
Evaluation of Performance of Cooperative Web Caching
with Web Polygraph

Ping Du Jaspal Subhlok

Department of Computer Science
University of Houston
Houston, TX 77204
{pdu, jaspal}@uh.edu

Abstract

This paper presents a framework for evaluating the performance of cooperative Web cache hierarchies. Web Poly-
graph is employed to provide an environment for simulation, to generate desired workloads, and to obtain perform-
ance statistics from the standpoint of clients and servers. Squeezer, a proxy cache log analysis tool, provides detailed
cache statistics including information about cache cooperation. Dummynet toolkit is used to manage network prop-
erties and simulate realistic network conditions. The result is a flexible framework that can analyze the performance
of a given cache hierarchy on a given workload under given network conditions. All experiments are repeatable and
results with different configurations can be compared. We describe our evaluation methodology and report our ex-
perience in employing it to compare cache hierarchies built with Squid proxy cache servers.

1 Introduction

Multiple Web caches can cooperate using a variety
of protocols to enhance the service they provide to
their clients. The value of a particular architecture
and configuration for cooperative caching depends
on a variety of factors, such as, location of caches,
network conditions, user access patterns, hardware
and software platforms, and available storage on
the caches. For a given scenario, how profitable
cache cooperation will be, what protocols are most
suitable, and what configuration is the best, are all
difficult questions. To our knowledge, no good
methods exist to evaluate a cooperative caching
setup, and hence decisions about deployment of
caches are often left to guesswork.
 Analysis of cooperative caching has been ad-
dressed by several research efforts and we mention
just a few. Cao and Irani [2] and Breslau [1] char-
acterized user access patterns by analyzing traces.
Yu [13] et al. studied the benefits of specific coop-
eration architectures with approximate models of
Web clients and servers. Krishnan [10] and Wol-
man [12] explored the performance of cache coop-
eration based on simulation with real Web client
traces. Chiang [3] and Dykes and Robbins [5]
characterized the benefits of several Web caching
schemes analytically.

 However, none of the research results can be
applied to compare the performance of different
cooperative caching protocols and hierarchies in
realistic Web environments. To achieve this goal
effectively, several requirements must be met. The
test method should be able to model realistic Web
access patterns and network characteristics. The
experiments should be repeatable so that different
protocols and hierarchies can be compared. Fi-
nally, the comparison should include user per-
ceived response times, not just hit ratios.
 Analytical approaches cannot accurately model
complex practical factors such as the impact of
inter-cache queries on cache performance. Simula-
tion with real traces on a real network environment
provides realistic results but this approach has
several limitations. The experiments are not re-
peatable, the load on the network due to experi-
ments may not be acceptable, and the approach is
not flexible enough to model different situations
and workloads.
 We present a synthetic workload simulation
method to study the performance of cooperative
caching. Web Polygraph benchmarking tool [9,
11] was extended to evaluate cooperative caching.
Squeezer program [6] was modified to obtain
cache and inter-cache statistics. Dummynet toolkit
[8] is used to simulate networks of different capa-

bilities between caches, clients and servers. The
framework allows us to compare different cache
setups and hierarchies under different workloads
and different network conditions.
 In this paper we describe our framework for
evaluation of cooperative cache arrays and report
our experience in using it. We demonstrate the
tradeoffs between different configurations of
caches, and the impact of cache size on the per-
formance of a cache hierarchy. The main result is
that our Web Polygraph based framework can
evaluate cooperative caching hierarchies effec-
tively and can be used as a tool to assist the de-
ployment of Web caches in the real world.

2 Performance evaluation frame-
work

Our performance evaluation methodology is based
on Web Polygraph. We first briefly describe Web
Polygraph and then discuss how it is extended to
evaluate cache hierarchies.

2.1 Web Polygraph

Web Polygraph [9, 11] is a freely available and
widely used benchmarking tool for caching prox-
ies, origin server accelerators and other Web in-
termediaries. It can be configured to produce a
variety of Web traffic workloads and different
traffic characteristics can be changed independ-
ently. Polygraph can generate Web traffic with
different content types, size distributions, object
modification and expiration times, cacheability,
and reuse patterns. By appropriately configuring
these parameters, realistic Web traffic can be
simulated.
 The Web Polygraph environment consists of
polyclt processes composed of robots to simulate
Web users and polysrv processes to simulate Web
servers. Requests generated by a polyclt can be
sent directly to the servers or through a proxy
cache. Servers wait for a configurable “think time”
before responding. A WAN environment, with
configurable network delay and packet loss, is
simulated by Dummynet [8]. Web Polygraph gen-
erates a detailed performance report including hit
ratio, user response time, error rate, and several
other aspects of performance.

2.2 Cooperative caching evaluation

Web Polygraph was designed to evaluate a single
caching system. The performance of a cache is
measured by the statistics obtained from the Poly-
graph processes. However, Polygraph does have
some features that help in the evaluation of cache
hierarchies. Polygraph can generate multiple re-
quest streams within the same global URL space.
Multiple client and server processes executing on
different machines can exist in the same environ-
ment, and each robot in a client process can access
any object from any server.
 Figure 1 shows a simple setup to evaluate a hi-
erarchy of proxy caches. It consists of machines
running polyclt and polysrv processes, cooperating
proxy caches, and a network connecting them. The
proxy cache hierarchy is a black box from Poly-
graph’s viewpoint; Polygraph does not know about
the configuration or cache cooperation. However,
statistics from Polygraph and the caches can be
combined for detailed performance analysis.

Figure 1. Evaluation of a cooperative cache
 hierarchy with Web Polygraph

 Each polyclt process can be configured to point
to a different cache. Four parameters determine the
number of robots on each polyclt: total request
rate, maximum client load, maximum robot load,
and number of client hosts. Normally the load is
divided evenly among polyclts. An unbalanced
workload can be achieved by configuring different
number of polyclts to point to different proxy
caches as illustrated with the additional process

polyclt1 in Figure 1. A fine grain mechanism to
achieve unbalanced load is to specify different
numbers of robots on different polyclts. The most
recent version of Polygraph also allows individual
robots to point to different caches. Polygraph proc-
esses can be run on multiple machines, which
makes this approach scalable.
 Cache hierarchy evaluation should be per-
formed in the kind of environment where the
caches will be deployed. Dummynet toolkit [8],
which can control bandwidth, latency, and delay
on per node and per link basis, is employed to
simulate different network environments. This
makes it possible to simulate expected network
conditions between caches, clients, and servers.

2.3 Performance metrics

Polygraph provides a comprehensive report of
Web cache performance that includes throughput,
mean response time, miss response time, hit re-
sponse time, hit ratio, error rate, queuing of re-
quests, connection length, object size, object class,
etc. However, there is no way for Polygraph to get
cache cooperation information since it considers
the entire cache hierarchy as a black box. If the
only goal of analysis was to obtain aggregate
cache hierarchy performance information, then the
reports provided by Polygraph will be sufficient.
However, information about cache cooperation,
such as hit ratios and response times associated
with sibling and parent hits and misses, are critical
for understanding the behavior of a cache hierar-
chy.
 In order to evaluate cache hierarchies, it is clear
that information from proxy servers must be used
in conjunction with Polygraph statistics. This is a
challenge since the meaning of common metrics is
different for Polygraph and proxy caches. As an
example, throughput is the rate at which client re-
quests are served from Polygraph’s standpoint.
However, for a proxy cache, it is the rate at which
HTTP requests are served by one particular cache
including requests from peer caches. Similarly,
response time and hit ratio have different mean-
ings since Polygraph defines them from the stand-
point of clients and servers, which is different
from the standpoint of proxy caches in a hierarchy.
 Fortunately, most Web cache systems generate
statistics and logs that can be used to complete the

necessary analysis. Summary statistics are not suf-
ficient to get a detailed picture of the performance
of a cache hierarchy. For instance, it is often not
possible to get statistics on sibling traffic, or dis-
tinguish between phases of request streams from
Polygraph. Both of these are critical for our
evaluation. We decided to work with Squid caches
[10] and took the approach of analyzing the per
request logs produced by Squid. We modified the
Squeezer [6] profiling tool in two ways: first,
cache cooperation information was added, and
second, start and end times could be defined as
command arguments to get performance results for
specific Polygraph phases. This modified tool pro-
vides information such as hit ratios and response
times, separately for local, sibling and parent hits,
and for different phases of Polygraph.

3 Experimental results

We report on the usage of the framework for
evaluating cache hierarchies of Squid cache serv-
ers. The hardware configuration of the Squid ma-
chines is 800 MHz Pentium III, 512 MB RAM and
four 30.7 GB SCSI disks. Squid servers and Poly-
graph machines are connected by 100 Mbps
switched Ethernet. The Squid cache on each ma-
chine uses at most three disks. All machines run
FreeBSD 4.1.1 and Squid 2.4. DEVEL4. For Web
Polygraph, version 2.5.4 was used.
 The test framework can be used to explore dif-
ferent cooperative caching scenarios. Variables
that can be changed are as follows:
1. Architecture of cooperative caches: parent and

sibling configurations.
2. Cooperation protocol: ICP, cache digest, etc.
3. Cache size: memory and disk cache.
4. Cache replacement and refreshment policy.
5. Workload characteristics: sharing pattern, con-

tent type, request rate, etc.
6. Network condition: bandwidth, latency, etc.
7. Client and server characteristics: client num-

ber, server think time, etc.
 We report on some experiments to demonstrate
the evaluation framework. More details are avail-
able in [4]. The workload is based on Polymix-3
[11] and consists of separate phases to fill up the
cache and for actual evaluation. Polygraph servers

were configured with 80 millisecond delay for
communication with other machines in the test
bench. Server think times are normal distributed
with a mean of 2.5 seconds. Caches use the ICP
protocol for cooperation among peers. All experi-
ments use a public interest of 50% which is a
Polygraph parameter reflecting commonality of
objects in client request streams. The total HTTP
request rate is 90 and the total disk cache size is 9

GB unless otherwise specified. No network la-
tency is configured between the caches.

3.1 Performance of different hierarchies

We compare the performance of different cache
hierarchies built with 2 or 3 Squid caches. Figure 2
lists the name and topology of the hierarchies. Ex-
perimental results are shown in Figure 3.

Figure 2. Topologies of tested Squid cache hierarchies

Figure 3. Comparison of performance of different Squid cache hierarchies

 We point out some interesting observations.
Comparing the hit ratios of separate caches (2OY
and 3OY) with corresponding all sibling hierar-
chies (2SY and 3SY), we observe that the overall
hit ratio increases significantly – from around 33%
to 55%, which underlines the benefits of peering.
A more interesting observation is that the local hit
ratios are also higher when there are siblings. The
reason is that the popular objects are more likely
to stay in a cache because of remote hits, which

improves the local hit ratio also. The average re-
sponse time for all cooperative hierarchies is better
than separate caches. This shows that the impact
of improved hit ratios due to parents and siblings
outweighs the delays and overheads of cooperative
caching in this setup. However, this situation can
change for higher delay between caches.
 The overall response time performance is best
for an all sibling hierarchy 3SY for 3 caches. It

0
200
400
600
800

1000
1200
1400
1600
1800
2000

2O
Y

2S
Y

3O
Y

3S
Y

1O
N-2O

Y

1O
N-2S

Y

1O
Y-2S

Y

2O
Y-1O

Y

2S
Y-1O

Y

M
ea

n
R

es
po

ns
e

Ti
m

e
(m

se
c)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

2O
Y

2S
Y

3O
Y

3S
Y

1O
N-2O

Y

1O
N-2S

Y

1O
Y-2S

Y

2O
Y-1O

Y

2S
Y-1O

Y

H
it

R
at

io

Parent Hit

Sibling Hit

Local Hit

cache

client

sibling-sibling

parent-child 2SY-1OY

2SY

2OY-1OY

3OY 3SY

1OY-2SY

2OY 1ON-2OY

1ON-2SY

appears that the role of siblings is more crucial
than parents in our experiments since all the higher
ranked hierarchies have sibling configurations.
 Normally, sibling caches are part of a single or-
ganization, whereas parent caches are located
closer to the Internet backbone. Parents are also
expected to have more storage and CPU power,
and have several children. None of these is true for
our setup. So additional experiments are necessary
to explore the functions of parents fairly.

3.2 Performance for different cache sizes

Another important question in Web cache usage is
the extent of performance improvement with in-
creasing disk space, and whether that depends on
cache cooperation. For this experiment, we set up
two independent and sibling caches and varied the
available disk size per cache from 1.5 GB to 24
GB. The total memory cache size per cache is 350
MB. The measured results are charted in Figure 4.

1000

1200
1400

1600

1800

2000
2200

2400

2600

0 3 6 9 12 15 18 21 24 27
Cache Size (GB)

M
ea

n
R

es
po

ns
e

Ti
m

e
(m

se
c)

No Cooperation With Cooperation

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%
55.00%
60.00%

0 3 6 9 12 15 18 21 24 27
Cache Size (GB)

H
it

R
at

io

No Cooperation With Cooperation

2730

2740

2750

2760

2770

2780

2790

2800

0 3 6 9 12 15 18 21 24 27
Cache Size (GB)

M
is

s
R

es
po

ns
e

Ti
m

e
(m

se
c)

No Cooperation With Cooperation

0
10
20
30
40
50
60
70
80
90

0 3 6 9 12 15 18 21 24 27
Cache Size (GB)

H
it

R
es

po
ns

e
Ti

m
e

(m
se

c)

No Cooperation With Coopeartion

Figure 4. Performance of hierarchies with different disk space on caches

 Both hit and miss response time are higher for
cooperative caching. Miss response time increases
because all caches have to be checked before go-
ing to the server and hits include remote hits,
which take longer. The miss response time is fairly
stable for the experiment, but the hit response time
increases with cache size. The reason is that a lar-
ger fraction of hits are disk hits and not memory
hits as the disk size increases.

 The overall hit ratio increases quickly with disk
space for both cooperative and separate caches and
then stabilizes. The average response time de-
creases rapidly with increased space and then sta-
bilizes in both cases. It is noteworthy that the
benefit of cooperative caching, in terms of the av-
erage response time, increases as the available disk
space increases. We conjecture that the overheads
of cooperative caching are fixed but the benefits
increase when a sibling cache is larger.

4 Conclusions

We introduce a framework for evaluation of coop-
erative caching based on Web Polygraph proxy
cache benchmarking tool, Squeezer cache trace
analysis tool, and Dummynet. The framework al-
lows extensive evaluation of Web cache hierar-
chies, just as Polygraph does for single caches. We
have illustrated the usage of the framework by
comparing several configurations of Squid proxy
caches. Distinguishing features of our approach
are as follows:
• Web traffic with different workload character-

istics can be easily specified.
• The experiments are performed on a real net-

work whose properties can be controlled by
Dummynet to simulate different conditions.

• Tests are repeatable and results with different
configurations can be compared.

• Both hit ratio and user response time based
metrics are used.

• Cooperative caching overheads, such as the
overhead due to inter-cache queries, directly
impact measured performance.

 There are several future directions of this re-
search. While there are no fundamental limitations
to the scalability of the approach, validation for
large systems is needed. Analytical techniques
may be combined with this approach to study large
hierarchies efficiently. Finally, updating to the
most recent version of Polygraph and improving
the user interface are critical to making this project
useful for the community.
 This research was motivated by discussions
with our industrial partners that indicated that
solving the caching needs of large organizations
was a bigger challenge than building better indi-
vidual caches. This framework can help in the
evaluation and deployment of caching solutions.

5 Acknowledgements

This research was sponsored by the Texas Ad-
vanced Technology Program under grant number
003652-0424, and by the Texas Learning and
Computation Center. Compaq Inc. loaned us the
Polygraph testbed for this project. We thank Dr.

Martin Herbordt at Boston University and Mr.
Kevin Leigh at Compaq for their advise and help.

References

[1] L. Breslau, P. Cao, L. Fan, G. Phillips, and S.
Shenker. “Web Caching and Zipf-like Distribu-
tion: Evidence and Implications”. In Proceedings
of IEEE INFOCOM’99, March 1999.

[2] P. Cao and S. Irani. “Cost-Aware WWW Proxy
Caching Algorithms”. In Proceedings of the 1997
USENIX Symposium on Internet Technology and
Systems (USITS’97), December 1997.

[3] C. Chiang, M. Ueno, M. Liu, M. Muller. “Model-
ing Web Caching Hierarchy Schemes”. Technical
Report, OSU-CISRC-6/99-TR 17.

[4] P. Du. “Evaluating of Cooperative Web Caching
with Web Polygraph”. Master thesis. University of
Houston, Department of Computer Science.

[5] S. Dykes and K. Robbins. “A Viability Analysis
of Cooperative Proxy Caching”. In Proceedings of
IEEE INFOCOM 2001, April 2001.

[6] M. Koziński. “Squeezer: a Tool for Profiling
Squid Web Cache Server”.

 http://www.geocities.com/maciej_zinski/w3cache/
squeezer.html.

[7] P. Krishnan and B. Sugla. “Utility of Co-operating
Web Proxy Caches”. In Proceedings of the Sev-
enth International World Wide Web Conference,
April 1998.

[8] L. Rizzo. Dummynet.
 http://info.iet.unipi.it/~luigi/ip_dummynet/.
[9] A. Rousskov ans D. Wessels. “High Performance

Benchmarking with Web Polygraph”.
 http://polygraph.ircache.net/doc/papers/paper01.ps

.gz.
[10] Squid Internet Object Cache.
 http://www.squid-cache.org/.
[11] Web Polygraph: a Proxy Performance Benchmark.
 http://www.Web-polygraph.org/.
[12] A. Wolman, G. Voelker, N. Sharma, N. Cardwell,

A. Karlin, and H. Levy. “On the Scale and Per-
formance of Cooperative Web Proxy Caching”. In
Proceedings of the 17th ACM symposium on Op-
erating Systems Principles (SOSP’99), 16-31, De-
cember 1999.

[13] P. Yu and E. MacNair. “Performance Study of a
Collaborative Method for Hierarchical Caching in
Proxy Servers”. In Proceedings of the Seventh In-
ternational World Wide Web Conference, April
1998.

	Introduction
	Performance evaluation framework
	Web Polygraph
	Cooperative caching evaluation
	Performance metrics

	Experimental results
	Performance of different hierarchies
	Performance for different cache sizes

	Conclusions
	Acknowledgements
	References

