
Performance Estimation for Scheduling on Shared Networks

Shreenivasa Venkataramaiah Jaspal Subhlok

Department of Computer Science
University of Houston
Houston, TX 77204

{shreeni,jaspal}@cs.uh.edu
www.cs.uh.edu/∼jaspal

Abstract

This paper develops a framework to model the perfor-
mance of parallel applications executing in a shared net-
work computing environment. For sharing of a single com-
putation node or network link, the actual performance is
predicted, while for sharing of multiple nodes and links,
performance bounds are developed. The methodology for
building such a shared execution performance model is
based on monitoring an application’s execution behavior
and resource usage under controlled dedicated execution.
The procedure does not require access to the source code
and hence can be applied across programming languages
and models. We validate our approach with experimen-
tal results with NAS benchmarks executed in different re-
source sharing scenarios on a small cluster. Applicability
to more general scenarios, such as large clusters, memory
and I/O bound programs and wide are networks, remain
open questions that are included in the discussion. This
paper makes the case that understanding and modeling ap-
plication behavior is important for resource allocation and
offers a promising approach to put that in practice.

1 Introduction

Shared networks, varying from workstation clusters to
computational grids, are an increasingly important platform
for high performance computing. Performance of an appli-
cation strongly depends on the dynamically changing avail-
ability of resources in such distributed computing environ-
ments. Understanding and quantifying the relationship be-
tween the performance of a particular application and avail-
able resources, i.e., how will the application perform un-

Appears in the Proceedings of the 9th Workshop on Job Scheduling Strate-
gies for Parallel Processing, June 2003, Seattle, WA

der given network and CPU conditions, is important for re-
source selection and for achieving good and predictable per-
formance. The goal of this research is automatic develop-
ment of application performance models that can estimate
application execution behavior under different network con-
ditions.

This research is motivated by the problem of resource se-
lection in the emerging field of grid computing [11, 12]. The
specific problem that we address can be stated as follows:
“What is the best set of nodes and links on a given network
computation environment for the execution of a given appli-
cation under current network conditions?” Node selection
based on CPU considerations has been dealt effectively by
systems like Condor [13] and LSF [27] but network consid-
erations make this problem significantly more complex. A
solution to this problem requires the following major steps:

1. Application characterization: Development of an ap-
plication performance model that captures the resource
needs of an application and models its performance un-
der different network and CPU conditions.

2. Network characterization: Tools and techniques to
measure and predict network conditions such as net-
work topology, available bandwidth on network links,
and load on compute nodes.

3. Mapping and scheduling:Algorithms to select the best
resources for an application based on existing network
conditions and application’s performance model.

Figure 1 illustrates the general framework for resource
selection. In recent years, significant progress has been
made in several of these components. Systems that char-
acterize a network by measuring and predicting the avail-
ability of resources on a network exist, some examples be-
ing NWS[26] and Remos[14]. Various algorithms and sys-
tems to map and schedule applications onto a network have

1

Application

Profiling on a
dedicated cluster

CPU, Traffic and
Synchronization

pattern

Analysis and
mathematical

modelling

Performance
Prediction Model

Network

Network Profiling and
Measurements

Current
Resource

Availability on
the Network

Analysis

Forecast of
Resource
Availability

Scheduling
Decisions and

Mapping
Algorithms

Selected Nodes
and Links on the

Network

Application characterization Network characterization

Mapping the application
on to the network

Figure 1. Framework for resource selection in
a network computing environment

been proposed, such as [4, 5, 18, 21, 24]. In general, these
projects target specific classes of applications and assume
a simple, well defined structure and resource requirements
for their application class. In practice, applications show
diverse structures that can be difficult to quantify. Our re-
search is focused on application characterization and builds
on earlier work on dynamic measurement of resource usage
by applications [19]. The goal is to automatically develop
application performance models to estimate performance in
different resource availability scenarios. We believe that
this is an important missing piece in successfully tackling
the larger problem of automatic scheduling and resource se-
lection.

This paper introduces a framework to model and predict
the performance of parallel applications with CPU and net-
work sharing. The framework is designed to work as a tool
on top of a standard Unix/Linux environment. Operating
system features to improve sharing behavior have been stud-
ied in the MOSIX system [3]. The techniques employed to
model performance with CPU sharing have also been stud-
ied in other projects with related goals [1, 25]. This paper

generalizes authors’ earlier work [23] to a broader class of
resource sharing scenarios, specifically loads and traffic on
multiple nodes and communication links. For more com-
plex scenarios, it is currently not possible to make accurate
predictions, so this research focuses on computing upper
and lower bounds on performance. A good lower bound on
performance is the characteristic that is most useful for the
purpose of resource selection.

The approach taken in this work is to measure and in-
fer the core execution parameters of a program, such as the
message exchange sequences and CPU utilization pattern,
and use them as a basis for performance modeling with re-
source sharing. This is fundamentally different from ap-
proaches that include analysis of application code to build
a performance model that have been explored by many
researchers, some examples being [6, 9]. In our view,
static analysis of application codes has fundamental limi-
tations in terms of the program structures that can be ana-
lyzed accurately, and in terms of the ability to predict dy-
namic behavior. Further, assuming access to source code
and libraries inherently limits the applicability of this ap-
proach. In our approach, all measurements are made by
system level probes, hence no program instrumentation is
necessary and there is no dependence on the programming
model with which an application was developed. Some
of the challenges we address are also encountered in gen-
eral performance modeling and prediction for parallel sys-
tems [7, 10, 16].

We present measurements of the performance of the
NAS benchmark programs to validate our methodology. In
terms of the overall framework for resource selection shown
in Figure 1, this research contributes and validates an appli-
cation characterization module.

2 Overview and validation framework

The main contribution of this paper is construction of ap-
plication performance models that can estimate the impact
of competing computation loads and network traffic on the
performance of parallel and distributed applications. The
performance estimation framework works as follows. A tar-
get application is executed on a controlled testbed, and the
CPU and communication activity on the network is moni-
tored. This system level information is used to infer pro-
gram level activity, specifically the sequence of time slots
that the CPU spends in compute, communication, and idle
modes, and the size and sequence of messages exchanged
between the compute nodes. The program level information
is then used to model execution with resource sharing. For
simpler scenarios, specifically sharing of a single node or
a single network link, the model aims to predict the actual
execution time. For more complex scenarios that involve
sharing on multiple nodes and network links, the model es-

2

timates upper and lower bounds on performance.

The input to an application performance model is the ex-
pected CPU and network conditions, specifically the load
average on the nodes and expected bandwidth and latency
on the network routes. Computing these is not the subject
of the paper but is an important component of any resource
selection framework that has been addressed in related re-
search [8, 14, 26].

We have developed a suite of monitoring tools to mea-
sure the CPU and network usage of applications. The CPU
monitoring tool would periodically probe (every 20 mil-
liseconds for the reported experiments) the processor sta-
tus and retrieve the application’s CPU usage information
from the kernel data structures. This is similar to the work-
ing of the UNIX top utility and provides an application’s
CPU busy and idle patterns. The network traffic between
nodes is actively monitored with tcpdump utility and ap-
plication messages are reassembled from network traffic as
discussed in [17]. Once the sequence of messages between
nodes is identified, the communication time for the mes-
sage exchanges is calculated based on the benchmarking of
the testbed. This yields the time each node CPU spends on
computation, communication and synchronization waits.

In order to validate this shared performance modeling
framework, extensive experimentation was performed with
MPI implementation of Class A NAS Parallel benchmarks
[2], specifically the codes EP (Embarrassingly Parallel), BT
(Block Tridiagonal solver), CG (Conjugate Gradient), IS
(Integer Sort), LU (LU solver), MG (Multigrid), and SP
(Pentadiagonal solver). The compute cluster used for this
research is a 100Mbps Ethernet based testbed of 500 MHz,
Pentium 2 machines running FreeBSD and MPICH imple-
mentation of MPI. Each of the NAS codes was compiled
with g77 or gcc for 4 nodes and executed on 4 nodes. The
computation and communication characteristics of these
codes were measured in this prototyping phase. The time
spent by the CPUs of executing nodes in different activities
is shown in Figure 2. The communication traffic generated
by the codes is highlighted in Figure 3 and was verified with
a published study of NAS benchmarks [20]. The details of
the measured execution activity, including the average du-
ration of the busy and idle phases of the CPU, are presented
in Table 1.

In the following sections we will discuss how this infor-
mation was used to concretely model the execution behav-
ior of NAS benchmarks with compute loads and network
traffic. We will present results that compare the measured
execution time of each benchmark under different CPU and
network sharing scenarios, and how they compare with the
estimates and bounds computed by the application perfor-
mance model.

0

20

40

60

80

100

CG IS MG SP LU BT EP

Benchmark

P
er

ce
nt

ag
e

C
P

U
 U

til
iz

at
io

n

Idle Communication Computation

Figure 2. CPU usage during execution of NAS
benchmarks

 0 1 0 1 0 1

 2 3 2 3 2 3

BT CG EP

 0 1 0 1 0 1

 2 3 2 3 2 3

IS LU MG

 0 1

 2 3

SP

Figure 3. Dominant communication patterns
during execution of NAS benchmarks. The
thickness of the lines is based on the gener-
ated communication bandwidth.

3

Percentage CPU Time

Average CPU Time

(milliseconds)

Messages on one

link

Busy

Benchmark

Execution
time - On

a dedicated
system

(seconds)

Compuat-
ion

Communicat-
ion

Idle

Busy Phase

Idle Phase

Number

Average

size
(KBytes)

CG 25.6 49.6 23.1 27.3 60.8 22.8 1264 18.4

IS 40.1 43.4 38.1 18.5 2510.6 531.4 11 2117.5

MG 43.9 71.8 14.4 13.8 1113.4 183.0 228 55.0

SP 619.5 73.7 19.7 6.6 635.8 44.8 1606 102.4

LU 563.5 88.1 4.0 7.9 1494.0 66.0 15752 3.8

BT 898.3 89.6 2.7 7.7 2126.0 64.0 806 117.1

EP 104.6 94.1 0 5.9 98420.0 618.0 0 0

Table 1. Measured execution characteristics of NAS benchmarks

3 Modeling performance with CPU sharing

3.1 CPU scheduler on nodes

We assume that the node scheduler assigns the CPU to
active processes fairly as follows. All processes on the
ready queue are normally given a fixed execution time slice
in round robin order. If a process blocks during execution, it
is removed from the ready queue immediately and the CPU
is assigned to another waiting process. A process gains pri-
ority (or collects credits) for some time while it is blocked
so that when it is unblocked and joins the ready queue again
it will receive a higher share of the CPU in the near future.
The net effect is that each active process receives approx-
imately equal CPU time even if some processes block for
short intervals during execution. In our experience, this is
qualitatively true at least of most Unix based systems, even
though the exact CPU scheduling policies are complex and
vary significantly among operating systems.

3.2 CPU shared on one node

We investigate the impact on total execution time when
one of the nodes running an application is shared by another
competing CPU intensive process. The basic problem can
be stated as follows: If a parallel application executes in
time T on a dedicated testbed, what is the expected execu-
tion time if one of the nodes has a competing load?

Suppose an application repeatedly executes on a CPU for
busytimephase seconds and then sleeps for idletimephase
seconds during dedicated execution. When the same appli-
cation has to share the CPU with a compute intensive load,
the scheduler will attempt to give equal CPU time slices to

the two competing processes. The impact on the overall ex-
ecution time due to CPU sharing depends on the values of
busytimephase and idletimephase as illustrated in Figure 4
and explained below for different cases:

. . . .

. . . .

. . . .

. . . .

. . . .

Application
Executing

Load
Executing Idle

No idle time, idletimephase = 0

busytimephase > idletimephase

busytimephase < idletimephase

Unloaded

Loaded

Unloaded

Loaded

Unloaded

Loaded

Time (ms)

. . . .
(a)

(c)

(b)

Figure 4. Relationship between CPU usage
pattern during dedicated execution and exe-
cution pattern when the CPU has to be shared
with a compute load.

• idletimephase = 0 : The CPU is always busy with-
out load. The two processes get alternate equal time

4

slices and the execution time doubles as shown in Fig-
ure 4(a).

• busytimephase < idletimephase : There is no in-
crease in the execution time. Since the CPU is idle
over half the time without load, the competing process
gets more than its fair share of the CPU from the idle
CPU cycles. This is illustrated in Figure 4(b)

• busytimephase > idletimephase : In this situation,
the competing process cannot get its entire fair share of
the CPU from idle cycles. The scheduler gives equal
time slices to the two processes. This case is illustrated
in Figure 4(c). The net effect is that every cycle of du-
ration busytimephase+idletimephasenow executes
in 2 ∗ busytimephase time. Alternately stated, the ex-
ecution time will increase by a factor of:

busytimephase− idletimephase

busytimephase + idletimephase

Once the CPU usage pattern of an application is known,
the execution time with a compute load can be estimated
based on the above discussion. For most parallel appli-
cations, the CPU usage generally follows a pattern where
busytimephase > idletimephase. A scheduler provides
fairness by allocating a higher fraction of CPU in the near
future to a process that had to relinquish its time slice be-
cause it entered an idle phase, providing a smoothing effect.
For a parallel application that has the CPU busy cpubusy
seconds, and idle for cpuidle seconds on aggregate dur-
ing execution, the execution time often simply increases to
2 ∗ cpubusy seconds. This is the case for all NAS bench-
mark programs. The exception is when an application has
long intervals of low CPU usage and long intervals of high
CPU usage. In those cases, the impact on different phases
of execution has to be computed separately and combined.
Note that the execution time with two or more competing
loads, or for a given UNIX load average, can be predicted
in a similar fashion.

In order to validate this approach, the execution charac-
teristics of the NAS programs were computed as discussed
and the execution time with sharing of CPU on one node
was estimated. The benchmarks were then executed with
a load on one node and the predicted execution time was
compared with the corresponding measured execution time.
The results are presented in Figure 5. There is a close cor-
respondence between predicted and measured values for all
benchmarks, validating our prediction model for this sim-
ple scenario. It is clear from Figure 5 that our estimates are
significantly more accurate than the naive prediction that
the execution time doubles when the CPU has to be shared
with another program.

0

50

100

150

200

250

CG IS MG SP LU BT EP

Benchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Predicted

Measured

Figure 5. Comparison of predicted and mea-
sured execution times with a competing com-
pute load on one node. The execution time
with no load is normalized to 100 units for
each program.

3.3 CPU shared on multiple nodes

We now consider the case where the CPUs on all nodes
have to be shared with a competing load. Additional com-
plication is caused by the fact that each of the nodes is
scheduled independently, i.e., there is no coordinated (or
gang) scheduling. This does not impact the performance
of local computations but can have a significant impact on
communication. When one process is ready to send a mes-
sage, the receiving process may not be executing, leading
to additional communication and synchronization delays.
It is virtually impossible to predict the exact sequence of
events and arrive at precise performance predictions in this
case [1]. Therefore, we focus on developing upper and
lower bounds for execution time.

During program execution without load, the CPU at any
given time is computing, communicating or idle. We dis-
cuss the impact on the time spent on each of these modes
when there is a competing load on all nodes.

• Computation: The time spent on local computations
with load can be computed exactly as in the case of a
compute load on only one node that was discussed ear-
lier. For most parallel applications, this time doubles
with fair CPU sharing.

• Communication: The CPU time for communication is
first expected to double because of CPU sharing. Com-

5

pletion of a communication operation implemented
over the networking (TCP/IP) stack requires active
processing on sender and receiver nodes even for asyn-
chronous operations. Further, when one process is
ready to communicate with a peer, the peer process
may not be executing due to CPU sharing since all
nodes are scheduled independently. The probability
that a process is executing at a given point when two
processes are sharing the CPU is 50%. If a peer pro-
cess is not active, the process initiating the commu-
nication may have to wait half a CPU time slice to
start communicating. A simple analysis shows that
the communication time could double again due to in-
dependent scheduling. However, this is the statistical
worst case scenario since the scheduler will try to com-
pensate the processes that had to wait, and because
pairs of processes can start executing in lock-step in
the case of regular communication. Hence, the com-
munication time may increase by up to a factor of 4.

• Idle: For compute bound parallel programs, the CPU
is idle during execution primarily waiting for messages
or signals from another node. Hence, the idle time
occurs while waiting for a sequence of computation
and communication activities involving other execut-
ing nodes to complete. The time taken for computation
and communication activities is expected to increase
by a factor of 2 and 4, respectively with CPU sharing.
Hence, in the worst case, the idle time may increase by
a factor of 4.

Based on this discussion, we have the following result.
Suppose comptime, commtime and idletime are the time
spent by the node CPUs computing, communicating, and
idling during execution on a dedicated testbed. The execu-
tion time is bounded from above by:

2 ∗ comptime + 4 ∗ (commtime + idletime)
The execution time is also loosely bounded from below

by:
2 ∗ (comptime + commtime)
which is the expected execution time when the CPU is

shared on only one node.
For validation, the higher and lower bounds for execu-

tion time for the NAS benchmarks with a single load pro-
cess on all nodes were computed and compared with the
measured execution time under those conditions. The re-
sults are charted in Figure 6.

We observe that the measured execution time is always
within the computed bounds. The range between the bounds
is large for communication intensive programs, particularly
CG and IS. For most applications, the measured values are
in the upper part of the range, often very close to the pre-
dicted upper bound. The main conclusion is that the above
analysis can be used to compute a meaningful upper bound

0

50

100

150

200

250

300

350

0

50

100

150

200

250

300

350

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

Im
e

CG EPBTLUSPMGIS

Predicted
Upper Bound

Predicted
Lower Bound

Measured

Benchmark

Figure 6. Comparison of predicted and mea-
sured execution times with a competing com-
pute load on all nodes.

for execution time with load on all nodes and independent
scheduling. We restate that a good upper bound on execu-
tion time (or a lower bound on performance) is valuable for
resource selection.

4 Modeling performance with communica-
tion link sharing

4.1 One shared link

We study the impact on execution time if a network link
has to be shared or the performance of a link changes for any
reason. We assume that the performance of a given network
link, characterized by the effective latency and bandwidth
observed by a communicating application, are known. We
want to stress that finding the expected performance on a
network link is far from trivial in general, even when the
capacity of the link and the traffic being carried by the link
are known.

The basic problem can be stated as follows: If a parallel
application executes in time T on a dedicated testbed, what
is the expected execution time if the effective latency and
bandwidth on a network link change from L and B to newL
and newB, respectively.

The difference in execution time will be the difference in
the time taken for sending and receiving messages after the
link properties have changed. If the number of messages
traversing this communication link is nummsgs and the
average message size is avgmsgsize, then the time needed
for communication increases by:

6

[(newL + avgmsgsize/newB) −
(L + avgmsgsize/B)] ∗ nummsgs

We use this equation to predict the increase in execution
time when the effective bandwidth and latency on a com-
munication link change.

For the purpose of validation, the available bandwidth
on one of the links on our 100Mbps Ethernet testbed was
reduced to a nominal 10Mbps with dummynet [15] tool. The
characteristics of the changed network were measured and
the information was used to predict the execution time for
each NAS benchmark program. The programs were then
executed on this modified network and the measured and
predicted execution time were compared. The results are
presented in Figure 7.

0

50

100

150

200

250

300

CG IS MG SP LU BT EP

Benchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Predicted

Measured

Figure 7. Comparison of predicted and mea-
sured execution times with bandwidth re-
duced to 10 Mbps from 100 Mbps on one com-
munication link.The execution time with no
load is normalized to 100 units for each pro-
gram.

We observe that the predicted and measured values are
fairly close demonstrating that the prediction model is ef-
fective in this simple scenario of resource sharing.

4.2 Multiple shared links

When the performance of multiple communication links
is reduced, the application performance also suffers indi-
rectly because of synchronization effects. As in the case of
load on all nodes, we discuss how the time the CPU spends
on computation, communication, and idle phases during ex-
ecution on a dedicated testbed, changes due to link sharing.

• Computation: The time spent on local computations
remains unchanged with link sharing.

• Communication: The time for communication will in-
crease as discussed in the case of sharing of a single
link. The same model can be used to compute the in-
crease in communication time.

• Idle: As discussed earlier, the idle time at nodes of an
executing parallel program occurs while waiting for a
sequence of computation and communication activities
involving other executing nodes to complete. Hence,
in the worst case, the idle time may increase by the
same factor as the communication time.

We introduce commratio as the factor by which the time
taken to perform the message exchange sequences on the
executing nodes are expected to slow down due to link shar-
ing. (the largest value is used when different nodes perform
different sequences of communication.) That is, the total
time to physically transfer all messages in an application
run is expected to change by a factor commratio, not in-
cluding any synchronization related delay. This commratio
is determined by two factors.

1. The messages sequence sent between a pair of nodes
including the size of each message.

2. The time to transport a message of a given size be-
tween a pair of nodes.

The message sequences exchanged between nodes is com-
puted ahead of time as discussed earlier in this paper. The
time to transfer a message depends on application level la-
tency and bandwidth between the pair of nodes. A network
measurement tool like NWS is used to obtain these charac-
teristics. For the purpose of experiments reported in this pa-
per, the effective latency and bandwidth was determined by
careful benchmarking ahead of time with different message
sizes and different available network bandwidths. The rea-
son for choosing this way is to factor out errors in network
measurements in order to focus on performance modeling.

We then have the following result. Suppose comptime,
commtime and idletime are the time spent by the node CPUs
computing, communicating, and idling during execution
on a dedicated testbed. An upper bound on the application
execution time due to a change in the characteristics of all
links is:

comptime + commratio ∗ (commtime + idletime)

A corresponding lower bound on execution time is:

comptime + commratio ∗ commtime + idletime

7

For validation, the bounds for execution time for the
NAS benchmarks with nominal available bandwidth re-
duced from 100Mbps to 10Mbps were computed and com-
pared with the measured execution times under those con-
ditions. The results are charted in Figure 8.

0

100

200

300

400

500
Predicted
Upper Bound

Predicted
Lower Bound

Measured

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

Im
e

CG EPBTLUSPMGIS

Benchmark

Figure 8. Comparison of estimated and mea-
sured execution times with bandwidth limited
to 10 Mbps on all communication links.

We note that all measured execution times are within the
bounds, except that the measured execution time for IS is
marginally higher than the upper bound. As expected, the
range covered by the bounds is larger for communication
intensive programs CG, IS and MG. In the case of IS, the
measured value is near the upper bound implying that syn-
chronization waits are primarily related to communication
in the program, while the measured execution time of MG
is near the lower bound indicating that the synchronization
waits are primarily associated with computations on other
nodes. The main conclusion is that this analysis can be used
to compute meaningful upper and lower bounds for execu-
tion time with sharing on all communication links.

We have used the execution time from a representative
run of the application for each scenario for our results. In
most cases the range of execution time observed is small,
typically under 1%. However, for applications with high
rate of message exchange, significant variation was ob-
served between runs. For example, in the case of LU run-
ning with competing loads on all nodes, the difference be-
tween the slowest and fastest runs was around 10%.

5 Limitations and extensions

We have made a number of assumptions, implicit and
explicit, in our treatment, and presented results for only a

few scenarios. We now attempt to distinguish between the
fundamental limitations of this work and the assumptions
that were made for simplicity.

• Estimation of network performance: For estimation
of performance on a new or changed network, we as-
sume that the expected latency and bandwidth on the
network links are known and can be predicted for the
duration of the experiments. The results of perfor-
mance estimation can only be as good as the predic-
tion of network behavior. Estimation of expected net-
work performance is a a major challenge for network
monitoring tools and accurate prediction is often not
possible. However, this is orthogonal to the research
presented in this paper. Our goal is to find the best per-
formance estimates for given network characteristics.

• Asymmetrical computation loads and traffic: We
have developed results for the cases of equal loads on
all nodes and equal sharing on all links. This was done
for simplicity. The approach is applicable for different
loads on different nodes and different available band-
width on different links. The necessary input for anal-
ysis is the load average on every node and expected
latency and bandwidth on links. In such situations,
typically the slowest node and the slowest link will de-
termine the bounds on application speed. The model-
ing is also applicable when there is sharing of nodes
as well as links but we have omitted the details due to
lack of space. More details are described in [22].

• Asymmetrical applications: We have implicitly as-
sumed that all nodes executing an application are fol-
lowing a similar execution pattern. In case of asym-
metrical execution, the approach is applicable but the
analysis has to be done for each individual node sep-
arately before estimating overall application perfor-
mance. Similarly, if an application executes in dis-
tinctly different phases, the analysis would have to be
performed separately for each phase.

• Execution on a different architecture from where
an application performance model was prototyped:
If the relative execution speed between the prototyping
and execution nodes is fixed and can be determined,
and the latency and bandwidth of the executing net-
work can be inferred, a prediction can be performed.
This task is relatively simple when moving between
nodes of similar architectures, but is very complex
if the executing nodes have a fundamentally different
cache hierarchy or processor architecture as compared
to prototyping nodes.

• Wide area networks: All results presented in this pa-
per are for a local cluster. The basic principles are

8

designed to apply across wide area networks also al-
though the accuracy of the methodology may be differ-
ent. An important issue is that our model does not ac-
count for sharing of bandwidth by different communi-
cation streams within an application. This is normally
not a major factor in a small cluster where a crossbar
switch allows all nodes to simultaneously communi-
cate at maximum link speed. However, it is an impor-
tant consideration in wide area networks where sev-
eral application streams may share a limited bandwidth
network route.

• Large systems: The results developed in this paper
are independent of the number of nodes but the ex-
perimentations was performed only on a small clus-
ter. How well this framework will work in practice for
large systems remains an open question.

• Memory and I/O constraints: This paper does not
address memory bound or I/O bound applications. In
particular, it is assumed that sufficient memory is avail-
able for the working sets of applications even with
sharing. In our evaluation experiments, the synthetic
competing applications do not consume significant
amount of storage and hence the caching behavior of
the benchmarks is not affected with processor sharing.
Clearly more analysis is needed to give appropriate
consideration to storage hierarchy which is critical in
many scenarios.

• Different data sets and number of nodes than the
prototyping testbed: If the performance pattern is
strongly data dependent, an accurate prediction is not
possible but the results from this work may still be used
as a guideline. This work does not make a contribution
for performance prediction when the number of nodes
is scaled, but we conjecture that it can be matched with
other known techniques.

• Application level load balancing: We assume that
each application node performs the same amount of
work independent of CPU and network conditions.
Hence, if the application had internal load balancing,
e.g., a master-slave computation where the work as-
signed to slaves depends on their execution speed, then
our prediction model cannot be applied directly.

6 Conclusions

This paper demonstrates that detailed measurement of
the resources that an application needs and uses can be
employed to build an accurate model to predict the per-
formance of the same application under different network
conditions. Such a prediction framework can be applied to

applications developed with any programming model since
it is based on system level measurements alone and does
not employ source code analysis. In our experiments, the
framework was effective in predicting the execution time or
execution time bounds of the programs in the NAS parallel
benchmark suite in a variety of network conditions.

To our knowledge, this is the first effort in the specific
direction of building a model to estimate application perfor-
mance in different resource sharing scenarios, and perhaps,
this paper raises more questions than it answers. Some of
the direct questions about the applicability of this approach
are discussed (but not necessarily answered) in the previ-
ous section. Different application, network, processor and
system architectures raise issues that affect the applicability
of the simple techniques developed in this paper. However,
our view is that most of those problems can be overcome
with improvement of the methodology that was employed.

More fundamentally, the whole approach is based on the
ability to predict the availability of networked resources
in the near future. If resource availability on a network
changes in a completely dynamic and unpredictable fash-
ion, no best effort resource selection method will work satis-
factorily. In practice, while future network state is far from
predictable, reasonable estimates of the future network sta-
tus can be obtained based on recent measurements. The
practical implication is that the methods in this paper may
only give a rough estimate of the expected performance on
a given part of the network, since the application perfor-
mance estimate is, at best, as good as the estimate of the
resource availability on the network. However, these per-
formance estimates are still a big improvement over current
techniques that either do not consider application character-
istics, or use a simplistic qualitative description of an appli-
cation such as master-slave or SPMD. Even an approximate
performance prediction may be able to effectively make a
perfect (or the best possible) scheduling decision by select-
ing the ideal nodes for execution.

In summary, the ability to predict the expected perfor-
mance of an application on a given set of nodes, and using
this prediction for making the best possible resource choices
for execution, is a challenging problem which is far from
solved by the research presented in this paper. However,
this paper makes a clear contribution toward predicting ap-
plication performance or application performance bounds.
We believe this is an important step toward building good
resource selection systems for shared computation environ-
ments.

7 Acknowledgments

This research was supported in part by the Los Alamos
Computer Science Institute (LACSI) through Los Alamos
National Laboratory (LANL) contract number 03891-99-23

9

as part of the prime contract (W-7405-ENG-36) between the
DOE and the Regents of the University of California. Sup-
port was also provided by the National Science Foundation
under award number NSF ACI-0234328 and the University
of Houston’s Texas Learning and Computation Center.

We wish to thank other current and former members of
our research group, in particular, Mala Ghanesh, Amitoj
Singh, and Sukhdeep Sodhi, for their contributions. Finally,
the paper is much improved as a result of the comments and
suggestions made by the anonymous reviewers.

References

[1] A. Arpaci-Dusseau, D. Culler, and A. Mainwaring. Schedul-
ing with implicit information in distributed systems. In SIG-
METRICS’ 98/PERFORMANCE’ 98 Joint Conference on
the Measurement and Modeling of Computer Systems, June
1998.

[2] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart,
A. Woo, and M. Yarrow. The NAS Parallel Benchmarks
2.0. Technical Report 95-020, NASA Ames Research Cen-
ter, December 1995.

[3] A. Barak and O. La’adan. The MOSIX multicomputer
operating system for high performance cluster computing.
Future Generation Computer Systems, 13(4–5):361–372,
1998.

[4] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application-level scheduling on distributed heterogeneous
networks. In Proceedings of Supercomputing ’96, Pitts-
burgh, PA, November 1996.

[5] J. Bolliger and T. Gross. A framework-based approach to the
development of network-aware applications. IEEE Trans.
Softw. Eng., 24(5):376 – 390, May 1998.

[6] M. Clement and M. Quinn. Automated performance predic-
tion for scalable parallel computing. Parallel Computing,
23(10):1405–1420, 1997.

[7] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. LogP: To-
wards a realistic model of parallel computation. In Proceed-
ings of the Fourth ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, pages 1–12, San
Diego, CA, May 1993.

[8] P. Dinda and D. O’Hallaron. An evaluation of linear models
for host load prediction. In Proceedings of the 8th IEEE
International Symposium on High Performance Distributed
Computing, August 1999.

[9] T. Fahringer, R. Basko, and H. Zima. Automatic perfor-
mance prediction to support parallelization of Fortran pro-
grams for massively parallel systems. In Proceedings of the
1992 International Conference on Supercomputing, pages
347–56, Washington, DC, July 1992.

[10] T. Fahringer, B. Scholz, and X. Sun. Execution-driven per-
formance analysis for distributed and parallel systems. In
2nd International ACM Sigmetrics Workshop on Software
and Performance (WOSP 2000), Ottawa, Canada, Sep 2000.

[11] I. Foster and K. Kesselman. Globus: A metacomputing in-
frastructure toolkit. Journal of Supercomputer Applications,
11(2):115–128, 1997.

[12] A. Grimshaw and W. Wulf. The Legion vision of a world-
wide virtual computer. Communications of the ACM, 40(1),
January 1997.

[13] M. Litzkow, M. Livny, and M. Mutka. Condor — A hunter
of idle workstations. In Proceedings of the Eighth Confer-
ence on Distributed Computing Systems, San Jose, Califor-
nia, June 1988.

[14] B. Lowekamp, N. Miller, D. Sutherland, T. Gross,
P. Steenkiste, and J. Subhlok. A resource query interface for
network-aware applications. In Seventh IEEE Symposium
on High-Performance Distributed Computing, Chicago, IL,
July 1998.

[15] L. Rizzo. Dummynet: a simple approach to the evaluation of
network protocols. ACM Computer Communication Review,
27(1), Jan 1997.

[16] J. Schopf and F. Berman. Performance prediction in produc-
tion environments. In 12th International Parallel Processing
Symposium, pages 647–653, Orlando, FL, April 1998.

[17] A. Singh and J. Subhlok. Reconstruction of application layer
message sequences by network monitoring. In IASTED In-
ternational Conference on Communications and Computer
Networks, November 2002.

[18] J. Subhlok, P. Lieu, and B. Lowekamp. Automatic node
selection for high performance applications on networks.
In Proceedings of the Seventh ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages
163–172, Atlanta, GA, May 1999.

[19] J. Subhlok, S. Venkataramaiah, and A. Singh. Characteriz-
ing NAS benchmark performance on shared heterogeneous
networks. In 11th International Heterogeneous Computing
Workshop, April 2002.

[20] T. Tabe and Q. Stout. The use of the MPI communication
library in the NAS Parallel Benchmark. Technical Report
CSE-TR-386-99, Department of Computer Science, Univer-
sity of Michigan, Nov 1999.

[21] H. Tangmunarunkit and P. Steenkiste. Network-aware dis-
tributed computing: A case study. In Second Workshop on
Runtime Systems for Parallel Programming (RTSPP), Or-
lando, March 1998.

[22] S. Venkataramaiah. Performance prediction of distributed
applications using CPU measurements. Master’s thesis, Uni-
versity of Houston, August 2002.

[23] S. Venkataramaiah and J. Subhlok. Performance prediction
for simple CPU and network sharing. In LACSI Symposium
2002, October 2002.

[24] J. Weismann. Metascheduling: A scheduling model for
metacomputing systems. In Seventh IEEE Symposium
on High-Performance Distributed Computing, Chicago, IL,
July 1998.

[25] R. Wolski, N. Spring, and J. Hayes. Predicting the CPU
availability of time-shared unix systems on the computa-
tional grid. Cluster Computing, 3(4):293–301, 2000.

[26] R. Wolski, N. Spring, and C. Peterson. Implementing a per-
formance forecasting system for metacomputing: The Net-
work Weather Service. In Proceedings of Supercomputing
’97, San Jose, CA, Nov 1997.

[27] S. Zhou. LSF: load sharing in large-scale heterogeneous dis-
tributed systems. In Proceedings of the Workshop on Cluster
Computing, Orlando, FL, April 1992.

10

