for network I/O. Each
window structure contains a circular queue, implemented
via a 100-element array (see Fig. 6).

The window structure describes the last I/O operations
performed by jobs in the class, plus a few other scalar
variables. The window structure only describes I/O events
that occurred during the previous 5 seconds, so there may
be fewer than 100 operations in the array. We have
experimented with several different window sizes before
arriving at these constants. The window for I/O averaging
is bounded by two parameters: window size and duration.
When I/O is rare, the window is bounded by window
duration. Contrarily, when I/O is frequent, the window is
limited by window size. In the current kernel-level
implementation, the window size is limited to 100 elements
to avoid excessive use of kernel memory. However, it is
possible that new environments or applications could be
best served by using other values for these parameters. We
provide a means of tuning these and other parameters from
a user-level tool.

We implemented our mechanism via a loadable kernel
module that intercepts each of the kernel calls for I/O and
network communication: read(), write(), send(), and
recv().5 Whenever such system functions are triggered,
we first call rate_check() with the process ID, I/O
length, and I/O type and then call the original system
call. The process ID is used to map to an I/O class, and
the I/O type is used to distinguish between file I/O and

RYU AND HOLLINGSWORTH: RESOURCE POLICING TO SUPPORT FINE-GRAIN CYCLE STEALING IN NETWORKS OF WORKSTATIONS 883

TABLE 3
Benefits of Memory Priority for Large Footprint Processes

Host delay is computed relatively to the host job time of 82 seconds
when running in isolation. In the case, the niced guest job starts first, the
experiment has been stopped after five hours due to an excessive delay.

4. For all the experiments, the low and high thresholds are set to 5 percent
(500 KB/s) and 10 percent (1,000 KB/x) of maximum bandwidth,
respectively.

5. This light-weight I/O function call interception mechanism has a
limitation of missing memory mapped I/Os. Our mechanism can be
extended to record memory mapped I/O mappings and account for I/O
requests through the mapped memory. However, such extension is
undesirable as it will decrease the simplicity and portability of our
mechanism.

Fig. 6. Maintaining a sliding window of resource utilization.

network I/O. The rate_check() routine maintains a
sliding window of operations performed for each class of
service and for the overall system. However, to prevent
using information that is too old, we limit the sliding
window to a fixed interval of time (currently 5 seconds).

We define Bw, the window bandwidth, as the total
amount of I/O in the window’s operations, including the
new operation. We define Tw, the window time, as the
interval from the beginning of the oldest operation in the
window until the expected completion of the new opera-
tion, assuming it starts immediately. Let Rt be the threshold
bandwidth per second for this class. We then allow the new
operation to proceed immediately if the class is currently
throttled and:

Bw

Tw
� Rt: ð1Þ

Otherwise, we calculate the sleep() delay as follows:

delay ¼ Bw

Rt
� Tw: ð2Þ

Then, the kernel suspends the process for delay time
units before calling the original I/O system call. This
process is illustrated graphically in Fig. 7. Note that we
have upper and lower bounds on allowable sleep times.

Sleep durations that are too small degrade overall
efficiency, so durations under our lower bound are set to
zero. Sleep durations that are too large tend to make the
stream bursty. If our computed delay is above the
computed threshold, we break the I/O into multiple pieces
and spread the total delay over the pieces. This will not
affect application execution since file I/O requests will
eventually be broken into individual disk blocks. For
network connections, TCP provides a byte-oriented stream
rather than a record oriented one, so breaking a single
request into a smaller one will not affect the correctness of
any protocol.

Since our mechanism simply requires the ability to
intercept I/O calls, it would be easy to implement on other
systems that defined an API to intercept I/O calls.
Windows XP (nee Windows NT) and the stackable file
system [13] provide the required calls.

5.2 File I/O Policing

In order to validate our approach, we conducted a series of
microbenchmarks and application benchmarks. The purpose
of these experiments is threefold. First, we want to show that
our mechanism does not add any significant delay to normal

operation of the system. Second,wewant to show thatwe can
effectively police the I/O rates. Third, since our policing
mechanism sits above the file buffer cache, it will be
conservative in policing the disk, since hits in cache will be
charged against a job classes’ overall file I/O limit. We
wanted to measure this effect.

We first measured resource usage in order to verify that
the use of rate windows does not add significant overhead
to the system. On an otherwise idle machine, we ran a
single tar program, which created a 52 MB archive file, both
with and without rate windows enabled. We did not set the
I/O limit since we wished to measure the overhead of
maintaining rate windows and computing delays. The
difference in completion time of the tar application with
rate windows enabled was less than the variation between
several runs of the experiment. This was expected, as there
are no computationally expensive portions of the algorithm.

Second, we ran two instances of tar, one as a guest job
and one as a host job. Fig. 8a represents a run without
throttling, and Fig. 8b shows a run with throttling enabled.
There is no caching between the two because they have
disjoint input. The guest job is intended to be representative
of those used by cycle-stealing schedulers such as Condor.
Unless specified otherwise, a “guest“ job is assumed to be
constrained to 10 percent of the maximum I/O or network
bandwidth, whereas a “host“ process has unconstrained
use of all bandwidth. We measured the effective maximum
bandwidth by reading or sending a large file sequentially.

In both graphs in Fig. 8, the guest job starts first, followed
somewhat later by the host job. At this point, the guest job
throttles down to its 10 percent rate (500 KB/s). When the
host job finishes, the guest job throttles back up after the
rate window empties. Note that the version with I/O
throttling is less thrifty with resources (the guest job finishes
later). This is a design decision: our goal is to prevent undue
degradation of unconstrained host job performance regard-
less of the effect on guest jobs.

The behavior of one of the tar processes is shown in more
detail in Fig. 9. The point of this figure is that despite the
frequent and varied file I/O calls, and despite the buffer
cache, disk I/O’s get issued at regular intervals that precisely
match the threshold value set for this experiment. Note that
actual disk I/O sizes increase near the start as the file system
readaheadbecomesmore aggressive. Besides the read-ahead
effect, the buffer cache hit ratio is expected to be very low
since tar sequentially reads each file only once.

Our third set of microbenchmark experiments is de-
signed to examine the relationship between file I/O and
disk I/O and imposed sleep time for guest applications. The

884 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 10, OCTOBER 2004

Fig. 7. Policing I/O requests.

first application was a run of the tar utility. Second, we ran
the agrep utility across the source directory for the Linux
kernel looking for a simple pattern that did not occur in the
files searched. Third, we ran a compile workload that
consisted of compiling a library of C++ methods that were
divided among 34 files plus 45 header files. This third test
was designed to stress the gap between monitoring at the
file request level and the disk I/O level since all of the
common header files would remain in the file buffer cache
for the duration of the experiment.

File I/O can dilate because 1) file I/O’s can be done in
small sizes, but disk I/O is always rounded up to the next
multiple of the page size, and 2) the buffer cache’s read-
ahead policy may speculatively bring in disk blocks that are
never referenced. File I/O rates can also attenuate due to
buffer cache hits, which is a consequence of the I/O locality
of the applications. Table 4 shows the behavior of tar,
agrep, and compile applications with various metrics.

Looking first at the difference between file I/O and disk
I/O, note that file I/O is equal to the disk I/O for tar,6

14 percent less for agrep, and 233 percent larger for
compile. Notice that for the two I/O intensive applica-
tions, the overall I/O rate for the application is very close to
the target rate, 500 KB/sec.

For the tar application, our mechanism worked fine
with the aggressive read ahead used by the file system. For
agrep, we observed a higher total I/O volume due to small
reads being rounded to larger disk pages. The low file I/O
number for compile, of course, is due to good buffer cache
locality.

There are two potential approaches to recouping this lost
bandwidth. The first is to add a hook into the buffer cache

to check for a cache miss before adding the I/O to our
window, and deciding whether to sleep and how long to
sleep. We deliberately have not taken this path because we
wish to keep our system at as high a level as possible. We
currently implement our entire I/O and communication
policing system as a loadable kernel module, which uses
only externally available information such as the system call

interface. This would be compromised if we put hooks
deeper into the kernel.

A second approach is to use statistics from the proc

file system to apply a “dilation factor“ to our limit

calculations. We define the dilation factor as the ratio of

file I/O and disk I/O requests. If the ratio is 1.0, each file

I/O is being transformed into the same amount of disk

activity, i.e., there is no caching or reuse. If the ratio is

0.5, e.g., 100 KB of file I/O is being transformed into only

50 KB of disk I/O, then the limited job is not fully

utilizing its allocated bandwidth. The dilation factor for

each process is computed by counting file page cache

faults,7 which lead to disk I/Os, during file I/O requests.

Resources can be used more efficiently by multiplying the

file I/O threshold by the inverse of the dilation factor.

The disadvantage of this approach is that dynamic

caching behavior will lead to time-varying dilation factors

and poor policing. The advantages are better bandwidth

utilization and that the approach can be implemented

entirely outside of the kernel.
We investigated this approach by adding another field in

the I/O rate window to record the resulting disk I/O size. A
rolling average of the dilation factor is used to scale the file
I/O threshold for future requests.

The full story of the I/O dilation is seen when we look at
the time varying behavior of the I/O. Fig. 10 shows the
average I/O rates for the compile workload. The dark curve
of each graph is for the file I/O rate and the light curve for
the disk I/O rate. We first ran it without any I/O rate limit.
Fig. 10a shows that file I/O requests resulted in much less
disk I/O because many header files were reused from the
file buffer cache. The second graph (Fig. 10b) presents the
case when we limited the file I/O rate to 500 KB/sec. Notice
that, although this workload still has considerable hits in the
file buffer cache, our mechanism ensured that the actual
disk I/O rate was less than the target rate of 500KB/sec. The
requested I/O rate peaks are higher than our target limit,
due to the fact that we average I/O requests over an
effective 1.7 second window (as noted above) and we are
showing data over a 1 second window in this figure. Fig. 10c
shows the behavior of the compile application when the
dilation factor is used to control the disk I/O rate. The

RYU AND HOLLINGSWORTH: RESOURCE POLICING TO SUPPORT FINE-GRAIN CYCLE STEALING IN NETWORKS OF WORKSTATIONS 885

Fig. 8. File I/O of competing tar applications without (a) and with (b) file I/O policing. In (b), the host I/Os occurring before time 20 are system daemon
processes’ background I/O activities and can be considered as noise.

6. The tar file size is 52 Mbytes. 7. In the Linux kernel, this count is available in the maj_fault field.

curves demonstrate that the application can take advantage
of buffer hits while limiting the disk I/O rate to a certain
level. The compile application was able to finish in
64 seconds, which is 27 seconds earlier than using file I/O
rate policing. Note that the disk I/O rate occasionally peaks
over the limit. This is because the dilation factor is derived
from past I/O behavior. Any change in the dilation factor
over time can cause inaccurate predictions. Overall, how-
ever, the actual disk I/O followed the limit quite well.

Although ratewindowsprovide protection of the host I/O
rate by limiting guest I/O rates, guest jobs can still slowdown
host file I/Os by polluting the host file buffer cache. This can
be handled by our memory policing mechanism which can
prevent guest jobs from replacing out host jobs’ file buffer
cache pages.

5.3 Network I/O Policing

Policing network I/O is easier than file I/O because there is
no analogue to the file buffer cache or read ahead, which

dilate and attenuate the effective disk I/O rate. In this

section, we present an application of network I/O throttling
using our rate windows.

Most of the experiments in Section 5.2 assumed the use
of rate windows in a cycle stealing context. We ran one
additional Linger-Longer experiment, this time with net-
work I/O as the target. One of the main complaints about

Condor and similar systems is that the act of moving a guest
job from a newly loaded host often induces significant
overhead to retrieve the application’s checkpoint. Further,
periodic checkpointing for fault tolerance produces bursty
network traffic. This experiment shows that the rate
windows are able to throttle even the checkpoint and
prevent it from affecting host jobs.

Fig. 11 shows two instances of a guest process moving off
of a node because a host process suddenly becomes active.
Moving off the node entails writing a 90MB checkpoint file
over the network. This severely reduces available band-
width for the host workload (a Web server in this case) in
the unthrottled case shown in Fig. 11a. Only after the
checkpoint is finished does the Web server claim most of
the bandwidth.

In the throttled case shown in Fig. 11b, the Condor
daemon’s network write of the checkpoint consumes a
majority of the bandwidth only until the host Web server
starts up.At this point, the system enters throttlingmode and
the bandwidth available to the checkpoint is reduced to the
guest class’s threshold. Once the Web server becomes idle
again, the checkpoint resumes writing at the higher rate.

In this section, we have presented a simple and portable
mechanism that allows an operating system to throttle the
rate at which disk and network communication is per-
formed. Our experiments demonstrated that we are able to
enforce these resource limits on applications with little
overhead. For I/O bound applications, we are able to
enforce limits at the physical device level despite the
imposition of the buffer cache and disk-read ahead
mechanisms. Further, for many applications, we can enforce
our limits on the actual disk I/O instead of the file I/O by
compensating for the file-to-disk dilation factor. The result
is more efficient use of the guest job’s allocated bandwidth.
For the network case, we demonstrated that rate windows
allow effective bandwidth sharing among communication-
bound processes. We used them to implement policies that
protect a host process’s access to network resources. This
protection is applied to all network accesses by all guest
jobs that are running on the local machine, and also to the
large network I/O’s that occur when such processes try to
migrate their address spaces off of the local machine.

6 APPLICATION VALIDATION

In this section, we validate effectiveness of our resource
policing mechanisms as a whole. The first set of experiments

886 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 10, OCTOBER 2004

Fig. 9. I/O sizes versus time for tar.

TABLE 4
I/O Application Behavior

implements a scenariowhere interactive users are traditional
terminal-basedUNIX programdevelopers and guest jobs are
computation-intensive scientific applications. The second
experiment scenario is emulating a case where machine
owners are working interactively using window-based
applications, while guest jobs applications are requiring
various resources intensively at different stages. For both
scenarios, we demonstrate how efficiently and unobtrusively
idle resources can be exploited with our resource policing
mechanisms.

6.1 Case 1: Parallel Guest Applications

We first present a study of the effect of our resource policing
mechanisms on interactive host jobs and guest parallel
applications in our test cluster. This cluster is comprised of
eightPentiumworkstationsrunningLinux2.2, connectedbya
1.2GigabitMyrinet and a 100Megabit switched Ethernet. For
resource policing configuration, the low and high thresholds
formemorypolicingare set to 5percent and10percent of total
memory (196 MB), respectively. The maximum I/O and
network bandwidth (Rt) for guest jobs are constrained to
10 percent (500 KB/sec) when host jobs are active in using
such resources.

We use the Musbus interactive UNIX benchmark suite
[14] to simulate the behavior of actual interactive users.
Musbus simulates an interactive user conducting a series of
compile-edit cycles through text-based terminals. The
benchmark creates processes to simulate interactive editing
(including appropriate pauses between keystrokes), UNIX

command line utilities, and compiler invocations. We
varied the size of the program being edited and compiled
by the “user” in order to change the mean CPU utilization
of the simulated local user. In all cases, the file being
manipulated was at least as large as the original file
supplied with the benchmark.

The guest applications are water and fft from the
Splash-2 benchmark suite [15], and sor, a simple red-black
successive overrelaxation application [16]. Water is a
molecular dynamics code, while fft implements a three-
dimensional fast Fourier transform. All three applications
are run on top of CVM [17], a user-level DSM system. These
three applications are intended to be representative of three
common classes of distributed applications. Water has
relatively fine-grained communication and synchroniza-
tion, and fft is quite communication-intensive, while sor

is mostly compute-bound. General computation and com-
munication ratios of these applications are presented in our
previous work [7]. The input for sor is 2; 048� 1; 024 array.
For water, 512 molecules are simulated while a three-
dimensional array of 26 � 26 � 26 is used for fft. To
support these datasets, 35MB of memory is allocated for
sor, 3.3 MB for water, and 27 MB for fft. While memory
requirements by these applications are moderate, conten-
tions for CPU cycles are significant; their CPU usages are
about 99 percent when running on one node and no lower
than 75 percent even when running on four nodes.

In the first set of experiments, we run one process of a
four-process CVM application as a guest process on each of

RYU AND HOLLINGSWORTH: RESOURCE POLICING TO SUPPORT FINE-GRAIN CYCLE STEALING IN NETWORKS OF WORKSTATIONS 887

Fig. 10. File and disk I/O rates for the compile workload. (a) is without any rate limit while (b) is with the file I/O limit of 500KB/sec, and (c) is with the

disk I/O limit of 500KB/sec.

Fig. 11. Guest job checkpoint versus host Web server. The graphs show network bandwidth usages (a) without and (b) with network I/O policing.

four nodes. We vary the mean CPU utilization of the host
processes from 7 percent to 25 percent by changing the size
of the program being compiled during the compilation
phase of the benchmark. The results of these tests are shown
in Fig. 12.

Fig. 12a shows the slowdown experienced by the guest
applications. The solid lines show the slowdown using our
Linger-Longer policy, and the dashed lines show the slow-
down when the guest processes are run with equal priority.
As expected, running the guest processes at starvation level
priority generally slows themdownmore than if they are run
at equal priority with the host processes. However, when the
Musbus utilization is less than 15 percent the slowdown for
all applications is lower with lingering than with the default
priority. For comparison, running sor, water, and fft on
three nodes instead of four slows them down by 26 percent,
25 percent, and 30 percent, respectively. Thus, for the most
common levels of CPU utilization, running on one nonidle
node and three idle would improve the application’s
performance compared to running on just three idle nodes.
The simulations in our previous work [6] showed that node
utilization of less than 10percent occurs over 75percent of the
time even when users are actively using their workstations.

Fig. 12b shows the slowdown experienced by the host
Musbus processes. Again, we show the behavior when the
guest processes are run using our Linger-Longer policy and
the default equal priority. For all three parallel guest
applications, the delay seen when running with Linger-
Longer isnotmeasurable.However,whentheguestprocesses
are run with moderate CPU utilization (i.e., more than
10 percent), all three guest processes start to introduce a
measurable delay in the host processeswhen equal priority is
used. For water and sor, the delay exceeds 10 percentwhen
theMusbusutilization reaches 13percent.At thehighest level
of Musbus CPU utilization, the delay using the default
priority exceeds 10 percent for all three applications and
15 percent for two of the three applications.

In this experiment, despite our increased emphasis on
preserving host process performance, our resource policing
mechanisms allowed parallel guest applications to perform
well even when one or more of the workstations are
running moderate host processes.

6.2 Case 2: Window-Based Interactive Host
Applications

With windowing systems, such as X-Window on UNIX,
GUI-based interactive applications exhibit much different
resource usage patterns from those with terminal-based
programs, as reported by Chen et al. [18]. Therefore, in the
second experiment, we focus on effectiveness of our
resource policing mechanisms in terms of preserving
responsiveness of GUI based interactive host applications
on windowing systems, in the presence of resource
intensive guest jobs.

We use response time as the performance metric.
Response time is defined as the time elapsed between the
occurrence of an interactive event and completion of the
corresponding activity. For example, when a user wants to
search for a string in a text editor application, she enters the
required text in the search dialog box and then clicks on a
button. The application will then perform the required
search and highlight the first occurrence of the search string
in the text.

Precisely measuring response time to interactive user
events is very difficult. Flautner et al. [19] have observed
that, to respond to an event, an application has to perform a
certain task, which can be usually seen by a sudden surge in
utilization of resources. The types of resources to be
consumed during this task depend on the type of the
interactive event. In case of the previous example of text-
based searching, the text editor will perform a large number
of successive string comparisons causing sudden surge in
CPU utilization. It will also read all pages of the document
sequentially from memory, possibly resulting in disk I/O
activity. In response to a user request for a Webpage, a Web
browser will show sudden increase in CPU as well as
network utilization.

From this observation, we have developed a utility that
detects the occurrences of interactive events and measures
their response times. This utility monitors each type of
resource separately. If response to a certain event involves
both CPU and I/O activity, the utility will identify it as two
subevents: CPU event and I/O event.

For each run of experiments, it is essential that interactive
events take place in the same sequence in each run of
experiments. To this end, we use Android [20], an opens
sourceGUI testing tool. This tool can record andplayback the
GUI events, such as mouse movements, mouse clicks, and

888 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 10, OCTOBER 2004

Fig. 12. Impact of running one process of four-process CVM applications as a guest process. Three applications, sor, water, and fft, are run with

linger priority (-l) and equal priority (-e). (a) shows the slowdown of the guest applications. (b) shows the slowdown of the host Musbus processes.

keyboard typing, on X-Window systems. It can also record
the delay between two user events to reflect think time.

To the best of our knowledge, there are no benchmarks
that measure interactive response time for X-Window based
applications. Therefore, we have designed and generated an
interactive user event script while a human operator is
naturally using some of GUI-based applications. This
interactive host workload contains two popular X-Window
applications: a Web browser (Netscape) and KDE’s text
editor (KWrite). Netscape is primarily network and CPU
intensive while KWrite is more I/O and CPU intensive. This
benchmark consists of about 100 user activities including
browsing sites, clicking links, Web searches, opening and
closing files, text searching, cutting and pasting of text.
Table 5 shows overview of these user activities divided into
four phases. It has been observed that KWrite consumes
more than 800MB of memory in Phase 5.

On the other hand, the guest workload is composed of a
sequence of tasks that intensively use different resources:
cg.A from NAS Parallel Benchmark [21] as a CPU intensive
application, tar and gzip as I/O and CPU intensive
applications, and ftp as a network intensive application.
To synchronize completions of host workload and guest

workload, cg.A is run twice and, in the second time, two
instances run at the same time (denoted as cg.A2).

Now, we conduct responsiveness experiments by play-
ing back the interactive event script while running batch
guest jobs with three different priorities: equal, nice 19, and
Linger-Longer. We conduct this experiment on machines
with an Intel Pentium 4 processor running at 2.2 GHz,
equipped with 1 GB RAM and 7,200 RPM IDE hard disk,
and connected to 100Mbps Ethernet. The Linux kernel has
been patched with our Linger-Longer resource policing
module and running an X server for Window-based
applications.

Fig. 13a shows the guest completion time when the guest
jobs are run at different priorities. The first bar provides the
base case when only guest jobs run. To describe character-
istics of each task briefly, cg.A requires 60 MB of memory
and completes in 154 seconds on an idle machine; Tar

reads 27 files, of which size is 277 MB in total, and writes an
output file taking 115 seconds on an idle machine; gzip
takes 101 seconds to compresses this large output file;
cg.A2 allocates 120 MB of memory and finishes in
307 seconds on an idle machine. Not surprisingly, the
guest completion time increases when there are host
applications running. With equal priority, guest workload

RYU AND HOLLINGSWORTH: RESOURCE POLICING TO SUPPORT FINE-GRAIN CYCLE STEALING IN NETWORKS OF WORKSTATIONS 889

TABLE 5
Interactive Application Benchmark Overview

Interactive workload generates about 100 typical user events using X-Window-based Web browser and text editor.

Fig. 13. Guest job performance and host job responsiveness. Guest job consists of several resource intensive applications such as gzip, cg.A,
tar, and ftp. Host event response time is measured for three resources: CPU, disk I/O, and network. (a) shows the completion time of the batch
guest jobs and (b) shows the response time of the Window-based host jobs.

is slowed down by 15 percent. With guest jobs niced, the
slowdown further increases to 25 percent, due to its lower
priority. However, with Linger-Longer, the delay increase
from the nice 19 case is unnoticeable.

Fig. 13b shows the total response time in milliseconds for
user events with host applications, when the guest jobs are
run at different priorities. In the absence of guest jobs, total
response time for host workload is 5,170 milliseconds
where 4,543 milliseconds are spent for 22 CPU related
events, 39 milliseconds for 12 I/O related events, and
588 milliseconds for 54 network related events. When guest
jobs are run with equal priority, the overall host response
time increases by 44 percent. With guest jobs niced, the
delay that interactive users experience is somewhat
decreased, yet a significant delay of 21 percent remains.
Notice that this reduction via nice is mainly due to reduced
response time to CPU events. The last bar demonstrates
that our Linger-Longer resource policing significantly
reduces this delay to only 6 percent by recovering the
original responsiveness to I/O and network related events
of interactive host workload.

In this experiment, we demonstrate that our Linger-
Longer resource policing mechanisms effectively protect
system responsiveness to interactive host applications
running on a windowing system from various resource-
intensive guest applications.

7 RELATED WORK

Previous work on exploiting available idle time on work-
station clusters used a conservative model that would only
run processes when the local user was away from their
workstation, and no local processes were runnable. Condor
[4], LSF [22], and NOW [23] use variations on a “social
contract” to strictly limit interference with local users.
However, even with these policies, there is some disruption
of the local user when they return since the guest process
must be evicted and the local state restored. The Linger-
Longer approach permits slightly more disruption of the
user, but tries to limit the delay to an acceptable level. One
system that used nonidle workstations was the Stealth
distributed scheduler [24]. It implemented a priority-based
approach to running guest processes.

In the area of operating system support for providing
resource management, research and commercial operating
systems have provided similar functionality. In IRIX [25],
the Miser feature provides deterministic scheduling of
batch jobs. Miser manages a set of resources, including
logical CPUs and physical memory, that Miser batch jobs
can reserve and use in preference to interactive jobs. This
strategy is almost the opposite of our approach, which
promotes interactive jobs.

Verghese et al. [26] proposed a way to isolate the
performance of applications running on an SMP system.
While their approach requires changes to similar parts of
the operating system, their primary goal was to increase
fairness to all applications, while our goal is to create an
inherently unfair priority level for guest processes.

Aron and Druschel’s soft timers [27] provide a way to
implement rate-based clocking of network protocols.
Although their motivation, avoiding the penalty of TCP
slow-start for small file transfers over high delay-band-
width networks, is different than ours, limiting the fraction
of the server’s network bandwidth that a single http client

or virtual host server gets, both techniques can be used to
achieve similar ends.

Also, many have studied general quality of service (QoS)
support for server applications. The reservation domains of
Eclipse [28] and Resource Containers [29] can group a set of
processes or threads as a unit for resource scheduling. This
is similar to our job classes. The Nemesis kernel [30] also
provides QoS with rate-based real-time scheduling for I/O
as well as CPU. However, those systems are integrated deep
into the kernel, while our rate windows mechanism resides
between the kernel and the user-level I/O library and can
be loaded and unloaded at runtime. Our mechanism just
intercepts resource requests, keeps track of the rate, and
puts them into sleep for an appropriate time if the requests
seem to exceed the limit.

The idea of regulating traffic rates in the network has
been extensively studied. Congestion avoidance schemes
such as leaky bucket [31] and its variants [32], [33] use
averages over various time intervals to determine which
traffic is within its negotiated bandwidth. However, since
these approaches are designed for policing traffic at routers,
they must drop nonconforming traffic. In contrast, since our
approach is at the source, we can delay traffic to enforce
bandwidth limits.

Resource partitioning using virtual machines has been
popular both in the 1970s [34] aswell as in recentprojects such
asDisco [35].Thekeydifference is thatwhilevirtualmachines
provide hard isolation of resources between VMs at con-
siderable runtime overhead, our approach is a simple
extension to an existing operating system or runtime library.

8 CONCLUSIONS

In this paper, we have shown that it is possible to achieve
fine-grained cycle stealing on workstations without sig-
nificantly impacting host processes. We presented the
design, implementation, and performance of a suite of
resource policing mechanisms that provide this vital safety
net even in the presence of guest processes that aggressively
demand resources.

We first have addressed resource contention for CPU
and memory. A new guest class of processes prevents guest
processes from stealing any processor time from host
processes. This change alone can have an effect of 8 percent
CPU consumption on Linux systems and up to 40 percent
on other operating systems. We implemented a new page
replacement policy that imposes hard upper and lower
limits on the number of physical pages that can be obtained
by guest processes when host processes are active.

To police network and I/O contention between guest and
host processes, we have presented the rate windows
mechanism that allows an operating system to throttle the
rate atwhich disk andnetwork communication is performed.
Our experiments demonstrated that we are able to enforce
these resource limits on guest jobs with little overhead.

Using two sets of experiments with all the resource
policing mechanisms put together, we demonstrated that
resource intensive guest jobs would not noticeably degrade
system responsiveness to both terminal-based and Win-
dow-based interactive applications.

Although all these mechanisms were developed for our
Linger-Longer system, they are general enough to serve
other types of use. CPU and memory priority mechanisms
can provide an ultralow job priority augmenting the nice

890 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 10, OCTOBER 2004

command in UNIX. Our communication and I/O throttling
mechanisms can support lightweight rate-based bandwidth
scheduling which can bound maximum bandwidth usage.

It is possible to further enhance the virtual memory
system to increase the speed at which pages are reclaimed
from the guest processes by the host processes. In
particular, dirty guest pages require writing back to the
swap device before they can be allocated to the host
process. One extension that we are planning would trigger
the VM system to aggressively write dirty pages to disk for
guest processes when this can be done without causing
resource contention with the host process. This can be
thought of as a background cleaning process, analogous to
the cleaner in log-structured file systems.

One area of future work for our rate windows mechan-
ism is to provide a complete study of the ability of the
system to handle finer granularity policing of resources by
dynamically adjusting the window size. Since our mechan-
ism requires only the ability to monitor and delay user level
I/O requests, we could implement our approach in user
space libraries.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Nimish Pachapurkar
for developing the interactive application benchmark. This
work was supported in part by the Consortium for
Embedded Internetworking Technologies (CEINT) Re-
search Awards.

REFERENCES

[1] M.W. Mutka and M. Livny, “The Available Capacity of a Privately
OwnedWorkstation Environment,” Performance Evaluation, vol. 12,
no. 4, pp. 269-284, 1991.

[2] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure. San Francisco: Morgan-Kaufmann, 1998.

[3] F. Berman, G. Fox, and A. Hey, Grid Computing: Making the Global
Infrastructure a Reality. Wiley, 2003.

[4] M. Litzkow, M. Livny, and M. Mutka, “Condor—A Hunter of Idle
Workstations,” Proc. Int’l Conf. Distributed Computing Systems,
pp. 104-111, 1988.

[5] K.D. Ryu, J.K. Hollingsworth, and P. Keleher, “Efficient Network
and I/O Throttling for Fine-Grain Cycle Stealing,” Proc. Super-
computing Conf., 2001.

[6] K.D. Ryu and J.K. Hollingsworth, “Linger Longer: Fine-Grain
Cycle Stealing for Networks of Workstations,” Proc. Supercomput-
ing Conf., 1998.

[7] K.D. Ryu and J. Hollingsworth, “Exploiting Fine Grained Idle
Periods in Networks of Workstations,” IEEE Trans. Parallel and
Distributed Systems, vol. 11, no. 7, pp. 683-698, July 2000.

[8] A. Barak, O. Laden, and Y. Yarom, “The NOW Mosix and its
Preemptive Process Migration Scheme,” Bull. IEEE Technical
Committee on Operating Systems and Application Environments,
vol. 7, no. 2, pp. 5-11, 1995.

[9] J.C. Mogul and A. Borg, “The Effect of Context Switches on Cache
Performance,” Proc. Int’l Conf. Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pp. 75-84, 1991.

[10] B.L. Jacob and T.N. Mudge, “A Look at Several Memory
Management Units, TLB-Refill Mechanisms, and Page Table
Organizations,” Proc. Int’l Conf. Architectural Support for Program-
ming Languages and Operating Systems, pp. 295-306, 1998.

[11] A. Tamches and B.P. Miller, “Fine-Grained Dynamic Instrumenta-
tion of Commodity Operating System Kernels,” Proc. Third Symp.
Operating Systems Design and Implementation (OSDI), pp. 117-130,
1999.

[12] W.R. Carr and J.L. Hennessy, “WSClock—A Simple and Effective
Algorithm for Virtual Memory Management,” Proc. ACM Symp.
Operating System Principles, pp. 87-95, 1981.

[13] J.S. Heidemann and G.J. Popek, “File-System Development with
Stackable Layers,” ACM Trans. Computer Systems, vol. 12, no. 1,
pp. 58-89, 1994.

[14] K.J. McDonell, “Taking Performance Evaluation Out of the ‘Stone
Age’,” Proc. Summer USENIX Conf., pp. 8-12, 1987.

[15] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Con-
siderations,” Proc. 22nd Ann. Int’l Symp. Computer Architecture,
pp. 24-37, 1995.

[16] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
W. Yu, and W. Zwaenepoel, “TreadMarks: Shared Memory
Computing on Networks of Workstations,” IEEE Computer,
vol. 29, no. 2, pp. 18-28, Feb. 1996

[17] P. Keleher, “The Relative Importance of Concurrent Writers and
Weak Consistency Models,” Proc. Int’l Conf. Distributed Computing
Systems, pp. 91-98, 1996.

[18] J.B. Chen, “Memory Behavior for an X11 Window System,” Proc.
USENIX Winter Conf., pp. 189-200, 1994.

[19] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge, “Thread-Level
Parallelism and Interactive Performance of Desktop Applica-
tions,” Proc. Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 129-138, 2000.

[20] L. Smith and C. Laird, “Android, Open Source Scripting for
Testing & Automation,” Dr. Dobbs J., vol. 326, pp. 58-61, 2001.

[21] D.H. Bailey, E. Barszcz, J.T. Barton, and D.S. Browning, “The NAS
Parallel Benchmarks,” Int’l J. Supercomputer Applications, vol. 5,
no. 3, pp. 63-73, 1991.

[22] S. Zhou, X. Zheng, J. Wang, and P. Delisle, “Utopia: A Load
Sharing Facility for Large, Heterogeneous Distributed Computer
Systems,” SPE, vol. 23, no. 12, pp. 1305-1336, 1993.

[23] R.H. Arpaci, A.C. Dusseau, A.M. Vahdat, L.T. Liu, T.E. Anderson,
and D.A. Patterson, “The Interaction of Parallel and Sequential
Workloads on a Network of Workstations,” Proc. SIGMETRICS,
pp. 267-278, 1995.

[24] P. Krueger and R. Chawla, “The Stealth Distributed Scheduler,”
Proc. Int’l Conf. Distributed Computing Systems (ICDCS), pp. 336-
343, 1991,

[25] SiliconGraphics, IRIX 6.4 Technical Brief, http://www.sgi.com/
software/irix6.5/techbrief.pdf, 1998.

[26] B. Verghese, A. Gupta, and M. Rosenblum, “Performance
Isolation: Sharing and Isolation in Shared-Memory Multiproces-
sors,” Proc. Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 181-192, 1998.

[27] M. Aron and P. Durschel, “Soft Timers: Efficient Microsecond
Software Timer Support for Network Processing,” Proc. ACM
Symp. Operating Systems Principles (SOSP), pp. 232-246, 1999.

[28] J. Bruno, E. Gabber, B. Ozden, and A. Silberschatz, “The Eclipse
Operating System: Providing Quality of Service via Reservation
Domains,” Proc. USENIX Ann. Technical Conf., pp. 235-246, 1998.

[29] G. Banga, P. Druschel, and J. Mogul, “Resource Containers: A
New Facility for Resource Management in Server Systems,” Proc.
USENIX Third Symp. Operating System Design and Implementation,
pp. 45-58, 1999.

[30] D. Reed and R. Fairbairns, “The Nemesis Kernel,” United Feature
Syndicate, Inc., 1997.

[31] J.S. Turner, “New Directions in Communications (or which Way
to the Information Age?),” IEEE Comm. Magazine, vol. 24, no. 10,
pp. 8-15, 1986.

[32] J. Csirik, J.B.G. Frenk, M. Labbe, and S. Zhang, “On the
Multidimensional Vector Bin Packing,” Acta Cybernetica, vol. 9,
no. 4, pp. 361-369, 1990.

[33] T. Faber, L.H. Landweber, and A. Mukherjee, “Dynamic Time
Windows: Packet Admission Control with Feedback,” Proc.
SIGCOMM, pp. 124-135, 1992.

[34] R.P. Goldberg, “Survey of Virtual Machine Research,” IEEE
Computer Magazine, vol. 7, no. 6, pp. 34-45, 1974.

[35] E. Bugnion, S. Devine, and M. Rosenblum, “Disco: Running
Commodity Operating Systems on Scalable Multiprocessors,”
Proc. ACM Symp. Operating Systems Principles (SOSP), pp. 143-156,
1997.

RYU AND HOLLINGSWORTH: RESOURCE POLICING TO SUPPORT FINE-GRAIN CYCLE STEALING IN NETWORKS OF WORKSTATIONS 891

Kyung Dong Ryu received the BS and MS
degree in computer engineering from Seoul
National University in Korea in 1993 and 1995,
respectively. He received the PhD degree in
computer science from University of Maryland at
College Park in 2001. He is an assistant
professor in the Department of Computer
Science and Engineering at the Arizona State
University. His current research interests include
grid-computing, peer-to-peer computing, and

embedded system performance tuning. Dr. Ryu’s current projects
include scalable peer-to-peer computing infrastructure and �-Watch: a
performance monitoring and tuning tool for networked embedded
systems. Dr. Ryu is a member of the IEEE Computer Society and ACM.

Jeffrey K. Hollingsworth received the PhD and
MS degrees in computer science from the
University of Wisconsin in 1994 and 1990,
respectively. He received the BS degree in
electrical engineering from the University of
California at Berkeley in 1988. He is an
associate professor in the Computer Science
Department at the University of Maryland,
College Park, and affiliated with the Department
of Electrical Engineering and the University of

Maryland Institute for Advanced Computer Studies. His research
interests include instrumentation and measurement tools, resource
aware computing, high performance distributed computing, and com-
puter networks. Dr. Hollingsworth’s current projects include the dyninst
runtime binary editing tool and harmony—a system for building
adaptable, resource-aware programs. Dr. Hollingsworth is a senior
member of the IEEE and a member of the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

892 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 10, OCTOBER 2004

