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Abstract. Performance prediction is particularly challenging for dynamic envi-
ronments that cannot be modeled well due to reasons such as resource sharing
and foreign system components. The approach to performance prediction taken
in this work is based on the concept of a performance skeleton which is a short
running program whose execution time in any scenario reflects the estimated exe-
cution time of the application it represents. The fundamental technical challenge
addressed in this paper is the automatic construction of performance skeletons
for parallel MPI programs. The steps in the skeleton construction procedure are
1) generation of process execution traces and conversion to a single coordinated
logical program trace, 2) compression of the logical program trace, and 3) conver-
sion to an executable parallel skeleton program. Results are presented to validate
the construction methodology and prediction power of performance skeletons.
The execution scenarios analyzed involve network sharing, different architectures
and different MPI libraries. The emphasis is on identifying the strength and limi-
tations of this approach to performance prediction.

1 Introduction

Traditional performance prediction and scheduling for distributed computing environ-
ments is based on modeling of application characteristics and execution environments.
However, this approach is of limited value in some dynamic and unpredictable execu-
tion scenarios as modeling is impractical or impossible for a variety of reasons. Some
example scenarios are execution with sharing of network or compute resources, ex-
ecution with varying number of available processors, or execution with new system
architectures or software libraries.

A new approach to performance prediction in such foreign environments is based
on the concept of a performance skeleton which is defined to be a short running pro-
gram whose execution time in any scenario reflects the estimated execution time of
the application it represents. When the performance skeleton of an application is avail-
able, an estimate of the application execution time in a new environment is obtained
by simply executing the performance skeleton and appropriately scaling the measured

� This material is based upon work supported by the National Science Foundation under Grant
No. ACI- 0234328 and Grant No. CNS-0410797.

P. Sadayappan et al. (Eds.): HiPC 2008, LNCS 5374, pp. 73–86, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



74 Q. Xu and J. Subhlok

skeleton execution time. The main challenge in this approach is automatic construction
of performance skeletons from applications. Earlier work in this project developed ba-
sic procedures for construction of communication and memory skeletons and explored
their usage in distributed environments [1,2,3].

This paper introduces scalable construction of coordinated performance skeletons
and evaluates their ability to predict performance in a variety of execution scenarios. The
skeletons developed are “coordinated” implying that a single SPMD skeleton program
is constructed instead of a family of process level skeletons. Improved compression
procedures were developed that allow fast and nearly linear time skeleton construction.
Validation experiments were conducted in a wide variety of scenarios including shared
network bandwidth, shared processors, variable number of processors, different clus-
ter architectures, and different MPI communication libraries. The results highlight the
power and limitations of this approach.

We outline the procedure for the construction of performance skeletons for parallel
MPI programs. Clearly a performance skeleton must capture the core execution and
communication characteristics of an application. The skeleton construction procedure
begins with the generation of process traces of an MPI application, primarily consisting
of the message passing calls interspersed with computation segments. The first process-
ing step is trace logicalization which is the conversion of the suite of MPI process level
execution traces into a single logical trace. This is followed by trace compression which
involves identification of the loop structure inherent in the execution trace to capture the
core execution behavior. Final skeleton construction consists of generation of a dead-
lock free skeleton SPMD program from the compressed logical trace. The key steps are
illustrated in Figure 1.

Record execution trace for each process

Logicalize process traces into a single program trace

Compress the program trace by identifying the loop structure
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performance skeleton program
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Fig. 1. Skeleton construction

The state of the art in performance prediction and scheduling for distributed com-
puting environments is based on modeling of application characteristics and execution
environments, with some example systems discussed in [4,5,6]. The research presented
in this paper is fundamentally different in being based on synthetically generated
executable code as the primary vehicle for performance prediction. Trace analysis
has also been addressed in the context of trace replay tools such as the work in [7].
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DIMEMAS [8] presents a promising approach to performance prediction in distributed
environments based on replay of an execution trace in a simulated environment. The
underlying problems addressed in skeleton construction have many aspects in common
with on-the-fly trace compression methods, in particular the work presented in [9,10].
However, the approaches are algorithmically different; specifically the approach pre-
sented performs logicalization first and compresses only the logical trace.

The paper is organized as follows. Section 2 presents the procedure for logicalization
of MPI traces and section 3 presents the procedures developed for the compression of
the logical trace. Section 4 introduces deadlock free skeleton program generation from
the compressed trace. Section 5 presents and discusses results from the application of
performance skeletons for performance prediction. Section 6 contains conclusions.

2 Trace Logicalization

As high performance scientific applications are generally SPMD programs, in most
cases, the traces for different processes are similar to each other and the communica-
tion between processes is associated with a well defined global communication pattern.
A study of DoD and DoE HPC codes at Los Alamos National Labs [11] and analysis
of NAS benchmarks [12] shows that an overwhelming majority of these codes have a
single low degree stencil as the dominant communication pattern. These characteristics
expose the possibility of combining all processor traces into a single logical program
trace that represents the aggregate execution of the program - in the same way as an
SPMD program represents a family of processes that typically execute on different
nodes. For illustration, consider the following sections of traces from a message ex-
change between 4 processes in a 1-dimensional ring topology.

Process 0 Process 1 Process 2 Process 3
... ... ... ...
snd(P1,...) snd(P2,...) snd(P3,...) snd(P0,...)
rcv(P3,...) rcv(P0,...) rcv(P1,...) rcv(P2,...)
... ... ... ...

The above physical trace can be summarized as the following logical trace:

Program
...
snd(PR,...)
rcv(PL,...)
...

where PL and PR refer to the logical left and logical right neighbors, respectively, for
each process in a 1-dimensional ring topology.

Beside reducing the trace size by a factor equal to the number of processes, the
logical program trace captures the parallel structure of the application. Note that this
logicalization is orthogonal to trace compression discussed in the following section.

The logicalization framework has been developed for MPI programs and proceeds
as follows. The application is linked with the PMPI library to record all message ex-
changes during execution. Summary information consisting of the number of messages
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and bytes exchanged between process pairs is recorded and converted to a binary ap-
plication communication matrix that identifies process pairs with significant message
traffic during execution. This matrix is then analyzed to determine the application level
communication topology. Once this global topology is determined, a representative pro-
cess trace is analyzed in detail and transformed into a logical program trace where all
message sends and receives are to/from a logical neighbor in terms of a logical commu-
nication topology (e.g a torus or a grid) instead of a physical process rank. An example
physical trace and the corresponding logical trace are shown in Table 1.

Table 1. Logical and physical trace for the 16-process BT benchmark

PHYSICAL TRACE

...... ......

MPI Isend(... 1, MPI DOUBLE, 480, ...)

MPI Irecv(... 3, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

...... ......

MPI Isend(... 4, MPI DOUBLE, 480, ...)

MPI Irecv(...12, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

...... ......

MPI Isend(... 7, MPI DOUBLE, 480, ...)

MPI Irecv(...13, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

...... ......

LOGICAL TRACE

...... ......

MPI Isend(...EAST, MPI DOUBLE, 480, ...)

MPI Irecv(...WEST, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

...... ......

MPI Isend(...SOUTH, MPI DOUBLE, 480, ...)

MPI Irecv(...NORTH, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

...... ......

MPI Isend(...SOUTHWEST, MPI DOUBLE, 480, ...)

MPI Irecv(...NORTHEAST, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

...... ......

The key algorithmic challenge in this work is the identification of the application
communication topology from the application communication matrix which represents
the inter-process communication graph. The communication topology is easy to iden-
tify if the processes are assigned numbers (or ranks) in a well defined order, but is a
much harder problem in general. This is illustrated with a very simple example in Fig-
ure 2. The figure shows 9 executing processes with a 2D grid communication topology.
In Figure 2(a) the processes are assigned numbers in row major order in terms of the
underlying 2D grid. However, if the processes were numbered diagonally with respect
to the underlying 2D grid pattern as indicated in Figure 2(b), the communication graph
with process nodes laid out in row major order would appear as Figure 2(c). Clearly, the
underlying 2D grid topology is easy to identify in the scenario represented in Figure 2(a)
by a pattern matching approach but much harder when process numbering follows an
unknown or arbitrary order, a relatively simple instance of which is the scenario rep-
resented in Figure 2(c). The state of the art in identifying communication topologies
assumes that a simple known numbering scheme is followed [11].

The reasons topology identification is difficult are 1) establishing if a given commu-
nication graph matches a given topology is equivalent to solving the well known graph
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Fig. 2. 2D grid topology with row major and other numberings

isomorphism problem for which no polynomial algorithms exist and 2) there are many
different types of topologies (different stencils on graph/torus, trees, etc.) and many in-
stantiations within each topology type (e.g., different number and sizes of dimensions
even for a fixed number of nodes). A framework consisting of the following tests was
employed for topology identification

1. Simple tests: All possible sizes of grid/tori/tree based on the number of processes
N are identified with prime factoring. The number of edges and the degree ordered
sequence of nodes for the given communication matrix are compared to instances
of known topologies and those that do not match are eliminated.

2. Graph Spectrum test: Eigenvalue sets of isomorphic graphs are identical. The
topologies whose eigenvalues do not match those of the communication matrix are
eliminated.

3. Graph Isomorphism test: Graph isomorphism checking procedure is applied to
establish that a given communication matrix exactly represents a specific topology.
The VF2 graph matching algorithm [13] was used.

The above steps are listed in increasing order of computation complexity and ap-
plied in that order as a decision tree. The simple tests and the graph spectrum test are
employed to eliminate topologies that are provably not a match for the given commu-
nication matrix, but they cannot prove a match. Only the graph isomorphism test can
establish an exact match.

Table 2 presents observations from the application of the logicalization procedure to
selected NAS benchmarks running with 121/128 processes. The topologies that remain

Table 2. Identification of communication topologies of NAS benchmarks. Unique topologies are
listed in boldface with other isomorphic topologies below them.

Benchmark Simple Tests Graph Spectrum Test Isomorphism Test Trace Length Time
(Processes) Records(size) (secs)
BT (121) 11×11 6-p stencil 11×11 6-p stencil 11×11 6-p stencil 50874 30.76

(2106KB)
SP (121) 11×11 6-p stencil 11×11 6-p stencil 11×11 6-p stencil 77414 49.16

(3365KB)
LU (128) 16×8 grid 16×8 grid 16×8 grid 203048 134.30

(9433KB)
CG (128) 3-p stencil 3-p stencil 3-p stencil 77978 47.89

16×2×2×2 grid (3224KB)
MG (128) 8×2×2×2×2 torus 8×2×2×2×2 torus 8×2×2×2×2 torus 9035 7.33

8×4×2×2 torus 8×4×2×2 torus 8×4×2×2 torus (386KB)
8×4×4 torus 8×4×4 torus 8×4×4 torus
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as candidates after each test and the final established topology are listed in columns
corresponding to the tests. The trace length and size as well as the trace processing
times are also listed. The tracing overhead is low as only gross communication data,
such as the number of messages and bytes exchanged are recorded and analyzed. It
is clear that the simple tests are very effective in reducing the number of topologies
that are possible match candidates which is the key to the overall efficiency of the
framework. The logicalization process and performance characteristics are described in
detail in [14].

3 Trace Compression

An important step in the process of construction of performance skeletons is the iden-
tification of repeating patterns in MPI message communication. Since the MPI com-
munication trace is typically a result of loop execution, discovering the executing loop
nest from the trace is central to the task of skeleton construction. The discovery of
“loops” here technically refers to the discovery of tandem repeating patterns in a trace
(presumably) due to loop execution.

Common compression procedures include gzip [15] that constructs a dictionary of
frequently occurring substrings and replaces each occurrence with a representative sym-
bol, and Sequitur [16,17] that infers the hierarchical structure in a string by automatically
constructing and applying grammar rules for reduction of substrings. Such methods can-
not always identify long range loop patterns because of early reductions. An alternate
approach is to attempt to identify the longest matching substring first. However, simple
algorithms to achieve this are at least quadratic in trace length and hence impractical
for long traces. A practical tradeoff is to limit the window size for substring matching,
which again risks missing long span loops [9].

Our research took a novel approach to identifying the loop structure in a trace based
on Crochemore’s algorithm [18] that is widely used in pattern analysis in bioinfor-
matics. This algorithm can identify all repeats in a string, including tandem, split, and
overlapping repeats, in O(nlogn) time. A framework was developed in this research
to discover the loop nest structure by recursively identifying the longest span tandem
repeats in a trace. The procedure identifies the optimal (or most compact) loop nest in
terms of the span of the trace covered by loop nests and the size of the compressed
loop nest representation. However, the execution time was unacceptable for long traces;
processing of a trace consisting of approximately 320K MPI calls took over 31 hours.

The results motivated us to develop a greedy procedure which intuitively works bot-
tom up - it selectively identifies and reduces the shorter span inner loops and replaces
them with a single symbol, before discovering the longer span outer loops. While the
loop nest discovered by the greedy algorithm may not be optimal, it has well defined
theoretical properties. A key analytical result is that the reduction of a shorter span in-
ner loop as prescribed in the greedy algorithm can impact the discovery of a longer
span outer loop only in the following way: if the optimal outer loop is Lo then a corre-
sponding loop Lg will be identified despite the reduction of an inner loop. Lo and Lg

have identical but possibly reordered trace symbols, but Lg may have up to 2 less loop
iterations than Lo. Hence, the loop structure discovered by the greedy algorithm is near
optimal. The theoretical basis for this procedure is treated in depth in [19].



Construction and Evaluation of Coordinated Performance Skeletons 79

Table 3. Results for optimal and greedy compression procedures

Raw Compression Time Trace Span Compressed Compression
Name Trace Greedy Optimal Major Loop Structure Covered Trace Ratio

Length (secs) (secs) by Loops Length
BT B/C 17106 8.91 311.18 (85)200 = (13 + (4)3 + ... + (4)3)200 99.38% 44 388.77
SP B/C 26888 7.61 747.73 67400 99.67% 89 302.11
*CG B/C 41954 8.48 2021.78 (552)75 = ((21)26 + 6)75 98.68% 10 4195.4
MG B 8909 8.64 113.48 (416)20 93.39% 590 15.1
MG C 10047 10.88 144.54 (470)20 93.56% 648 15.5
LU B 203048 33.16 44204.82 (812)249 = ((4)100 + (4)100 + 12)249 99.58% 63 3222.98
LU C 323048 61.9 113890.21 (1292)249 = ((4)160 + (4)160 + 12)249 99.58% 63 5127.75

The optimal and greedy loop nest discovery procedures were implemented and em-
ployed to discover the loop nests in the MPI traces of NAS benchmarks. The key results
are listed in Table 3. The loop nest structure is represented in terms of the number of
loop elements and the number of loop iterations. As illustration, the CG benchmark loop
structure is denoted by (552)75 = ((21)26 + 6)75 implying that there is an outer loop
with 75 iterations enclosing 552 elements in the form of an inner loop with 21 elements
iterated 26 times, and another 6 elements. As expected, the optimal algorithm discov-
ered perfect loop nests as validated by direct observation. The loop nests discovered by
the greedy algorithm were, in fact, identical to the optimal loop nests except for a minor
difference in the case of CG benchmark - the compressed trace had 21 symbols instead
of 10 and the loop structure was slightly different. However, the time for greedy loop
discovery was dramatically lower, down from 31 hours to 61 seconds for one trace. To
the best of our knowledge, this is the first effort toward extracting complete loop nests
from execution traces.

4 Construction of Performance Skeletons

The final step in building a performance skeleton is converting a logicalized and com-
pressed trace into an executable program that recreates the behavior represented in the
trace. The trace at this stage consists of a loop nest with loop elements consisting of a
series of symbols, each symbol representing an MPI Call or computation of a certain
duration of time. The trace is converted to executable C code with the following basic
steps:

– The loop nest in the trace is converted to a program loop nest with the number of
iterations reduced to match the desired skeleton execution time.

– The collective and point-to-point communication calls in the trace are converted
to MPI communication calls that operate on synthetic data. The point to point calls
generate a global stencil communication pattern matching the application topology.

– The computation sections are replaced by synthetic computation code of equal du-
ration without regard to the actual computation characteristics.

The procedure is simplistic in reproducing computation. The instruction mix may
be different and memory behavior is not reproduced. This is a limitation of the current
work although memory skeletons have been investigated separately in [1].
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A direct conversion of MPI trace symbols to MPI calls can result in executable code
that may deadlock. The key issues in ensuring deadlock free communication in a skele-
ton program are as follows:

1. Identifying local communication. Most MPI calls in a logical trace are matched:
there is a Recv in the trace corresponding to every Send. We refer to these calls as
global and their inclusion in the performance skeleton leads to a stencil commu-
nication pattern across executing nodes. However, typically some unmatched MPI
Send/Recv calls exist in a trace even when there is a dominant global communica-
tion pattern, i.e. there may be Send to WEST in the trace but no corresponding Send
to EAST. Such calls are labeled local and ignored for code generation. An alternate
approach is to match the local calls with synthetically generated calls. While local
calls imply inaccuracy, they are rare in structured codes and necessary to ensure
deadlock free execution. The procedure for marking communication calls as local
or global is outlined in Figure 3. It is based on the basic deadlock free patterns
of point to point communication which are 1) a non blocking Send/Recv with a
matching Recv/Send before a corresponding Wait and 2) One or more blocking
Send/Recv calls followed by matching Recv/Send calls. Note that in the latter case,
the code generated for end nodes in the stencil is different from others, e.g. Send
followed by Recv, when it is Recv followed by Send for all other nodes.

2. Unbalanced global communication. Even when a pair of communication calls
is matched, it may not be balanced, meaning an MPI Send/Receive and its

while next-call= First unmarked Send or Recv call in the code exists do
if next-call is a non-blocking iSend (iRecv) then

Let match-wait be the corresponding matching Wait call.
Let match-call be the next matching Recv/iRecv (Send/iSend) in the code.
if match-call is after match-wait or match-wait or match-call does not exist then

Mark next-call as local communication.
else

Mark next-call and match-call as global communication.
end if

else
next-call is a blocking Send (Recv).

Let match-call be the next matching Recv/Irecv (Send/Isend) in code.
if no match-call exists or there is a blocking Send or Recv between next-call and match-
call then

Mark next-call as local communication.
else

Mark next-call and match-call as global communication.
end if

end if
end while

Note: Matching calls have the same datatypes and match in terms of the directions in a commu-
nication pattern, e.g, logical East and West in a 2D torus.

Fig. 3. Identification of Global and Local Send and Recv communication calls
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corresponding MPI Receive/Send may not be equal in size. Analysis is employed
to identify these and force a match by using the median message size of a Send and
Recv.

5 Experiments and Results

A framework for automatic construction of performance skeletons has been imple-
mented. Automatically generated skeletons were employed to estimate the execution
time of corresponding applications in a variety of scenarios. Prediction accuracy was
measured by comparing the predicted performance with actual application performance.

5.1 Skeleton Construction and Properties

Skeletons were constructed on “PGH201”, a compute cluster composed of 10 Intel
Xeon dual CPU 1.7 GHz machines with 100 Mbps network interfaces. The execu-
tion was under MPICH 2.0 library. Results are reported for 16-process class C NAS
benchmarks. Execution is on 16 dedicated processors, except when noted otherwise.
The methodology employed allows skeletons to be constructed to approximate a target
skeleton execution time (or equivalently, a target ratio between application and skeleton
execution times). However, there is a minimum execution time for a “good skeleton”
which corresponds to the execution of a single iteration of the main execution loop. For
the experiments conducted, the objective was to build the longest running skeleton with
execution time under one minute or a skeleton that executes for approximately 10% of
the application execution time, whichever was lower. The reference execution times of
NAS benchmarks and their skeletons are shown in Table 4.

Table 4. Benchmark and skeleton execution times for NAS benchmarks on 16 processors

Benchmark Execution Time(s)
Name Skeleton Benchmark

BT 45.6 1129.6
CG 40.3 607.6
MG 8.3 79.1
LU 39.1 637.4
SP 43.1 1069.2

An application and the corresponding performance skeleton should have approxi-
mately the same percentage of time spent in computation and communication. These
were measured for execution under MPICH 2.0 as well as execution under Open MPI li-
brary. The results are presented in Figure 4. We note that the computation/communication
time percentage is generally very close for benchmarks and corresponding skeletons. One
exception is the CG benchmark, where the difference is especially striking for execution
under Open MPI. We will present the performance results for other benchmarks first and
then specifically analyze the CG benchmark.
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Fig. 4. Computation/communication time percentage for benchmarks (uppercase) and skeletons
(lowercase)

5.2 Prediction Across MPI Libraries and Cluster Architectures

Skeletons constructed with MPICH 2.0 on PGH201 cluster were employed to predict
performance under Open MPI library and on a different cluster called “Shark” which is
composed of 24 SUN X2100 nodes with 2.2 GHz dual core AMD Opteron processor
and 2 GB main memory. All nodes are connected through 4x InfiniBand Network Inter-
connect and Gigabit Ethernet Network Interconnect. The results are plotted in Figure 5.
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Fig. 5. Prediction results on 16 processors across MPI libraries/architectures

The prediction errors across the architectures average around 15%. The skeleton
construction procedure employed makes no effort to reproduce the precise execution or
memory behavior and only reproduces the execution times in skeletons with synthetic
computation code. Hence, inaccuracy is expected across clusters with different proces-
sor and memory architectures. In the remainder of this paper, for validation purposes,
the skeletons employed on Shark were “retuned” implying that the length of the com-
putation blocks was adjusted to maintain the original ratio between reference skeleton
and application execution.

Figure 5(b) shows the accuracy of performance predicted for OpenMPI with skele-
tons constructed with MPICH 2.0 on the two clusters. The errors are modest averaging
below 10% for both clusters.
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5.3 Prediction for Bandwidth Sharing

Figure 6 shows results from performance prediction with network sharing simulated
by artificially reducing the available bandwidth to 50, 20, and 5Mbytes/sec with Linux
iproute2. The results are presented for the older MPICH 1.2.6 MPI library, in addition
to the MPICH 2.0 library. We consider the predictions to be excellent; the maximum
prediction error is below 10% and the avarage prediction error varies between 2% and
6% for different scenarios. The results validate that the methodology employed models
communication accurately.
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Fig. 6. Prediction results on 16 processors with reduced bandwidth availability

5.4 Prediction for Processor Sharing

A set of experiments was conducted to estimate the accuracy of performance prediction
with processor sharing. Each node has an independent CPU scheduler and no gang
scheduling is employed. First, 16 process jobs and corresponding skeletons were run
on 8 and 4 processors. (The results are shown for the Shark cluster in this case as all
cases cannot run on the PGH 201 cluster because of limited memory). The results in
Figure 7(a) show that the average prediction error is around 10% for 8 processors and
5% for 4 processors, but the maximum errors are over 20% for 8 processors and over
30% for 4 processors. Figure 7(b) plots the accuracy of performance prediction on 16
processors with 2 or 4 synthetic competing compute bound processes on each node.
The prediction errors are rather high averaging around 30%.

These results point out the limitation of the methodology employed as it does not
model computation, synchronization, or memory behavior accurately. Performance with
independent CPU schedulers and sharing is sensitive to these factors. We speculate that
the main reason for the relatively low accuracy in the above scenarios is that the skeleton
construction procedure does not model the idle periods caused due to synchronization
accurately and some of them are replaced by computations in skeletons. In the case
of processor sharing, the idle periods will be effectively used by other competing pro-
cesses making the performance as predicted by skeletons to be inaccurate. In this set of
experiments, errors were the result of the application execution times being less than
those predicted by skeleton execution.
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Fig. 7. Prediction results for execution of 16 process jobs with processor sharing

5.5 CG Benchmark

The prediction errors for the CG benchmark were significantly higher than the rest of
the benchmark suite for most scenarios, and the results were not included in earlier
charts in order to streamline the discussion. As examples, the prediction error for CG
was around 4 times the average for other benchmarks for prediction across libraries and
prediction with reduced bandwidth. CG benchmark is very communication intensive
and it was observed that the performance of the CG benchmark was very sensitive to
the placement of processes on nodes. The communication topology of CG benchmark
is shown on the left in Figure 8. The table on the right shows the execution time for
various mappings of processes to nodes. The execution time varies by a factor of two
depending on the location of the processes. The skeleton construction procedure makes
no effort to manage placement of processes on nodes, and the placement for the skeleton
can be different from the placement of the application. Since the performance is place-
ment sensitive, the framework cannot deliver meaningful results. No other benchmark
examined exhibited such strong sensitivity to process placement.

0 2 8 10

1 3 9 11

4 6 12 14

5 7 13 15

Config Node 1 Node 2 Node 3 Node 4 Time(s)
A 0,1,8,9 2,3,10,11 4,5,12,13 6,7,14,15 496
B 0,1,4,5 2,3,6,7 8,9,12,13 10,11,14,15 568
C 0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15 272

Fig. 8. CG Topology and prediction results. The picture shows the communication topology. The
table shows the execution time of the benchmark for various placements of processes on nodes.
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6 Conclusions and Future Work

This paper has presented and evaluated a framework for the construction of performance
skeletons for message passing MPI programs from execution traces. The objective is
prediction of application performance in scenarios where modeling of performance is
challenging. A key innovation is that the performance skeletons developed are coordi-
nated, i.e., a single SPMD skeleton program is generated for a family of process level
traces. The paper outlines the logicalization and compression procedures and lists re-
lated publications that contain the details.

Results presented validate the prediction ability of performance skeletons in differ-
ent scenarios. It is observed that the skeletons are very effective in predicting perfor-
mance when dynamics of communication change, e.g., when the bandwidth is limited
or a new communication library is deployed. However, the prediction power is limited
where the computation dynamics change, e.g., when multiple processes must share a
processor. This is not entirely unexpected as the methodology captures the communi-
cation primitives precisely but attempts to recreate the periods of execution coarsely. If
the computation regions in the skeleton were created to represent the instruction level
execution and memory behavior, the approach would be significantly enhanced.

A basic limitation of this approach to performance prediction in its current form
is that it is only applicable to structured applications with a repeating communication
pattern for which a representative input data set is sufficient to capture the execution
behavior. Extending this approach to unstructured applications and building skeletons
that can simply take the data size as a parameter and predict performance appropriately
are significant challenges to be addressed in future research.
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