S@UH

Construction and Evaluation of Coordinated
Performance Skeletons

Qiang Xu, Jaspal Subhlok

Computer Science Department
University of Houston
Houston, TX, 77204, USA
http://lwww.cs.uh.edu

Technical Report Number UH-CS-08-09
May 26, 2008

Keywords: Performance skeletons, Performance prediction, Trace compression
Abstract

Performance prediction is particularly challenging for dynamic foreign environments that cannot be
modeled well, such as those involving resource sharing or foreign system components. Our approach is
based on the concept of a performance skeleton which is a short running program whose execution time in
any scenario reflects the estimated execution time of the application it represents. The fundamental technical
challenge is automatic construction of performance skeletons for parallel MPI programs. The steps are 1)
generation of process execution traces and conversion to a single coordinated logical program trace, 2)
compression of the logical program trace, and 3) conversion to an executable parallel skeleton program.
Results are presented to validate the construction methodology and prediction power of performance
skeletons. The execution scenarios analyzed involve network sharing, different architectures and different
MPI libraries. The emphasis is on identifying the strength and limitations of this approach to performance
prediction.

Construction and Evaluation of
Coordinated Perfor mance Skeletons

Qiang Xu Jaspal Subhlok

University of Houston
Department of Computer Science
Houston, TX 77204

Abstract

Performance prediction is particularly challenging forriymic foreign environments that can-
not be modeled well, such as those involving resource spasinforeign system components.
Our approach is based on the concept of a performance skeletach is a short running program
whose execution time in any scenario reflects the estimatsaigon time of the application it rep-
resents. The fundamental technical challenge is autoncatistruction of performance skeletons
for parallel MPI programs. The steps are 1) generation ofqass execution traces and conver-
sion to a single coordinated logical program trace, 2) coagsion of the logical program trace,
and 3) conversion to an executable parallel skeleton progr&esults are presented to validate
the construction methodology and prediction power of pentnce skeletons. The execution sce-
narios analyzed involve network sharing, different arebitires and different MPI libraries. The
emphasis is on identifying the strength and limitation$af &pproach to performance prediction.

Index Terms
Performance skeletons, Performance prediction, TracerEsgion

1 Introduction

Traditional performance prediction and scheduling fotridbated computing environments is
based on modeling of application characteristics and gix@tanvironments, with some example
systems discussed in [1, 7, 8, 11]. However, this approach lisnited value in some dynamic
and unpredictable execution scenarios as modeling is ttipah or impossible for a variety of
reasons. Some example scenarios are execution with sharimggwork or compute resources,
execution with varying number of available processorsxecation with new system architectures
or software libraries.

*This material is based upon work supported by the Nation&r8e Foundation under Grant No. ACI- 0234328
and Grant No. CNS-0410797. Contact empéispal @h. edu

A new approach to performance prediction in such foreigmrenments is based on the concept
of a performance skeletowhich is defined to be a short running program whose exectitios
in any scenario reflects the estimated execution time of ppdication it represents. When the
performance skeleton of an application is available, aimesé of the application execution time
in a new environment is obtained by simply executing theqgrerince skeleton and appropriately
scaling the measured skeleton execution time. The mairectgg in this approach is automatic
construction of performance skeletons from applicatidgarlier work in this project developed
basic procedures for construction of communication and amgrekeletons and explored their
usage in distributed environments [13, 9, 10].

This paper introducescalableconstruction otoordinatedperformance skeletons and evaluates
their ability to predict performance in a variety of exeoutiscenarios. The skeletons developed
are “coordinated” implying that a single SPMD skeleton perg is constructed instead of a family
of process level skeletons. Improved compression proesduere developed that allow fast and
nearly linear time skeleton construction. Finally, expentation is conducted in a wide variety of
scenarios including shared network bandwidth, sharedegsmrs, variable number of processors,
different cluster architectures, and different MPI comication libraries. The results highlight
the power and limitations of this approach.

We outline the construction of performance skeletons forlpe MPI programs. Clearly a
performance skeleton must capture the core execution amdnomication characteristics of an
application. The skeleton construction procedure begitis thhe generation of process traces of
an MPI application, primarily consisting of the messagespagcalls interspersed with compu-
tation segments. The first processing stefr &e logicalization which is the conversion of the
suite of MPI process level execution traces into a singléckigrace. This is followed byrace
compression which involves identification of the loop structure inherenthe execution trace to
capture the core execution behavior. Fisialeton construction consists of generation of a dead-
lock free skeleton SPMD program from the compressed logiiaaé. The key steps are illustrated
in Figure 1.

— T

I APPLICATION
\ Construct executable
performance skeleton program
| Record execution trace for each process | A

~

| Logicalize process traces into a single program trace

~

Compress the program trace by identifying the loop structure

Figure 1. Skeleton construction

The paper is organized as follows. Section 2 presents theeguve for logicalization of MPI

2

traces and section 3 presents the procedures developedtefopipression of the logical trace.
Section 4 introduces deadlock free skeleton program ggoerfaom the compressed trace. Sec-
tion 5 presents and discusses results from the applicatiperformance skeletons for performance
prediction. Section 6 contains conclusions.

2 Tracelogicalization

As high performance scientific applications are genera® programs, in most cases, the
traces for different processes are similar to each othetl@dommunication between processes
is associated with a well defined global communication patté study of DoD and DoE HPC
codes at Los Alamos National Labs [3] and analysis of NAS berarks [12] shows that an over-
whelming majority of these codes have a single low degreegias the dominant communication
pattern. These characteristics expose the possibilitgmmiining all processor traces into a single
logical program tracethat represents the aggregate execution of the programheisame way
as an SPMD program represents a family of processes thatatipexecute on different nodes.
For illustration, consider the following sections of tradeom a message exchange between 4 pro-
cesses in a 1-dimensional ring topology.

ProcessO Processl Process?2 Process3

;ﬁd(Pl,...) “s'nd(PZ,...) msnd(P3,...)m snd(PO,...)
rcv(P3,...) rcv(PO,...) rev(Pl,...) rcv(P2,...)

The above physical trace can be summarized as the followgigdl trace:

Program
sndPg,...)
rev(Pr,...)

where P;, and Py refer to the logical left and logical right neighbors, restpesly, for each
process in a 1-dimensional ring topology.

Beside reducing the trace size by a factor equal to the nuoflpgpcesses, the logical program
trace captures the parallel structure of the applicatiastelthat this logicalization is orthogonal to
trace compressiowhich is discussed in the following section.

The logicalization framework has been developed for MPpans and proceeds as follows.
The application is linked with the PMPI library so that all ssage exchanges are recorded in a
trace file during execution. Summary information consgtifthe number of messages and bytes
exchanged between process pairs is recorded and convegéitaryapplication communication
matrix that identifies process pairs with significant message drdtfring execution. This matrix
is then analyzed to determine the application level comuatian topology. Once this global
topology is determined, a representative process trageigzed in detail and transformed into a
logical program trace where all message sends and recee/&g/@mom a logical neighbor in terms
of a logical communication topology (e.g a torus or a gridté@ad of a physical process rank. An
example physical trace and the corresponding logical @aeshown in Table 2.

PHYSICAL TRACE

MPI_lsend(... 1, MPI_LDOUBLE, 480,

) LOGICAL TRACE

MPI_Irecv(... 3, MPI.DOUBLE, 480,|

) MPI_Isend(..EAST, MPI_DOUBLE, 480, ...)
MPI_Wait() /* wait for Isend */ MPI_lrecv(.. WEST, MPI_LDOUBLE, 480, ...)
MPI_Wait() /* wait for Irecv */ MPI_Wait() /* wait for Isend */

............ MPI_Wait() /* wait for Irecv */
MPI_Isend(... 4, MPI.DOUBLE, 480, |

) MPI_lsend(..SOUTH, MPI_DOUBLE, 480, ...)
MPI_lrecv(..12, MPI_LDOUBLE, 480,| MPI_lrecv(..NORTH, MPI_.DOUBLE, 480, ...)
) MPI1_Wait() /* wait for Isend */
MPI1_Wait() /* wait for Isend */ MPI_Wait() /* wait for Irecv */

MPI_Wait() /* wait for Irecv */ |

............ MPI_Isend(.SOUTHWEST, MPI_DOUBLE, 480, ...)
MPI_lsend(... 7, MPI_LDOUBLE, 480,| MPI_lrecv(..NORTHEAST, MPI_LDOUBLE, 480, ...)
) MPI_Wait() /* wait for Isend */

MPI_Irecv(..13, MPI_.DOUBLE, 480,| MPI_Wait() /* wait for Irecv */

) e,

MPI1_Wait() /* wait for Isend */
MPI_Wait() /* wait for Irecv */

Table 1. Logical and physical trace for the 16-process BT ben chmark

The key algorithmic challenge in this work is the identifioatof the application communi-
cation topology from the application communication matnRich represents the inter-process
communication graph. The communication topology is easgleatify if the processes are as-
signed numbers (or ranks) in a well defined order, but is a nmactier problem in general. This
is illustrated with a very simple example in Figure 2. The fegahows 9 executing processes with
a 2D grid communication topology. In Figure 2(a) the proessare assigned numbers in row
major order in terms of the underlying 2D grid. However, i forocesses were numbered diago-
nally with respect to the underlying 2D grid pattern as iatkcl in Figure 2(b), the communication
graph with process nodes laid out in row major order wouldeap@s Figure 2(c). Clearly, the
underlying 2D grid topology is easy to identify in the scaoaepresented in Figure 2(a) by a pat-
tern matching approach but much harder when process numgldetiows an unknown or arbitrary
order, a relatively simple instance of which is the scenagpresented in Figure 2(c). The state of
the art in identifying communication topologies assumed ghsimple known numbering scheme
is followed [3].

The reasons topology identification is difficult are 1) ebshling if a given communication
graph matches a given topology is equivalent to solving tek kmowngraph isomorphisnprob-
lem for which no polynomial algorithms exist and 2) there i@y different types of topologies
(different stencils on graph/torus, trees, etc.) and mastantiations within each topology type
(e.g., different number and sizes of dimensions even foredfixumber of nodes). In order to

4

(@) (b)

Figure 2. 2D grid topology with row major and other numbering s

identify if a given communication matrix matches any knowpdlogy, the following sequence of
steps are applied as a decision tree with simpler testsegpfiist for efficiency:

1. Simple Tests: First all possible sizes of grid/tori/tree based on the nemdf processes
N are identified with prime factoring. Then the number of edged the degree ordered
sequence of nodes for the given communication matrix arehlmedtwith those for the suite
of known topologies. This step typically eliminates all Aubr a few topologies as possible
matches.

2. Graph Spectrum Test: Based on computing eigenvalues - eigenvalue sets of isdnorp
graphs are identical. Hence if the eigenvalues do not m#tettppologies are not a match.

3. Isomorphism Test: Applies graph isomorphism to establish that a given compatian
matrix exactly represents a specific topology.

The details of this process are described in [14]. The tgamquired for logicalization proce-
dure is very low overhead in computation time and volume &gligh level message passing calls
are recorded. The analysis required for each process sacmimal - only the collection of gross
communication data, such as the number of messages andeytemnged. Detailed processing
is limited to a single representative process trace thaamsformed to a logical program trace.

Table 2 presents observations from the application of thisgrure to selected NAS bench-
marks. The topologies that remain as candidates after dattie dests and the final established
topology are listed along with processing times. Clearg/ghocedure is effective and efficient.

3 Tracecompression

An important step in the process of construction of perforogaskeletons is the identification
of repeating patterns in MPl message communication. SineeviPI communication trace is
typically a result of loop execution, discovering the exewyloop nest from the trace is central to
the task of skeleton construction. The discovery of “lodpaie technically refers to the discovery
of tandem repeating patterns in a trace (presumably) dusfpdxecution.

Common compression procedures includp [16] that constructs a dictionary of frequently
occurring substrings and replaces each occurrence wiffresentative symbol, ar®equiturf4, 5]
that infers the hierarchical structure in a string by autticadly constructing and applying grammar
rules for reduction of substrings. Such methods cannotyawdentify long range loop patterns

Benchmark| Simple Tests Graph Spectrum Testlsomorphism Test Trace Length| Time
(Processes Records(size) (secs)
BT (121) | 11x11 6-p stencil | 11x11 6-p stencil 11x11 6-p stencil 50874 30.76
(2106KB)
SP (121) | 11x11 6-p stencil | 11x11 6-p stencil 11x11 6-p stencil 77414 49.16
(3365KB)
LU (128) | 16x8grid 16x8 grid 16x<8 grid 203048 134.30
(9433KB)
CG (128) | 3-p stencil 3-p stencil 3-p stencil 77978 47.89
16x2x2x2 grid (3224KB)
MG (128) | 8x2x2x2x2 torus | 8x2x2x2x2 torus 8x2x2x2x2 torus 9035 7.33
8x4x2x2 torus 8x4x2x2 torus 8x4x2x2 torus (386KB)
8x4x4 torus 8x4x4 torus 8x4x4 torus

enchmarks. Unique topologies
ow them.

Table 2. Identification of communication topologies of NAS b
are listed in boldface with other isomorphic topologies bel

because of early reductions. An alternate approach isémattto identify the longest matching
substring first. However, simple algorithms to achieve #ris at least quadratic in trace length
and hence impractical for long traces. A practical tradesofb limit the window size for substring
matching, which again risks missing long span loops [6].

Our research took a novel approach to identifying the longtare in a trace based on Crochemore’s
algorithm [2] that is widely used in pattern analysis in bformatics. This algorithm can identify
all repeats in a string, including tandem, split, and oysglag repeats, i (nlogn) time. A frame-
work was developed in this research to discover the loopsiastture by recursively identifying
the longest span tandem repeats in a trace. The procedutdietethe optimal (or most compact)
loop nest in terms of the span of the trace covered by loo a@st the size of the compressed loop
nest representation. However, the execution time was epéaisle for long traces; processing of
a trace consisting of approximately 320K MPI calls took a¥&hours.

The results motivated us to develop a greedy procedure whialtively works bottom up -
it selectively identifies and reduces the shorter span itomgs and replaces them with a single
symbol, before discovering the longer span outer loops. I&\thie loop nest discovered by the
greedy algorithm may not be optimal, it has well defined th&cal properties. A key analytical
result is that the reduction of a shorter span inner loop asqpibed in the greedy algorithm can
impact the discovery of a longer span outer loop only in tHiewing way: if the optimal outer
loop is L, then a corresponding loap, will be identified despite the reduction of an inner loop.
L, andL, have identical but possibly reordered trace symbolsQuhay have up to 2 less loop
iterations thanl,. Hence, the loop structure discovered by the greedy alguoris near optimal
The theoretical basis for this procedure is treated in depih5].

The optimal and greedy loop nest discovery procedures wepéemented and employed to
discover the loop nests in the MPI traces of NAS benchmarks.KBy results are listed in Table 3.
As expected, the optimal algorithm discovered perfect luegis as validated by direct observation.

The loop nests discovered by the greedy algorithm werecinifdentical to the optimal loop nests
except for a minor difference in the case of CG benchmark etimepressed trace had 21 symbols
instead of 10 and the loop structure was slightly differeHowever, the time for greedy loop
discovery was dramatically lower, down from 31 hours to 6dosels for one trace. To the best of
our knowledge, this is the first effort toward extracting qdete loop nests from execution traces.

Raw Compression Time Trace Span| Compressed| Compression
Name Trace | Greedy | Optimal Major Loop Structure Covered Trace Ratio
Length | (secs) (secs) by Loops Length
BT B/C 17106 | 8.91 311.18 (85)290 = (13 + (4)% + ... + (4)3)290 99.38% 44 388.77
SP B/C 26888 7.61 747.73 67400 99.67% 89 302.11
CG B/C | 41954 | 8.48 2021.78 (552)7° = (21)° +6)° 98.68% 10 4195.4
MG B 8909 8.64 113.48 (416)%° 93.39% 590 15.1
MG C 10047 10.88 144.54 (470)20 93.56% 648 155
LUB 203048 | 33.16 | 44204.82 | (812)%T = ((4)100 + (4)T00 4 12)219 99.58% 63 3222.98
LUC 323048 | 61.9 | 113890.21| (1292)?% = ((4)160 + (4)160 4 12)Z%9 99.58% 63 5127.75

Table 3. Results for optimal and greedy compression procedu res

4 Construction of performance skeletons

The final step in building a performance skeleton is conugrt logicalized and compressed
trace into an executable program that recreates the behayieesented in the trace. The trace at
this stage consists of a loop nest with loop elements congisf a series of symbols, each symbol
representing an MPI Call or computation of a certain duratibtime. The trace is converted to
executable” code with the following basic steps:

e The loop nest in the trace is converted to a program loop nigistthhe number of iterations
reduced to match the desired skeleton execution time.

e The collective and point-to-point communication calls e ttrace are converted to MPI
communication calls that operate on synthetic data. Thetpopoint calls generate a global
stencil communication pattern matching the applicatigrotogy.

e The computation sections are replaced by synthetic compnteode of equal duration.

Note that the procedure is simplistic with respect to repontly computation. The instruction
mix may be different and memory behavior is not reproducdus & a limitation of the current
work although memory skeletons have been investigatedatehain [13].

A direct conversion of MPI trace symbols to MPI calls can tesuexecutable code that may
deadlock. The key issues in ensuring deadlock free comratioicin a skeleton program are as
follows:

1. ldentifying local communication Most MPI calls in a logical trace are matched: there is
a Recvin the trace corresponding to eve®gnd We refer to these calls @gobal and their
inclusion in the performance skeleton will lead to a stenoinmunication pattern across
executing nodes. However, it is possible that some unmdtbtfel Send/Recv calls may
exist in a trace even when there is a dominant global commatiait pattern, i.e. there may

7

be Send to WESTnh the trace but no correspondii@end to EASTSuch calls are labeled
local and either removed or matched with synthetically generaeé#id. While local calls
imply inaccuracy, they are rare in structured codes andssacg to ensure deadlock free
execution. The procedure for marking communication callkaal or global is outlined in
Figure 3. It is based on the basic deadlock free patternsiot pm point communication
which are 1) a non blocking Send/Recv with a matching Recwd®e®fore a corresponding
Wait and 2) One or more blocking Send/Recv calls followed latahing Recv/Send calls.
Note that in the latter case, the code generated for end nodes stencil is different from
others, e.g. Send followed by Recv, when it is Recv followg&bnd for all other nodes.

2. Unbalanced global communication Even when a pair of communication calls is matched,
it may not be balanced, meaning an MPI Send/Receive and iitesponding MPI Re-
ceive/Send may not be equal in size. Analysis is employedéatify these and force a
match, e.g., by using the median message size of a Send aud Rec

while next-calk First unmarked Send or Recv call in the code exdsis
if next-callis a non-blocking iSend (iRec¥hen
Let match-waitbe the corresponding matching Wait call.
Let match-callbe the next matching Recv/iRecv (Send/iSend) in the code.
if match-callis aftermatch-waitor match-waitor match-calldoes not existhen
Mark next-callas local communication.
else
Mark next-callandmatch-callas global communication.
end if
else
[next-callis a blocking Send (Recv).]
Let match-callbe the next matching Recv/Irecv (Send/Isend) in code.
if nomatch-callexists or there is a blocking Send or Recv betweext-callandmatch-call
then
Mark next-callas local communication.
else
Mark next-callandmatch-callas global communication.
end if
end if
end while
Note: Matching calls have the same datatypes and matchnstef the directions in a communi-
cation pattern, e.g, logical East and West in a 2D torus.

Figure 3. Identification of Global and Local Send and Recv com munication calls

5 Experimentsand results

A prototype framework for automatic construction of penfi@nce skeletons has been imple-
mented. Automatically generated skeletons were emplayedtimate the execution time of cor-

8

responding applications in a variety of scenarios. Prai@ccuracy was measured by comparing
the predicted performance with actual application pertoroe.

5.1 Skeleton construction and properties

Skeletons were constructed on “PGH201”, which is a complutster composed of 10 Intel
Xeon dual CPU 1.7 GHz machines with 100 Mbps network intedatonnected by a full crossbar
Gigabit Switch. The execution was under MPICH 2.0 librargp&iments were conducted on 16-
process class C NAS benchmarks. The methodology emplol@musadkeletons to be constructed
to approximate a target skeleton execution time (or eqeinthf, a target ratio between application
and skeleton execution times). However, there is a mininxgowion time for a “good skeleton”
which corresponds to the execution of a single iterationhefmain execution loop. This also
determines the maximum possible ratio between the apjlicahd skeleton execution times. For
the experiments conducted, the objective was to build thgdet running skeleton with execution
time under one minute or a skeleton that executes for appetely 10% of the application execu-
tion time, whichever was lower. The execution times of NASdienarks and their skeletons are
shown in Table 5.1. The table also shows the expected eradirie ratio for the shortest running
good skeleton, i.e., the maximum possible application &etkn runtime ratio.

Benchmark| Execution Time(s) Execution Time Ratio
Name Skeleton| Benchmark| Actual skeleton| Max possible
BT 45.6 1129.6 24.8 200
CG 40.3 607.6 15.1 75
MG 8.3 79.1 9.5 20
LU 39.1 637.4 16.3 249
SP 43.1 1069.2 24.8 400

Table 4. Benchmark and skeleton execution times for 16 proce ss class C NAS benchmarks

An application and the corresponding performance skekgtonld have approximately the same
percentage of time spent in computation and communicalibase were measured for execution
under MPICH 2.0 as well as execution under Open MPI librarjre Tesults are presented in
Figure 4.

We note that the computation/communication time percenagenerally very close for bench-
marks and corresponding skeletons. One exception is thed@Ghimark, where the difference
is especially striking for execution under Open MPI. We \pilesent the performance results for
other benchmarks first and then specifically analyze the GGlbeark.

5.2 Prediction across MPI libraries and cluster architectures

Skeletons constructed with MPICH 2.0 on PGH201 cluster veenployed to predict perfor-
mance under Open MPI library and on a different cluster dai&hark” which is composed of 24
SUN X2100 nodes with 2.2 GHz dual core AMD Opteron procesadraaGB main memory. All
nodes are connected through 4x InfiniBand Network Intereonhand Gigabit Ethernet Network
Interconnect. The results are plotted in Figure 5.

9

O Computation 0 Communication

O Computation O Communication

100%™/ M ™M MM MM MM o6 o 00% 1 — — — — — — — — — —
90% - 90% -

80% 1 | [Ll 80% -] = [

70% A 70% -

60% - L[] 60% - Ll
50% D 50% A L

40% - 40% +

30% A] 30% -]

20% A 20% A

10% - 10% -

0% T T T T T T T T T 1 0% T T T T T T T T T 1
BT bt CG «cg MG mg LU lu SP sp BT bt CG cg MG mg LU lu SP sp
(a) MPICH 2.0 (b) OpenMPI

Figure 4. Computation/communication time percentage for b enchmarks (uppercase) and skele-
tons (lowercase)

25 9 25 -
] O Shark OPGH201
20 - 20
s 15 9 15 4
5 5
W 10+ m 10 4
| | Lo J
0 T T T T | 0 T T T T |
BT MG LU SP Average BT MG LU SP Average
(a) Across architectures (PGH201 to Shark) (b) Across libraries (MPICH 2.0 to OpenMPI)

Figure 5. Prediction results across different MPI librarie s/architectures

The prediction errors across the architectures averagmdrb5%. The skeleton construction
procedure employed makes no effort to reproduce the pregseution or memory behavior and
only reproduces the execution times in skeletons with stittcomputation code. Hence, in-
accuracy is expected across clusters with different psmregnd memory architectures. In the
remainder of this paper, for validation purposes, the s&akeemployed on Shark were “retuned”
implying that the length of the computation blocks was ajdgo maintain the original ratio
between reference skeleton and application execution.

Figure 5(b) shows the accuracy of performance predictedfsenMPI with skeletons con-
structed with MPICH 2.0 on the two clusters. The errors ard@sbaveraging below 10% for both
clusters.

10

5.3 Prediction for bandwidth sharing

Figure 6 shows results from performance prediction withwoek sharing simulated by arti-
ficially reducing the available bandwidth to 50, 20, and 5k&sysec with Linuxproute2 The
results are presented for the older MPICH 1.2.6 MPI librargddition to the MPICH 2.0 library.
We consider the predictions to be excellent; the maximurdiptien error is below 10% and the
avarage prediction error varies between 2% and 6% for diftescenarios. The results validate
that the methodolgy employed models communication acelyrat

10 10 o

50M O20M O5M
8‘ 8<

6 A
4 A 4
2 2]
0 : : : : 0 : :
LU BT MG LU

BT MG Average

Error (%)
Error (%)

T
SP Average

(a) MPICH 1.2.6 (b) MPICH 2.0

Figure 6. Prediction results with reduced bandwidth availa bility

5.4 Prediction for processor sharing

A set of experiments were conducted to estimate the accufaegrformance prediction with
processor sharing. Each node has an independent CPU sehaddIno gang scheduling is em-
ployed. First, 16 process jobs were run on 8 and 4 procesgbng. results are shown for Shark
in this case as all cases cannot run on PGH 201 because adimiémory). The results in Fig-
ure 7(a) show that the average prediction error is in arol®¥d for 8 processors and 5% for 4
processors, but the maximum errors are over 20% for 8 proreasd over 30% for 4 processors.
Figure 7(b) plots the accuracy of performance predictiori6rmprocessors with 2 or 4 synthetic
competing compute bound processes on each node. The edigbrs are rather high averaging
around 30%.

These results point out the limitation of the methodologykayed as it does not model com-
putation, synchronization, or memory behavior accuratélgrformance with independent CPU
schedulers and sharing is sensitive to these factors. V\ilgpe that the main reason for the rel-
atively low accuracy in the above scenarios is that the sieleonstruction procedure does not
model the idle periods caused due to synchronization amtyr@nd some of them are replaced by
computations in skeletons. In the case of processor shahniagdle periods will be effectively used
by other competing processes making the performance axf@@dy skeletons to be inaccurate.
In this set of experiments, errors were the result of theiegipbn executing times being less than
those predicted by skeleton execution.

11

40 A

60 -
[0 8 Processors 04 Processors
4 50 A]
32] [0 2 Competing Processes
20 04 Competing processes
g S
S = 30 - _—
o 16 q b o —
20 A
81 10
0 = T T T T 0 T
BT MG LU SP Average BT MG LU SP Average

(a) Execution of 16 process job on 8/4 processors (Shark{b) Execution with synthetic competing processes

Figure 7. Prediction results for processor sharing

5.5 CG benchmark

The prediction errors for the CG benchmark were signifigamtiher than the rest of the bench-
mark suite for most scenarios, and the results were notdedin earlier charts in order to stream-
line the discussion. As examples, the prediction error f& Was around 4 times the average
for other benchmarks for prediction across libraries aratligtion with reduced bandwidth. CG
benchmark is very communication intensive and it was olegetliat the performance of the CG
benchmark was very sensitive to the placement of processeedes. The communication topol-
ogy of CG benchmark is shown on the left in Figure 8. The tabléhe right shows the execution
time for various mappings of processes to nodes. The exectithe varies by a factor of two
depending on the location of the processes. The skeletastraotion procedure makes no effort
to manage placement of processes on nodes, and the placdemtrd skeleton can be different
from the placement of the application. Since the perforredaa@lacement sensitive, the frame-
work cannot deliver meaningful results. No other benchneskmined exhibited such sensitivity
to process placement.

%—“2—*‘8 < 0
H H H H Config | Node 1| Node 2 | Node 3 Node 4 | Time(s)
—3 o —11 A 0,1,8,9| 2,3,10,11| 4,5,12,13| 6,7,14,15 | 496
l B 0,145 23,67 | 891213 10,11,14,15 568
A PP C 0,1,2,3| 45,6,7 |8910,11| 12,13,14,15 272

Figure 8. CG Topology and prediction results. The picture sh ows the process communication
topology. The table shows the execution time of the benchmar k for various placements of
processes on nodes.

12

6 Conclusions and future work

This paper has presented and evaluated a framework for tts¢raotion of performance skele-
tons for message passing MPI programs from execution trathe objective is prediction of
application performance in scenarios where modeling dbperance is challenging. A key inno-
vation is that the performance skeletons developed¢aoedinated i.e., a single SPMD skeleton
program is generated for a family of process level trace® pgdper describes customized proce-
dures for logicalization and compression of executiondsabat were developed for efficient and
scalable generation of performance skeletons.

Results are presented to validate the prediction abilifyeoformance skeletons in different sce-
narios. Itis observed that the skeletons are very effettipeadicting performance when dynamics
of communication change, e.g., when the bandwidth is lignitea new communication library is
deployed. However, the prediction power is limited in oteegnarios where the computation dy-
namics change, e.g., when multiple processes must shane@sgor. This is not unexpected as the
methodology captures the communication primitives pedgibut attempts to recreate the periods
of execution coarsely. In particular, the instruction lexecution and memory behavior are not
captured.

The fundamental limitation of this approach to performapeiction is that it is only applica-
ble to structured applications with a repeating commuroogpattern for which a representative
input data set is sufficient to capture the execution behakiowever, this covers a large class of
scientific applications. The framework developed can beravgd in several ways. The general
computation and memory behavior and the distribution ofmat@tion sections across the comput-
ing processes can be captured and incorporated in skeldmbelieve that these enhancements
will overcome the limitations that were pointed out in dission of results.

Acknowledgement: This material is based upon work supported by the Nationainge Founda-
tion under Grant No. ACI- 0234328 and Grant No. CNS-0410797

References

[1] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. ThmpkeS Parameter Sweep Tem-
plate: User-level middleware for the grid. Bupercomputing 200@ages 75-76, 2000.

[2] M. Crochemore. An optimal algorithm for computing theedtions in a wordInf. Process.
Lett, 12(5):244-250, 1981.

[3] D. Kerbyson and K. Barker. Automatic identification offdjgation communication patterns
via templates. Ir18th International Conference on Parallel and Distribut&dmputing Sys-
tems Las Vegas, NV, September 2005.

[4] C. Nevill-Manning, I. Witten, and D. Maulsby. Compregsiby induction of hierarchical
grammars. Irbata Compression Conferengeages 244—-253, Snowbird, UT, 1994.

[5] C. G. Nevill-Manning and I. H. Witten. Sequitunt t p: / / SEQUI TUR. i nf 0.

13

[6] M. Noeth, F. Mueller, M. Schulz, and B. de Supinskii. Sdalk compression and replay
of communication traces in massively parallel environraenin 21th IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2003ng Beach, CA, April 2007.

[7] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distribd resource management
for high throughput computing. 1Ath IEEE International Symposium on High Performance
Distributed Computingjuly 1998.

[8] A. Snavely, L. Carrington, and N. Wolter. A framework fperformance modeling and pre-
diction. InProceedings of Supercomputing 20@R02.

[9] S. Sodhiand J. Subhlok. Automatic construction andwatabn of performance skeletons. In
Proceedings of the 19th IEEE International Parallel and thilsuted Processing Symposium
(IPDPS 2005)Denver, CO, April 2005.

[10] S. Sodhi, Q. Xu, and J. Subhlok. Performance prediatiith skeletonsCluster Computing:
The Journal of Networks, Software Tools and Applicati@¥7. Accepted.

[11] J. Subhlok, P. Lieu, and B. Lowekamp. Automatic nodeesibn for high performance
applications on networks. IRroceedings of the Seventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programmingages 163172, Atlanta, GA, May 1999.

[12] T. Tabe and Q. Stout. The use of the MPI communicatioratypin the NAS Parallel Bench-
mark. Technical Report CSE-TR-386-99, Department of Caemp8cience, University of
Michigan, Nov 1999.

[13] A. Toomula and J. Subhlok. Replicating memory behatworperformance prediction. In
Proceedings of LCR 2004: The 7th Workshop on Languages, &s@and Run-time Sup-
port for Scalable Systemblouston, TX, October 2004. Published in the ACM Digital Li-
brary.

[14] Q. Xu, R. Prithivathi, J. Subhlok, and R. Zheng. Logization of MPI communication traces.
Technical Report UH-CS-08-07, University of Houston, M&p3.

[15] Q. Xu and J. Subhlok. Efficient discovery of loop nesteammunication traces of parallel
programs. Technical Report UH-CS-08-08, University of bton, May 2008.

[16] J. Zivand A. Lempel. A universal algorithm for sequahtiata compressiolEEE Trans-
actions on Information Theoyp3(3):337-343, 1977.

14

