
Empirical Evaluation of Shared Parallel Execution
on Independently Scheduled Clusters

Mala Ghanesh Sathish Kumar Jaspal Subhlok

Department of Computer Science, University of Houston, Houston, TX 77204

Abstract

Parallel machines are typically space shared, or time
shared such that only one application executes on a group
of nodes at any given time. It is generally assumed that
executing multiple parallel applications simultaneously on
a group of independently scheduled nodes is not efficient
because of synchronization requirements. The central con-
tribution of this paper is to demonstrate that performance
of parallel applications with sharing is typically competi-
tive for independent and coordinated (gang) scheduling on
small compute clusters. There is a modest overhead due
to uncoordinated scheduling but it is often compensated by
better sharing of resources. The impact of sharing was stud-
ied for different numbers of nodes and threads and different
memory and CPU requirements of competing applications.
The significance of the CPU time slice, a key parameter in
CPU scheduling, was also studied. Application characteris-
tics and operating system scheduling policies are identified
as the main factors that influence performance with node
sharing. All experiments are performed with NAS bench-
marks on a Linux cluster. The significance of this research
is that it provides evidence to support flexible and decen-
tralized scheduling and resource selection policies for clus-
ter and grid environments.

1. Introduction

Shared networks, varying from workstation clusters to
computational grids, are an increasingly important platform
for high performance computing. Such distributed compu-
tation environments are normally space shared, i.e., one ap-
plication executes on a set of nodes to completion before the
nodes are assigned to another application. Gang schedul-
ing [6] is a technique used to provide fair sharing with space
scheduling whereby all threads belonging to an application
are simultaneously scheduled on a set of nodes and simul-

Contact E-mail: jaspal@uh.edu

taneously swapped out. In both of these models, only a sin-
gle application executes on a group of processors at a given
time. We will refer to this basic approach as gang schedul-
ing in this paper. This is the most common usage model
for parallel computing but it has significant shortcomings in
terms of performance and flexibility.

� Performance: Gang scheduling can lead to underuti-
lization of nodes in two ways. First, in some instances,
the number of available nodes may not match the num-
ber of nodes needed to execute an application. In such
a situation, many nodes must stay idle while enough
nodes become available to execute a parallel applica-
tion. Second, a single application may not use com-
putation and communication resources on the nodes
efficiently. As an example, for some applications, the
CPU is idle a large percentage of the time because of
communication, I/O, user interactions, or inherent load
imbalance. These aspects are discussed in more detail
in [8].

� Flexibility: Gang scheduling implies control of all
nodes by a single resource scheduler or queuing sys-
tem. This becomes increasingly difficult for grid com-
putations that may span several clusters controlled
by different organizations. For example, the model
of self scheduling of applications based on informa-
tion about available resources pioneered by the AppleS
project [4] is difficult to implement if a single resource
manager controls access to all nodes in a system.

The problems associated with gang scheduling can be
avoided by allowing multiple parallel applications to time
share nodes based on local operating system scheduling on
each node. The main reason such independent scheduling
is rarely used for high performance applications is the im-
plicit assumption that most parallel applications cannot ex-
ecute efficiently if individual threads are scheduled inde-
pendently by the operating systems on the nodes. There are
good reasons for such behavior. In general, a pair of pro-
cesses has to execute concurrently to communicate or syn-
chronize. This is intuitively clear for blocking communi-
cation, but it is often the case for non-blocking commu-

nication also for implementation specific reasons such as
buffer reservation messages and flow control. Independent
scheduling of threads of a parallel application implies that
when one thread is swapped out by the operating system for
time sharing, other threads on other nodes can get blocked.
Since every thread is assigned a CPU time slice indepen-
dent of others, application execution can deteriorate dra-
matically because of the multiplicative effect potentially
caused by every context switch on every executing node.
Intuitively, independent scheduling is expected to be effec-
tive for coarse-grained applications but not for fine-grained
applications with frequent communication or synchroniza-
tion operations.

The main result of this paper is that for a broad range of
applications on small clusters, independent scheduling is at
least competitive with gang scheduling. That is, the appli-
cation performance is often similar whether multiple paral-
lel applications timeshare a set of nodes individually con-
trolled by the operating systems, or if all threads of one ap-
plication are scheduled collectively on groups of nodes with
gang scheduling. In many cases, sharing with independent
scheduling performs better because it offers better utiliza-
tion of resources. We also present results that relate the per-
formance of shared execution with independent scheduling
to the key factors that it depends on: number of threads and
nodes, memory requirements, operating system time slice
quantum, and the number of sharing applications on a node.

These results suggest that scheduling and resource al-
location models that are decentralized or employ concur-
rent scheduling [8] are perhaps more valuable than is cur-
rently believed. For example, models where applications in-
dependently select execution nodes based on best effort net-
work and CPU information [4, 5, 13, 15] provided by tools
like NWS [16] and Remos [11] are promising because a
loosely controlled execution environment can provide ac-
ceptable application performance. This is especially impor-
tant for grid environments that employ multiple distributed
resources [7, 9, 10] since fine coordination of multiple clus-
ters in different administrative domains can be difficult to
impossible. This research essentially promotes the value of
flexible resource selection mechanisms that allow indepen-
dent scheduling of nodes for parallel computing.

2. Performance of independent and gang
scheduling

We discuss the expected performance when a long run-
ning application has to fairly share a set of nodes with
other applications. For our discussions we will focus on
the performance of an application of interest that has to
share nodes with a competing application or a competing
load. In this paper we assume that the competing load is al-
ways CPU-hungry so that the results can be interpreted in

a meaningful way. For introductory discussion in this sec-
tion, we assume single processor executing nodes, the num-
ber of application threads equals the number of nodes, and
there is one competing load thread on every node. Many of
these assumptions will be relaxed later in this paper. We will
also present results for multiple CPU nodes and for multi-
ple threads per node. We now discuss node sharing perfor-
mance for gang scheduling and for uncoordinated indepen-
dent scheduling.

In the case of gang scheduling, all threads associated
with one application will execute simultaneously for an in-
terval of time and then be swapped out for an equal inter-
val of time. The application execution time will double as
compared to execution without sharing, in addition to the
overhead of context switching. Assuming that the time for
which one application executes is much larger than the con-
text switch overhead, the overall execution time (same as
turnaround time in this context) will approximately double
for a long running application. In this paper we employ such
a “doubled” execution time as the reference execution time
with gang scheduling. A real implementation will have ad-
ditional overheads that are ignored. Hence our estimates are
essentially optimistic execution times for gang scheduling
and we will treat them as such. However, we also believe
that gang scheduling overheads should be relatively small in
a good implementation and hence our optimistic estimates
should be realistic for long running applications.

We now consider the case of independent scheduling. We
restate that we are considering the case where one thread
of the application of interest and the competing load is as-
signed to every node. The scheduler on each node will at-
tempt to assign equal time slices to the application of in-
terest and competing loads, independent of scheduling on
other nodes. If the application of interest is compute inten-
sive with no communication, then the threads on each node
will simply take twice as long to complete and the over-
all execution time of the application of interest will double.
However, when an application has a significant communi-
cation component, estimating performance is much more
complex. For a pair of threads to perform a synchronous
data exchange, both must be actively executing at the same
time, but since each thread is scheduled independently, it is
difficult to predict synchronization waits. The communica-
tion delays due to uncoordinated scheduling can have a cas-
cading effect on the performance of the entire application
because of data and control dependencies.

Following is a discussion of the main factors that de-
termine the performance of an application with sharing of
independently scheduled nodes. We separately discuss the
role of the node scheduling policy and application charac-
teristics.

2.1. Node scheduling policy

If the application threads on each node of a workstation
cluster were scheduled in a rigid round-robin fashion, a par-
allel application will get slowed down by an unacceptably
large factor, and theoretically may never complete execu-
tion. The reason is that a pair of processes on different nodes
that need to perform a synchronous data exchange may
never be scheduled at the same time. In practice, this means
potentially long delays on every communication step. For-
tunately, such rigid policies are not used in practice. CPU
schedulers make an effort to provide a fair share of CPU
to all active processes. If a thread is blocked waiting for a
communication operation, it is swapped out, but its prior-
ity in the waiting queue increases. Hence, it is likely to be
immediately scheduled in the future when the thread on an-
other node with which it needs to communicate becomes
active. This feature significantly reduces the slowdown due
to communication and synchronization waits. Many paral-
lel applications follow the Bulk Synchronous Processing
(BSP) model where all nodes repeatedly perform a com-
putation operation followed by a communication operation.
In such cases the processing nodes often self synchronize,
where threads of the same application are scheduled on all
nodes at about the same time because of the lock-step na-
ture of execution. Related work has analyzed this behav-
ior [1, 3].

An important aspect of a node scheduling policy is the
CPU time slice quantum for which a process executes be-
fore the CPU is reassigned to another process in the waiting
queue. We will discuss the performance aspects of differ-
ent CPU time slice quanta and their relationship to shared
application performance along with experimental results.

2.2. Application characteristics

The extent of slowdown of an application due to CPU
sharing depends to a large extent on the basic execution
characteristics. We discuss the major relevant application
features:

� Communication volume and frequency: If a parallel
application is compute intensive and does not have
a significant amount of communication, there will be
no significant impact of asynchronous scheduling of
threads on different nodes. Slowdown of such an ap-
plication with sharing will be similar for independent
scheduling and gang scheduling. In general, the addi-
tional slowdown due to communication and synchro-
nization is likely to be higher for fine grain applications
and for applications that exchange significant amounts
of data.

� Communication and synchronization pattern: Beside
the rate of messages and bytes exchanged by nodes,

the communication pattern is also an important fac-
tor that determines the slowdown due to node shar-
ing. For example, if one node only communicates with
one or two of its logical neighbors, the communica-
tion and synchronization related slowdown is likely to
be much less than when each node communicates with
every other node. Similarly, applications with a regu-
lar communication pattern are likely to perform better
with sharing than applications with an irregular com-
munication pattern.

� CPU utilization: Some parallel applications have rel-
atively low processor utilization when executing ex-
clusively on a cluster. When such an application must
share the CPU with another application, the competing
application will get the bulk of its fair share of the CPU
from the times that the CPU would have gone idle oth-
erwise. Hence the slowdown of the application of in-
terest is likely to be relatively low.

3. Experiments and results

We performed a set of experiments with Class-B NAS
benchmark suite [2] on a small cluster to measure the
slowdown associated with node sharing with independent
scheduling. The computation cluster used for the experi-
ments is a 100Mbps fast Ethernet based test bed of 1.8GHz
Pentium Xeon Duos running Linux and MPICH implemen-
tation of MPI. We used the following NAS benchmarks in
our experiments: BT (Block Tridiagonal), CG (Conjugate
Gradient), EP (Embarrassingly Parallel), IS (Integer Sort),
LU (LU decomposition), MG (Multigrid) and SP (Scalar
Pentadiagonal). Each of the NAS codes was compiled with
g77 or gcc for 4, 8, or 16 threads and executed on 4 or 8 Dual
processor nodes. SP and BT benchmarks used 9 threads in-
stead of 8 because of the nature of the codes and the num-
ber of executing nodes was adjusted as appropriate.

The results in this paper compare the measured slow-
down due to node sharing with independent schedul-
ing with the estimated slowdown for node sharing with
gang scheduling. Slowdown for an application is defined as:

�����������
	������������������������� �! #"
$&%('*)+)"

where , is the execution time in dedicated mode and -
is the execution time in shared mode.

The gang scheduling estimates are based on the simple
concept that an application on a single CPU node will take
twice as long to execute if it has to share the CPU with an-
other application as it will have the CPU on all nodes half
the time. However, in our experiments we are using dual
processor compute nodes. We describe the two kinds of ex-
periments that were conducted and how the gang schedul-
ing slowdown was estimated.

1. One application thread per node: In this set of ex-
periments, one application thread per node was exe-
cuted for reference dedicated execution. For shared ex-
ecution with independent scheduling, this application
thread was executed simultaneously with 2 competing
load threads on each node. (Note that no significant
slowdown is expected with one competing load since
each program can get one dedicated CPU.) In this sce-
nario, the slowdown with gang scheduling is estimated
to be 50% since every thread including the applica-
tion thread will be scheduled ��������� of the time and
idle �����	��� of the time. We also state that 50% is the
nominal expected slowdown for independent schedul-
ing since that is the slowdown for a dedicated compute
intensive application based on fair CPU sharing.

2. Two application threads per node: In this set of ex-
periments, two application threads per node were exe-
cuted for reference dedicated execution. For shared ex-
ecution with independent scheduling, these application
threads were executed simultaneously with one com-
peting load thread on each node. Once again, the slow-
down with gang scheduling is estimated to be 50%
since every thread, including the application threads,
will be scheduled ��������� of the time and idle ���������
of the time. We again state that 50% is the nominal
expected slowdown for independent scheduling since
that is the slowdown for a dedicated compute inten-
sive application based on fair CPU sharing.1

3.1. Performance across different numbers of
threads and nodes

In order to analyze the impact of node sharing with inde-
pendent scheduling, NAS benchmarks were executed with
and without artificial competing load applications. For these
experiments, the competing load is a synthetic CPU inten-
sive program that uses little memory and has no commu-
nication or I/O. The slowdown for each benchmark due to
competing loads was measured for each of the following
scenarios:

� 1 application and 2 load threads per node on 4 nodes.
� 1 application and 2 load threads per node on 8/9 nodes.
� 2 application and 1 load thread per node on 4/5 nodes.
� 2 application and 1 load thread per node on 8 nodes.

The above combinations represent the minimum number
of load threads needed to create competition for CPU re-
sources. The reference unshared execution uses the same

1 This analysis assumes that an application with 2 threads out of a total
3 on the node will be awarded the system 2/3rd of the time in gang
scheduling. While this is debatable, the analysis does compare gang
scheduling and independent scheduling fairly and meaningfully.

configuration without the load threads and the estimated
slowdown with gang scheduling in every case is 50%. The
results are presented in Figure 1. We point out the gen-
eral observations and continue discussion relating to spe-
cific benchmarks, CPU and memory loads, and CPU time
slices, in the remainder of this section.

0

10

20

30

40

50

60

70

80

P
er

ce
nt

ag
e

Sl
ow

do
w

n
CG EP IS LU MG SP BT Suite

average

Benchmark

1 application thread per node, 4 nodes 1 application thread per node, 8/9 nodes

2 application threads per node, 4/5 nodes 2 application threads per node, 8 nodes

Expected Slowdown due to gang
scheduling

Figure 1. Slowdown of the NAS benchmarks due
to competing compute loads.

� Slowdown with independent scheduling is gener-
ally less than or comparable to the estimated slow-
down with gang scheduling. A slowdown less than
50% reflects better performance than gang schedul-
ing. The average slowdown for the entire bench-
mark suite (rightmost group of bars) is below or
around 50% for different combinations of threads and
nodes. The implication is that, in most cases, the ad-
ditional overhead due to communication between
asynchronous threads with independent schedul-
ing is overcome with better CPU utilization. That
is, often the competing loads derive a large part
of their CPU usage during times when the bench-
mark application is blocked on synchronization waits
which does not affect the performance of the bench-
mark.

� Slowdown is greater for the case of 1 application
thread per node than for the case of 2 application
threads per node. This is clearly observed for the case
of 4 nodes as well as 8 nodes from Figure 1. The rea-
son is as follows. In the case of 1 application thread, we
have added 2 load threads, and in the case of 2 appli-
cation threads, we have added 1 load thread. The load
threads need the CPU 100% of the time while the CPU
demand of application threads varies. Hence there is

more slowdown when 2 CPU hungry load threads are
competing with an application thread as compared to
the case of only 1 CPU hungry load thread.

� Slowdown is greater for larger number of nodes. It is
clear from Figure 1 that slowdown is higher for 8 nodes
than for 4 nodes. In order to gain insight into the im-
pact of the size of a cluster, we ran the benchmarks
on a separate cluster on 4, 8 and 16 nodes with one
thread per node - the range of nodes over which the
benchmarks scale well and run in a reasonable amount
of time. Since this experiment was done on a sepa-
rate cluster from all others, the results are shown at
the end of the paper, to avoid confusion, in Figure 5.
It is clear that slowdown with independent scheduling
increases as the number of nodes is increased from 4
to 16 across all benchmarks. The increase is faster for
some applications, such as CG, IS and MG, and very
little for others, particularly EP and IS. A larger num-
ber of nodes applied to the same computation implies
more frequent global communication and synchroniza-
tion operations since the application executes faster.
Also, each operation typically involves a larger num-
ber of nodes. These factors have the potential of mak-
ing shared execution slower for independent schedul-
ing but are not relevant for gang scheduling. The con-
clusion is that performance of independent schedul-
ing deteriorates slowly with cluster size. Hence the ap-
proach is suitable for small to midsize clusters.

3.2. Performance across NAS benchmarks

We observe from Figure 1 that the slowdown varies
widely across the programs in the NAS benchmark suite.
To understand this, we measured the basic runtime char-
acteristics of NAS programs during execution on a dedi-
cated testbed of 4 nodes. Vampir profiling library [12] was
used to monitor messages sent by each executing node and
CPU probes that we have developed [14] were used to mea-
sure the average CPU utilization, i.e., the percentage of time
the CPU was busy executing the application. The results are
presented in Table 1. We now point out a few observations
that relate the shared performance of NAS benchmarks to
their execution characteristics.

From Figure 1 we see that EP benchmark exhibits around
50% slowdown in all cases. Since EP is a compute bound
program with no communication, it is expected that it will
show the same slowdown whether gang scheduling or in-
dependent scheduling (or any other fair way of sharing the
CPU among threads) is used. From Table 1 we see that the
CPU utilization for EP is nearly 100%.

Let us focus on the numbers corresponding to two ap-
plication threads per node in Figure 1. We observe that CG
and IS show little slowdown, in the range of 5-10%, for ex-

Communication Computation Bench
mark

Exec
Time
(Sec)

Rate of
msg
dispatch
from each
node
(msgs/s)

Rate of
data
dispatch
from each
node
(KB/s)

Avg %
CPU
Utilization

Memory
Utilization
(MB)

CG 417.2 19.1 2700 59.4 110
EP 228.6 0 0 99.5 0
IS 81.2 1.3 4333 42.3 121
LU 511.7 98.8 577 91.6 50
MG 37.0 89.3 3020 69.0 114
SP 881.3 5.4 1343 77.2 90
BT 924.9 2.6 730 88.2 276

Table 1. Execution characteristics of the NAS
benchmarks: 4 threads run on 4 nodes

ecution on 4 or 8 nodes. We also see from Table 1 that IS
and CG show the lowest CPU utilization for dedicated exe-
cution, around 42% and 59%, respectively. The explanation
is that the single competing load in these cases is able to get
most of its fair share of the CPU during the times the ap-
plication threads would have been blocked for synchroniza-
tion. Hence, the application suffers little slowdown. In gen-
eral, we observe a strong correlation between the CPU uti-
lization for dedicated execution shown in Table 1 and the
slowdown for the case of 2 application threads and one load
thread shown in Figure 1. Note that the above correlation is
not apparent for the cases where a single application thread
is executing with two load threads, also shown in Figure 1.
As discussed previously, load threads need the CPU 100%
of the time, so there is much more competition for the CPU
when there are 2 load threads.

For the cases of 1 application thread and 2 load threads,
the slowdown is the highest for CG, LU and MG. We ob-
serve from Table 1 that these three benchmark programs
also have the highest frequency of message exchange, and
CG and MG are among the programs with the highest vol-
ume of data exchange. It is apparent that, in this case, the
slowdown is dominated by the overheads of message and
data exchange. As noted earlier, CG and MG exhibit the
maximum increase in slowdown going from 4 to 8 nodes.
Clearly, the frequency and volume of communication is a
key factor that determines performance with independent
scheduling and its scalability.

3.3. Performance across CPU time slice quanta

An important aspect of processor scheduling for par-
allel applications is the nominal CPU time slice quantum
given to an application for execution by the operating sys-
tem. When multiple jobs are in the ready queue, an appli-
cation may execute for the entire time slice quantum or it
may be swapped out before the end of the time slice if it is
blocked or if another application with a higher priority joins

the ready queue. A larger time slice quantum implies that a
thread may have to wait for a longer time for another thread
with which it needs to communicate to be scheduled. How-
ever, it also means that a message exchange is less likely
to be interrupted because of a thread being swapped out af-
ter completing a time slice quantum.

The version of the Linux operating system we used (Red-
hat 7.2, kernel version 2.4.7-10) has a default time slice
quantum of 50 milliseconds that was used for the results
presented so far. In Figure 2, we present results with varying
time slice quanta, specifically 30, 50, 100, and 200 millisec-
onds. We verified that the execution time for all the bench-
marks without a competing load was virtually identical for
all values of time slice quanta.

0

10

20

30

40

50

60

70

80

90

100

IS CG EP LU MG SP BT suite
averageBenchmark

P
er

ce
n

ta
g

e
S

lo
w

d
o

w
n

CPU time slice=30 ms

CPU time slice=50 ms

CPU time slice=100 ms

CPU time slice=200 ms

Figure 2. Slowdown for various CPU time slice
values: 4 benchmark threads run on 4 nodes.

We note that 30 ms time slice quantum has the worst per-
formance for all benchmarks. The performance for 50ms,
100ms, and 200 ms are close to each other for most pro-
grams. The best performance is achieved with a 50ms time
slice quantum for some applications and a 200ms time slice
quantum for others. The average performance is the best for
a 200ms time slice, although it is only slightly better than
the average performance for 50ms and 100ms time slices.
On LU and BT benchmarks the trend is towards worse
performance as the time slice is increased from 100ms to
200ms. However, IS and CG, two of the more communica-
tion intensive programs, show the best performance with a
time slice of 200ms.

On the whole, it appears that the choice of 50ms to
100ms time slice quantum common in operating systems
is a reasonable one for time sharing parallel programs (even
though such programs are unlikely to have been a design
consideration). Some communication intensive programs,
however, may achieve better sharing performance with a
larger time slice quantum. There appears to be little scope of
benefit with a time slice smaller than 50ms on this hardware.
We also observed that when different time slice quanta were

used on different executing nodes, the sharing performance
was similar to the lower performing of the two time slice
quanta, but we have omitted the results for brevity.

3.4. Performance across memory loads

The competing loads employed in the experiments pre-
sented in this paper so far consisted of repeated numerical
computations without significant memory usage. We sep-
arately conducted a series of experiments with loads that
allocated a significant amount of memory and periodically
scanned the entire data space. The slowdown of different
benchmark programs due to competing loads with different
memory requirements is presented in Figure 3. Each bench-
mark program itself has a fixed memory requirement in this
suite of experiments, and those are listed in Table 1.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

0
1.5

K 3K 6K 12
K

24
K

48
K

96
K

19
2K

38
4K

76
8K

1.5
M 3M 6M 12

M
24

M
48

M
96

M
19

2M
38

4M
76

8M
15

36
M

Collective data size of competing programs (bytes)

P
er

ce
n

ta
g

e
sl

o
w

d
o

w
n

CG EP IS LU

MG SP BT Suite Average

Figure 3. Slowdown under different memory load
conditions. 4 benchmark threads run on 4 nodes.

The immediate observation from Figure 3 is that the
variation in slowdown is relatively small when the load
memory requirement is changed, until we approach the to-
tal available memory on the system, which is nominally 1
Gigabyte. When the combined memory requirement of all
threads reaches the point where virtual memory has to be
employed, the change in performance is drastic. Interest-
ingly, for most benchmarks, the slowdown decreases dra-
matically which appears to be counterintuitive. We believe
that the reason is that the load threads are swapped out fre-
quently due to page faults giving the benchmark programs
a much larger fraction of the CPU time.

Figure 4 zooms in on the impact of changed memory re-
quirement in the range of cache capacities, which is 256K
per CPU for the L2 cache on these nodes. When a compet-
ing application is using the cache extensively, the bench-
mark will find the cache “cold” when it is scheduled. This
should result in a slowdown but the practical impact seems

to be relatively small. There is a distinct increase in the
slowdown across most applications as memory usage of
competing applications approaches and exceeds the cache
capacity, which corresponds to 512K point in the graph.
Some benchmarks show significant performance variations
at other points, but an analysis is beyond the scope of this
paper and we believe it is related to application specific
memory access patterns.

30

40

50

60

70

0 0.75K 1.5K 3K 6K 12K 24K 48K 96K 192K 384K 768K

Data size of competing program (Kbytes)

P
er

ce
n

ta
g

e
sl

o
w

d
o

w
n

CG EP IS LU

MG SP BT Suite Average

Figure 4. Slowdown under memory loads around
cache sizes. 4 benchmark threads run on 4 nodes.

4. Summary and discussion

We summarize the main results of this paper and discuss
their significance.

� Sharing a set of nodes with independent scheduling is
competitive with gang scheduling for small clusters.

� An application’s CPU utilization and communication
volume and frequency are the key factors that deter-
mine performance with sharing. A lower CPU utiliza-
tion during dedicated execution implies better shar-
ing performance, while frequent and large message ex-
changes imply worse sharing performance with inde-
pendent scheduling.

� The CPU time slice quantum assigned by the operat-
ing system is an important factor for shared execu-
tion. Common values in the range of 50ms to 100ms
are reasonable choices. A lower CPU time slice quan-
tum value uniformly deteriorates performance while
the impact of a higher one is application dependent.

� The memory competition is a major factor only if the
combined memory requirement of all the threads ap-
proaches the total available memory.

Performance of applications with uncoordinated time-
sharing on a small cluster of nodes is competitive with
gang scheduling for a variety of parallel applications in-
cluding fine-grained and communication intensive compu-
tations represented by the NAS benchmarks. This contra-
dicts with the common assumption that space scheduling or
gang scheduling is essential for getting reasonable perfor-
mance for most parallel applications. The performance in
this context also reflects the cluster throughput.

We have not performed actual experiments with gang
scheduling, and instead used optimistic estimates without
overheads. Our main point is that independent schedul-
ing yields competitive performance as compared to gang
scheduling, hence using an optimistic estimate for gang
scheduling only makes it stronger. We have used synthetic
CPU intensive competing loads for our experiments and
analysis. The actual applications may not be as CPU hungry
and provide better sharing performance and that has been
our empirical experience. Hence, using CPU intensive com-
peting loads is a conservative assumption.

We believe that one of the key reasons for relatively good
performance with independent scheduling is that applica-
tion threads over multiple nodes become automatically co-
ordinated with standard operating system scheduling poli-
cies. An executing application process may get swapped
out prematurely if it blocks waiting for a peer process to
be scheduled, but it gains priority, and is likely to get sched-
uled immediately again once its peer process is also sched-
uled. Such a mechanism implicitly leads to scheduling syn-
chronization among application threads which greatly helps
communication performance.

It is expected that sharing performance will be differ-
ent for different computation environments. However, we
expect the patterns to be similar unless the processing
paradigm is fundamentally different. For example, we as-
sume that when a process is blocked for communication it
is removed from the ready queue of processes. Use of busy-
waiting would yield different results. Also, although NAS
benchmarks represent a large class of scientific computa-
tions, there are other very fine grain applications that may
perform poorly with independent scheduling. The results in
this paper were obtained on a fast Ethernet but we have
not observed any qualitative difference with gigabit Eth-
ernet. However, the challenges of sharing are different for
other interconnects such as Myrinet. Finally, we have pre-
sented results for a small cluster. It appears that the perfor-
mance with independent scheduling gradually deteriorates
for larger clusters but more experiments and simulations are
needed to study that relationship.

5. Concluding remarks

The main result of this paper is that sharing of a small
cluster by multiple parallel applications with independently
scheduled nodes is competitive with sharing with a gang
scheduling paradigm. The main reasons are better CPU uti-
lization when multiple applications compete for it, and a
lower overhead for communication with asynchronous pro-
cessing than is generally believed. The results support a
flexible approach to scheduling clusters where multiple ap-
plications may be mapped to the same set of nodes for im-
proved performance. They also support the use of applica-
tion controlled resources selection which is important for
grid computing where centralized control of resources may
not be feasible.

0

10

20

30

40

50

60

70

80

90

P
er

ce
nt

ag
e

Sl
ow

do
w

n

BT CG EP IS LU MG SP Suite
average

NAS Benchmarks

4 Nodes 8/9 Nodes 16 Nodes

Expected
Slowdown
due to Gang
scheduling

Figure 5. Scaling of slowdown of NAS bench-
marks due to competing loads

6. Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grant Nos. ACI-0234328
and CNS-0410797. Support was also provided by the De-
partment of Energy through Los Alamos National Labora-
tory (LANL) contract No. 03891-99-23 , and by University
of Houston’s Texas Learning and Computation Center.

References

[1] ARPACI-DUSSEAU, A., CULLER, D., AND MAINWARING,
A. Scheduling with implicit information in distributed sys-
tems. In SIGMETRICS’ 98/PERFORMANCE’ 98 Joint Con-
ference on the Measurement and Modeling of Computer Sys-
tems (June 1998).

[2] BAILEY, D., HARRIS, T., SAPHIR, W., VAN DER WIJN-
GAART, R., WOO, A., AND YARROW, M. The NAS Paral-
lel Benchmarks 2.0. Tech. Rep. 95-020, NASA Ames Re-
search Center, December 1995.

[3] BARAK, A., AND LA’ADAN, O. The MOSIX multicom-
puter operating system for high performance cluster comput-
ing. Future Generation Computer Systems 13, 4–5 (1998),
361–372.

[4] BERMAN, F., WOLSKI, R., FIGUEIRA, S., SCHOPF, J.,
AND SHAO, G. Application-level scheduling on distributed
heterogeneous networks. In Proceedings of Supercomput-
ing ’96 (Pittsburgh, PA, November 1996).

[5] BOLLIGER, J., AND GROSS, T. A framework-based ap-
proach to the development of network-aware applications.
IEEE Trans. Softw. Eng. 24, 5 (May 1998), 376 – 390.

[6] FEITELSON, D., AND RUDOLPH, L. Gang scheduling per-
formance benefits for fine-grain synchronization. Journal of
Parallel and Distributed Computing (1992), 306–318.

[7] FOSTER, I., AND KESSELMAN, C. The Globus project: a
status report. Future Generation Computer Systems 15, 5–6
(1999), 607–621.

[8] FRACHTENBERG, E., FEITELSON, D., PETRINI, F., AND

FERNANDEZ, J. Flexible coscheduling:mitigating load im-
balance and improving utilization of hetwrogeneous re-
sources. In International Parallel and Distributed Process-
ing Symposium (April 2003).

[9] GRIMSHAW, A., AND WULF, W. The Legion vision of a
worldwide virtual computer. Communications of the ACM
40, 1 (January 1997).

[10] LITZKOW, M., LIVNY, M., AND MUTKA, M. Condor — A
hunter of idle workstations. In Proceedings of the Eighth
Conference on Distributed Computing Systems (San Jose,
California, June 1988).

[11] LOWEKAMP, B., MILLER, N., SUTHERLAND, D., GROSS,
T., STEENKISTE, P., AND SUBHLOK, J. A resource query
interface for network-aware applications. In Seventh IEEE
Symposium on High-Performance Distributed Computing
(Chicago, IL, July 1998).

[12] NAGEL, W., ARNOLD, A., WEBER, M., HOPPE, H., AND

SOLCHENBACH, K. VAMPIR: Visualization and analysis of
MPI resources. Supercomputer 12, 1 (1996), 69–80.

[13] SUBHLOK, J., LIEU, P., AND LOWEKAMP, B. Automatic
node selection for high performance applications on net-
works. In Proceedings of the Seventh ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming
(Atlanta, GA, May 1999), pp. 163–172.

[14] VENKATARAMAIAH, S., AND SUBHLOK, J. Performance
prediction for simple CPU and network sharing. In LACSI
Symposium 2002 (October 2002).

[15] WEISMANN, J. Metascheduling: A scheduling model for
metacomputing systems. In Seventh IEEE Symposium
on High-Performance Distributed Computing (Chicago, IL,
July 1998).

[16] WOLSKI, R., SPRING, N., AND PETERSON, C. Implement-
ing a performance forecasting system for metacomputing:
The Network Weather Service. In Proceedings of Supercom-
puting ’97 (San Jose, CA, Nov 1997).

