1

Computational grids are emerging as the vehicle for futigk performance scientific and commercial com-
puting. Execution environments for grids have to addrdssation of resources to applications, and that is
driven by the expected performance of an application oreudfit parts of a grid. Estimation of application
performance has an important role to play in grid computarg] the problem is much more complex for

a shared heterogeneous computation environment than fwentional high performance computing plat-
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Abstract

The performance skeleton of an application is a short rgnpirogram whose performance in any
scenario reflects the performance of the application itesgmts. Specifically, the execution time of the
performance skeleton is a small fixed fraction of the executime of the corresponding application in
any execution environment. Such a skeleton can be emplaygditkly estimate the performance of a
large application under existing network and node sharTinis paper presents a framework for automatic
construction of performance skeletons of a specified ei@ttime and evaluates their use in performance
prediction with CPU and network sharing. The approach isthas capturing the execution behavior of an
application and automatically generating a syntheticetkel program that reflects that execution behavior.
The paper demonstrates that performance skeletons ruforiagfew seconds can predict the application
execution time fairly accurately. Relationship of skefexecution time, application characteristics, and
nature of resource sharing, to accuracy of skeleton bagéarpance prediction, is analyzed in detail. The

goal of this research is accurate performance estimatibetierogeneous and shared computational grids.

Introduction

forms.

A large body of research addresses resource selectionitbagyplications, and several projects are dis-

cussed in section 2. The state of the art can be broadly sumedars consisting of the following steps:

1. System characterizatiorMeasure and predict the status and availability of systesowees such as

CPU and network capacities.



2. Application characterizationDevelop a model that captures the dependence of an apptitsagier-

formance on availability of resources.

3. Mapping and schedulingSelect the best nodes to execute the application based datdeasystem

status and application characteristics.

We argue that this state of the art has the following inhdnamitiations that motivate a different paradigm:

e Maintaining accurate current system status informatioimiserently expensiveln order to have re-
cent CPU and network information whenever a resource assghdecision has to be made, available
system resources have to be monitored continuously angsstdformation has to be broadcast fre-
quently. For network properties, measurements themselwesume bandwidth and the complexity
increases quadratically with the size of the available aating grid. High speed backbone network
links are particularly challenging since it is not desimbd consume a critical shared resource for

measurements.

e Estimating application performance based on system siatirherently error prone.Measurement
tools provide resource availability and utilization infeation such as CPU load factor and unused
bandwidth on various components of a grid. On the other hdredkey information of interest for
resource management is how a particular application wilfgpm on a set of resources under the
current system status. Predicting the performance of egtjpdn tasks from system status information

is very difficult. The following examples underline the caepty:

— The amount of CPU time that a process is likely to get on a caatjun node cannot be deter-
mined even when the load average on the node is known sinaetly pepends on the synchro-

nization structure of the parallel and distributed appiarss in the system.

— The expected duration of a bulk transfer cannot be estinatedrately even when accurate point
to point unused bandwidth information is available sincdepends on the transport protocols

used by the application and other traffic on the network.

Finally even if the performance on individual node compotag and data transfers can be determined,
estimating collective communication and overall applmaperformance is still challenging as it de-

pends on the nature of sharing in the network and the apglicatructure.

The conclusion is that it is virtually impossible to estimaipplication performance from network status
in many scenarios. This has motivated us to follow a diffeegproach to estimating performance in shared

heterogeneous grid environments which is based on thenfoigpclaim:



The most effective and efficient way to estimate the perfocmaf an application under the existing status
of grid resources is brief monitored execution of code thiaics the application

We refer to such code as tiperformance skeletonof the application. More formally, a performance
skeleton is a synthetically generated short running progrdose execution time always reflects the per-
formance of the application it represents. Hence, simpBcating the performance skeleton in a shared
execution environment provides an estimate of the apmicgierformance in that environment. The re-
source selection for an application is then addressed lasvial A group of candidate node sets is identified
for execution (using existing approximate methods) anditfa choice is made by comparing the execution
time of the application skeleton on each node set.

The central contribution of this paper is a framework for@ufatic construction of accurate performance
skeletons for distributed applications and evaluationhaf tapability of automatically generated skeletons
to predict performance efficiently and accurately.

While we have used resource selection in shared grid enwienits for motivating this research, it is
important to point out that this approach to performanceigten has broad applicability. Another example
is prediction of the performance of important applicationsa future architecture under simulation. Since
execution under simulation is multiple orders of magnitstiever than real execution, this skeleton based
approach can be particularly appropriate. The real agitaloes not have to be simulated at all as the
skeleton can be built on existing machines.

The basic philosophy in construction of a performance s&alean be stated as follows. If the skeleton
executes operations that are representative of applicakecution, the performance of the skeleton and the
application will change similarly in response to changeb@execution environment. Hence, a performance
skeleton must capture the execution behavior of the apgjgitén terms of synchronization and message
exchange patterns, CPU usage patterns, and memory actiesagayet execute for a very short time. Our
approach is to measure the application performance behdwiong execution, summarize it by identifying
repeating phases, and then reproduce it as a syntheti¢cmkel@gram.

This paper is organized as follows. Section 2 discusseterkl@search in resource management and
performance prediction in grid environments. Section 3la&rg the concept of a performance skeleton
and section 4 describes the procedure to construct perfmenskeletons. Section 5 presents results that
illustrate the accuracy of skeleton based performanceagired. Section 6 discusses the current limitations

and possible extensions of this approach and section 7insranclusions.



2 Related work

The research community clearly recognizes the importahperormance estimation in grid environments
and substantial research effort has been invested in theurezaent, modeling, and prediction of various
system resources. Measurement and prediction of CPU hil#yldnas been studied in [11, 37]. Measure-
ment and modeling of network bandwidth and latency is a vetiy@aarea of research [7, 14, 21, 30]. NWS
(Network Weather Service) [38] and REMOS (Resource MomitpBystem) [17] are two systems that have
been specifically designed for measurement of available @RUnetwork resources in grid environments.
NWS, in particular, is in widespread use as a CPU and banbwnidhitoring and prediction tool.

Systems for resource management and scheduling for praalwing on grid environments include Net-
solve [8], Nimrod/G [6], Gallop [36], AppLeS [4] and Conddd, 22]. These systems rely on measured and
predicted availability of CPU, bandwidth and other resesrto make resource allocation and management
decisions where applicable. AppLeS [4] pioneered appticdevel scheduling, where resource selection is
performed by agents associated with an application basedaitable resource information, rather than by a
central resource manager. A number of algorithms and framevhave been proposed for resource selection
in networked environments based on system status infoomabme examples being [4, 31]. Some of the
recent research has emphasized the importance of appligatiperties in resource allocation and addresses
resource selection based on mapping application propédithe system status [5, 9, 23, 28, 33, 35].

We specifically discuss other projects that focus on capduaipplication behavior and application per-
formance. FAST [10] is a tool that performs abstract simaorfet while completely avoiding execution of
computation code. Reed et. al. [18] generate compact apiplit signatures that summarize time varying
application behavior while still retaining the compactes$ statistical summaries. They use a curve-fitting
approach that reduces event-tracing overheads for ondirfermnance monitoring and tuning but still retains
many of the advantages of event-tracing. Snavely et.a).28) create application and machine signatures
to simulate application behavior across different systemrocessor architectures, and yield performance
predictions by convolving application signatures with acinae signature. Our approach is driven by many
of the ideas and concepts developed in these projects. Howee have a very different goal, which is to
develop an executable skeleton program, rather than arpeafee model.

The skeleton construction procedure relies on repetip@ication behavior to be effective. There is
abundant evidence that this is the case for practical agdjgits. Duesterwald et.al. [12] explore met-
rics derived from hardware counters to characterize pragsahavior and its variability. They discover
that phase/periodicity behavior is shared across diftereirics and use it for kernel-level resource aware
scheduling. Sherwood et.al. [24, 25] also exploit periaplication behavior by building basic block vec-

tors. They identify portions of the program that are repnéstave of an application for the purpose of archi-



tectural simulations.

Yang et.al. [15] show that performance translation and iptieth derived from very short partial execu-
tions can yield high accuracy at a low cost. The reason isrttuet parallel codes are iterative and behave
in a predictable manner after a minimal startup period. Makaet.al. [20] propose an execution model—
MHETA, which takes into account computation, communiaatiand 1/O costs of iterative scientific appli-
cations. This model automatically uses extracted infoiongtom a single iteration to predict the execution
time of the remaining iterations. In contrast, a perforntaskeleton is based on a full analysis of applica-
tion execution. This allows accurate performance estnaticross a wider class of applications including
those with multiple diverse phases. Also, a performancketkeis a stand-alone program that can yield a

performance estimate without even invoking the full apatiien in a new environment.

3 Performance skeletons

A performance skeleton is defined as a program whose exadirtie is directly related to the execution time
of the application it represents; if the execution time okalston is 1/1000th of the application execution
time on a dedicated cluster, then this relationship shoold im any execution environment, even when nodes
and links are shared with other applications. This definitgidealistic, and in practice, the goal is to build a
skeleton that conforms to these conditions as closely aslges The skeleton should also be as short-running
as possible as skeleton execution is an overhead. We wéeltblipoint out that skeleton execution is very
different from executing the application for a short timéneTskeleton should capture the total execution of
an application in a short time while the beginning part of pplizgation is typically not representative of the
entire application execution.

For the performance behavior of a skeleton to be similar & ¢ an application, the execution and
resource usage patterns of the skeleton must be similaetddiminant corresponding patterns of the appli-

cation. We have the following specific criteria:

1. CPU activity: The processing done by the CPU and CPU busy/idle phaserpatteuld be similar for

the application and the skeleton.

2. Memory activity:The memaory access pattern in the skeleton should be repatiserof the applica-
tion. This is particularly important to get similar cachefpemance on nodes with different memory

hierarchies.
3. I/O activity: The 1/O pattern in the skeleton should be representativieeofpplication.

4. Communication and synchronizatiomhe data exchange patterns among processes should be simila

for the application and the skeleton to preserve the comeatinn and synchronization performance.



The sizes, types, frequencies and patterns of network megsahanges should be similar.

5. Application phase transitionsAn application transitions between different phases ofcetien at
multiple levels of granularity. The sequence of these phasewell as the CPU, memory and commu-

nication activities in each phase, should be reflected irskieéeton.

Our long term project goal is to generate skeletons confogrto the above constructive definition but this
paper is limited to performance skeletons which mimic thewewnication sequences and coarse computa-
tion behavior of the application. Such skeletons are sefficfor predicting performance of compute and
communication bound applications under resource shaRegroduction of memory accesses and fine-grain
instruction level computation behavior is critical for flemance estimation across different processor and
memory architectures, but not essential for simple CPU atdark sharing scenarios. We discuss our efforts

in reproducing memory behavior for performance predictiof34].

4 Automatic construction of skeletons

This research has developed a framework for automatic iarti&tn of performance skeletons and imple-
mented it for message passing MPI programs. We outline theepiure in this section. The main steps are

as follows:

1. Record application’s execution trac&he application is executed on a controlled testbed andkits e
ecution activity, specifically CPU usage and message exygsns recorded. This is thexecution

trace.

2. Compress execution trace into an execution signatiires repeated patterns in the recorded execution
trace are identified and used to generate a compact repaieartf the trace by introducing a “loop

structure”. The new compact representation isexeeution signature.

3. Generate performance skeleton program from the execuitipratire: The application execution sig-
nature is converted to a computer program which generatssuggn activity that is similar to the
recorded execution signature, but with the execution ticaéesl down by a given factor K. This is the

performance skeleton.

The skeleton construction procedure is illustrated in FéglL This procedure does not involve source
code analysis, modification or instrumentation and hensebihaad applicability. Skeleton construction is
driven by the desired ratio between the execution time o&piication and the corresponding performance
skeleton, which we call thecaling factor We now discuss each of these steps. Additional details are

available in [29].
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Figure 1: Construction of application performance skelsto

4.1 Recording of execution trace

To generate an execution trace, the MPI application is tinkigh a profiling library by employing the stan-
dard PMPI interface [19] to intercept all MPI calls. When aRPMall is executed in the original application,
the control is transferred to the profiling library. The &by records the call parameters and the time stamp,
and then invokes the original MPI routine for actual comneation. When the control returns to the profiling
library, another time stamp representing the end of the conication operation is recorded and the control
is returned to the original calling routine.

After linking to enable profiling, the application is exeedton a dedicated testbed cluster without any
competing jobs or network traffic. The profiling library rede information for each application process in
a separate trace file. Each MPI library call, along with theapeeters passed to it and its start time and
end time, are recorded. Timing measurement is done to neicomsl granularity with Linuxgettimeofday
system call [1]. Time for computation operations is recdrde the time spent between the end of one MPI
operation and the start of the next MPI operation. Generaifahe trace file requires no modification of
the application source code. We verified that the execuitina bverhead of trace generation is negligible,

typically well under 1% of the execution time.

4.2 Compression of execution trace to execution signature

The application execution trace is a long record of messageamges and interleaved compute operations

of varying duration. The bulk of an application’s executiime is typically spent in repeating loops as



application execution activity tends to be cyclic. The gofathis step is to identify cyclic behavior in the
execution trace to generate a compact execution signattegments of execution trace denoting similar
activity qualify for repeating behavior; exactly identigetivity is not required. This process consists of
clustering similar execution events in the trace followgdHe conversion of the repeated operation sequences

into a loop structure.

Clustering similar execution events:

The objective of this stage is to replace the execution tbgca string of symbols where substantially

similar execution events are placed in the same cluster ssigreed the same symbol.

As an example, suppose we encounter the following two ojp@isin a trace:

MPI _Send(Node 3, 2000 bytesand

MPI _Send(Node 3, 1800 bytes)
If both these events occur only once, they are both replagéhfollowing operation:

MPI _Send(Node 3, 1900 bytes)
Clustering such similar events helps in generating a momepaat representation. Events that are
grouped together are execution phases of approximatelgl elymation or message calls with simi-
lar parameters. Our approach treats different MPI priragiand blocking and non-blocking calls as
distinct events, thus ensuring that they are never groupgettier. Further our approach ensures that
point-to-point calls between different pairs of nodes aaliective calls with different root nodes are
never grouped together. We identify the non blocking calld associate®IPI_Wait() to determine
the corresponding overlapped region. This helps develajtlafdl representation of the application’s

communication structure.

Formally, we have developed a measure for dissimilarity vanés in N—dimensional space based
on [13], with one dimension for each parameter of an exenutient. The extent of clustering is
controlled by asimilarity thresholdwhich can be assigned a value between 0 and 1. A lower sityilari
threshold represents more strict rules for clustering hlitlead to less compression, while a higher
similarity threshold implies more relaxed rules for clustg and more compression. A similarity

threshold of 0 implies that only identical events are clesl¢ogether.

This stage converts the trace log into a string of symbolh sisc

abByBByBByRaa

where each occurrence of a symbol represents an execuion with different occurrences of the

same symbol referring to functionally identical executiwents.

To summarize, clustering of similar events and represgiitiam by an “average event” implies some

loss of information but leads to significant compressiord anbsequently, smaller skeletons. This



tradeoff can be managed with the similarity threshold patamas discussed.

Identification of cycles:

The objective of this step is to identify and capture repgtatecution behavior as loops to construct
the final execution signature. Since the previous step gtstlee execution trace into a sequence of
frequently repeating symbols, the problem of identifyiegeating application execution behavior is
now represented as the problem of finding repeating subgstrvithin a string. As an example, the
following string:

aBByBAYBRYRan
should be replaced by:

al(B)*9]kla]?
The procedure consists of recursively identifying the egjpgy sub-strings, starting with the largest
matches and working down to sub-string matches of a singtéey. The repeating sub-strings are
then organized as recursive loop nests with sub-stringgrabsls as loop bodies and the number of
repetitions as the number of loop iterations. This algarifl outlined in Table 1. A straightforward

analysis shows that the complexity of the compression dtgoris O(N?) for a string of NV symbols.

An important parameter in the procedure for the constranabioan execution signature is the similarity
threshold, which determines if two similar events can besaared identical for the purpose of compression.
We now address how a given value of similarity thresholddia@es to specific rules for compression and then
discuss how the value of similarity threshold is determirieat message passing operations, the value of the
similarity threshold linearly relates to the maximum diéface in message sizes allowed for communication
operations to be combined into a cluster. The above comipregsocedure is applied across communication
operations without regard to interleaving computationseW'two sequences of communication events with
interspersed computation events are to be combined, aage/ealue of execution time for the corresponding
computation events in the sequence is used to build the @ss@d sequence. This approach represents
maximum flexibility in combining computation events and viasnd to be effective in our experience.

An iterative process outlined in Table 2 is employed to daire the optimal value of the similarity
threshold based on the desired compression ratio Q betlwedartgth of the execution trace and the length
of the compressed execution signature. Initially the sinty threshold is set to 0 and the clustering and
compression procedure is applied. If the degree of comipressless than the desired ratio Q, the similarity
threshold is increased gradually until the desired congiwaof Q (or higher) is achieved. Now, the question
is how should Q be determined ? Based on our experience, weusad Q = K/2 where K is the scaling
factor between the application execution time and the désikeleton execution time. Itis desirable to have

an upper bound on similarity threshold so that very difféex@cution events are not combined. In practice,



Table 1: Algorithm to compress strings by finding repeatinig-strings

INPUT: S; a string of symbols.
OUTPUT: A String table of tuplegSy, co), (S1, ¢1)....(Sk, k). So represents the compressed string.
Each stringS; is a sequence of symbols and other strings.

Eachge; is the number of repetitions of the corresponding string.

1. Initialization:i = 1; Sy = S;
2. w = length(Sy)/2;
3. If Sy contains a repeating substring of lengttthen go to step 4. Else go to step 5.
4. LetS; be one repeating substring of sizehat repeats; times.
Add (S;, ¢;) to the string table.
Replace the sequence of repeated stringg iwith symbol.S;.
Increment =i + 1;
Go to step 2
5. Decrementy = w — 1; If w > 0 go to step 3 Else ad§, to the string table and Stop.

this may not be a significant issue. The similarity threshblt was required across the NAS benchmarks
for meaningful execution signatures was frequently 0, dwdys less than .2. The implication is that only

combining closely similar events may be sufficient for si@tegeneration in practice.

4.3 Generation of performance skeleton program from execimbn signature

The previous stage gave us the execution signature whichas@ressed record of the complete execution
of the application. The execution signature compressesutivg information by using a loop structure with
loop bodies representing repeating execution behavior dgoal in this step is to create a short running
program in a programming language like C/C++ which repreduthe scaled down dominant execution
behavior represented by the execution signature. Thefgpgoial is to take the application’s execution
signature and the desirsdaling factorK as inputs, and generate an appropriate performance skel€he

skeleton construction procedure is outlined as follows:

1. The numbers of loop iterations in the application sigrexure reduced by a factor K. Loop iterations
that form the remainder in this division process are undadlled become a component of the unreduced

part of the signature.
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Table 2: Algorithm used to generate execution signatuna fitee execution trace of an application

INPUT: Execution trace of an application from a single node.

OUTPUT: Execution signature of the application represgéatea compressed strirsg.

INITIALIZE
Similarity Threshold= initial value; (usually 0)
K= Application execution time / Desired skeleton executioret

M = Null; (Table mapping processed MPI operations to symbols)

1. Replace each MPI operation in the trace by a symbol. Reptegmilar operations by the same symbpl.
2. For each operatio@pin trace
Find MinOp (operation in M which is most similar tQp).
If (Dissimilarity(Op, MinOp) < SimilarityThreshold
Then Represer@®pin S by corresponding symbol fddinOp.
Else Represer®p by a new symbol in S and add this informatiorivio
3. Compress resultant trageusing the algorithm in Table 1 yielding,.
Compression Rati@ = length(S)/length(So);
4. If (Q < K/2 andSimilarityThreshold< max allowed)
Then incremengimilarityThresholdGoto Step 1.
Else Return §;). Stop.

This step typically generates the dominant part of the eti@egkeleton. If the bulk of the execution
trace is represented in the execution signature as loopsaéirge number of iterations, the remaining
steps, which handle the non-loop part of the execution sigaaonly make a marginal difference and

can be omitted

2. Groups of K occurrences of identical execution operatamywhere in the unreduced part of the skele-

ton are identified and replaced by a single occurrence.

3. All remaining unreduced operations a@aled dowrby a factor K by adjusting their parameters. For
compute operations, the duration of execution is reducegdfagtor K. For communication operations,

the number of bytes exchanged is reduced by a factor K.
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4. This modified application signature is converted to sgtithC code by generating corresponding syn-

thetic loops, MPI calls, and compute operations.

One weakness of this approach is that scaling down a comatioricoperation by reducing the number
of bytes exchanged is not accurate. Execution time of theaex operation would typically be higher
than expected because communication operations haverhgoccthmponents; latency, which is fixed for all
message sizes, and message transfer time, which can bd doala linearly. By reducing the number of
bytes exchanged we only reduce the message transfer tiawindethe latency component intact. A more
accurate scaling cannot be achieved without making somergns about the execution environments.
Also, we point out that this kind of reduction is a “last res¢iat is employed only for iterations that remain
after division by K and for operations not in loops. In praetithe impact on overall performance estimation

is expected to be minimal for most applications.

4.4 Skeleton construction usage and example

The skeleton construction framework is fully automated.otder to build a performance skeleton of an
application, a user takes the following actions. The firepss to link the application with a provided
profiling library and execute in a sample cluster executiovirenment. This results in the generation of a
set of trace files, one per executing thread. Next, the mailekn generation program is executed with the
trace files as input and theealing factorbetween the desired skeleton and application executiogstes a
parameter. A performance skeleton is generated as thetotitpia performance skeleton is a portable C/MPI
program that can be executed in different execution enwiemts.

We selected the class S BT NAS benchmark as a realistic egrgonpgram to illustrate the construction
of a performance skeleton from an execution trace. Theraigixecution trace is shown in Table 3. The
trace was recorded on Node 0. The trace consists of 2278 MBJ wdth computation sections between
them. Table 3 lists samples from the beginning and end ofr#loet This trace only lists the communication
calls, which are always interleaved with computation ssithat are omitted for brevity. The general format
of the communication calls in the execution trace is as fedto

MPICallName#ParametdrifParamete®...#Parameten#StartTime#EndTime
where the number and meaning of parameters depends on the cal
For example the first line in the trace in Table 3 is as follows:

24 1432207247244 14#284#0413440+49392205094#939220509
The fields, from left to right, and their values in this tracerg are as follows:

Type of call: (2 representing MPBCast)

Occurrence number of that call in the trgd¢

12



Table 3: Execution Trace

#Generating Logfile
Node=0 #939220507ss#0#939220507
1. 2#1#3220724724#1#28#0#134#0#939220509#939220509 MPI_Bcast(...1, MPIINT, 0,...]
2. 2#2#136373224#1#27#0#134#0#939220509#939220509 MPI_Bcast(...1, MPIDOUBLE, 0,...)
3. 2#3#135838396#3#28#0#134#0#939220509#939220509 MPI_Bcast(...3, MPIINT, 0,...]
4. T#1#135789088#360#27#1#3000#138#153016848#0#93022939220509 MPI_Irecv(... 1, MPLDOUBLE, 360, ..
5. 7#2#135786208#360#27#1#2000#138#153017012#0#93022939220509 MPI_lrecv(... 1, MPLDOUBLE, 360, ..
6. 7#3#135794848#360#27#2#5000#138#153017176#0#93022939220509 MPI_lrecv(... 2, MPLDOUBLE, 360, ..
7. T#4#135791968#360#27#2#4000#138#153017340#0#93022939220509 MPI_lrecv(... 2, MPLDOUBLE, 360, ..
8. T#5#135800608#360#27#3#6000#138#153017504#0#93022939220509 MPI_lrecv(... 3, MPLDOUBLE, 360, ..
9. 7T#6#135797728#360#27#3#7000#138#153017668#0#93022939220509 MPI_Irecv(... 3, MPLDOUBLE, 360, ..]
10. 9#1#135812616#360#27#1#2000#138#153002824#0208302#939220509  MPI_Isend(... 1, MPIDOUBLE, 360, .
11. 9#2#135809736#360#27#1#3000#138#153002964#0208302#939220509  MPI_Isend(... 1, MPIDOUBLE, 360, .
12. 9#3#135818376#360#27#2#4000#138#153003104#0209309#939220509  MPI_Isend(... 2, MPIDOUBLE, 360, .
13. 9#4#135815496#360#27#2#50004#138#153003244#0209309#939220509  MPI_Isend(... 2, MPIDOUBLE, 360, .
14. 9#5#135824136#360#27#3#7000#138#153003384#029309#939220509  MPI_Isend(... 3, MPIDOUBLE, 360, .
15. 9#6#135821256#360#27#3#6000#138#153003524#020802#939220509  MPI_Isend(... 3, MPIDOUBLE, 360, .
16. 22#1#12#153016848#153017012#153017176#153017330%7504 MP1_Waitall(...)]
#153017668#153002824#153002964#153003104#15300823a%3384
#153003524#0#939220509#939220513
17. O#7#135786208#1470#27#1#3000#136#153003524#020393#939220513 MPI_Isend(... 1, MPIDOUBLE, 1470, ..])
18. 7T#7#135809736#1470#27#1#3003#136#153017668#R29393#939220513 MPI_Irecv(... 1, MPLDOUBLE, 1470,..])
19. 21#1#153003524#0##939220513#939220513 MPI1[Wait(...)
20. 21#2#153017668#0##939220513#939220513 MPI1[Wait(...)

2277. 3#1#3220724688#3220724696#1#27#100#0#134#P20882#939220642 MPI_Reduce(...1, MEDOUBLE, MPLMAX, ...]
2278. 1#2#91#0#939220642#939220642 [MPI_Barrier]
#Finished writing logfile for node=0#939220642#939220646

Data buffer pointe(3220724724)

Count of data elementgd)

Type of data elemen{28 representing MRPINT)
Node ID of root of broadcast tr€@)

MPI Communicator 1(134)

Host ID (0)

Start Time of Cal(939220509 msecs)

End Time of Call(939220509 msecs)
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Table 3 lists the raw trace, along with summarized call imfation that includes the type of the call,
destination node number, data type, and message size,wehapplicable.

The next phase of the skeleton construction procedurestsrfiassigning symbols to identical or similar
communication events. For this example, it was sufficienkegep thesimilarity threshold discussed in
section 4.2, at 0 to generate an acceptable trace. Hencg @igéinct MPI event is assigned a different

symbol. Table 4 lists the symbols representing commuminatalls and the corresponding MPI events.

Table 4: Symbol table for MPI events

P1: MPLIrecv(... 1, MPLDOUBLE, 360, ...) P2: MPLIrecv(... 1, MPLDOUBLE, 1470, ...)
P3: MPLIrecv(... 1, MPLDOUBLE, 245,...) P4: MPLIrecv(... 3, MPLDOUBLE, 360, ...)
P5: MPLIrecv(... 3, MPLDOUBLE, 1470, ...) P6: MPLIrecv(... 3, MPLDOUBLE, 245,...)
P7: MPLIrecv(... 2, MPLDOUBLE, 360, ...) P8: MPLIrecv(... 2, MPILDOUBLE, 1470, ...)
P9: MPLIrecv(... 2, MPLDOUBLE, 245,...) P10: MPLIsend(... 1, MPIDOUBLE, 360, ...)
P11: MPLIsend(... 1, MPIDOUBLE, 1470, ...) P12: MPLIsend(... 1, MPIDOUBLE, 245,...)
P13: MPLIsend(... 3, MPIDOUBLE, 360, ...) P14: MPLIsend(... 3, MPIDOUBLE, 1470, ...)
P15: MPLIsend(... 3, MPIDOUBLE, 245,...) P16: MPLIsend(... 2, MPIDOUBLE, 360, ...)
P17: MPLIsend(... 2, MPIDOUBLE, 1470, ...) P18: MPLIsend(... 2, MPIDOUBLE, 245,...)
M1: MPI_Allreduce(... 5, MPIDOUBLE, MPLLSUM, ...) | M2: MPI_Barrier

M3: MPI_Reduce(...1, MEDOUBLE, MPILMAX, ...) M4: MPI_Bcast(...1, MPIINT, 0,...)

M5: MPI_Bcast(...1, MPIDOUBLE, 0,...) M6: MPI_Bcast(...3, MPIINT, 0,...)

0O1: MPLWait(...) 02: MP.Waitall(...)

After the clustering phase, which consists of replacinghti®l events with symbols according to the
listing in Table 4 in this example, the part of the trace shawhable 3 will be represented by the following
string:

{M4,M5,M6,P1,P1,P7,P7,P4,P4,P10,P10,P16,P16,P18)PKR11,P2,01,01,...... ...... ,M3,M12

The next step is to identify the cycles in this trace by apmythe algorithm in Table 1. For this example
we find that there is a single large loop that iterates 60 tirfiég final execution signature is represented as

follows:

{M4, M5, M6, L_0, M2, (L.0:60), M1, (P1:2), (P7:2), (P4:2), (P10:2), (P16:2), (R302, M1, M3,
M2}

The formatSymbol:Numbeimplies thatSymbolis repeatedNumbertimes. In the above signature, all
symbols represent MPI calls as listed in Table 4, exceptithatepresents a loop consisting of 37 MPI calls
listed as follows:

L0 = [(P1:2), (P7:2), (P4:2), (P10:2), (P16:2), (P13:2), ®21, P2, (O1:2), P12, P3, (O1,2), P17, P8,
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(01:2), P18, P9, (01:2), P14, P5, (01:2), P15, P6, (01:2)]

The final step is to generate a specific performance skeletmngm based on the scaling factor discussed
in section 4.3. For this example, the skeleton always ctmeisthe code representing Loopd.described
above, while the number of iterations of the loop in the deglés determined by the scaling factor. Since the
number of trace events outside of this loop is very small aspared to the events represented in the loop,

the skeleton can be limited to this loop. The pseudo codéntoskeleton is shown in Table 5.

Table 5: Example skeleton code

loop() /* lterations determined by scaling factor*/

{
MPI_Irecv(... 1, MPLDOUBLE, 360, ...)

MPI_Wait() /* wait for Isend */
MPI1_Wait() /* wait for Irecv */

MPI_Isend(... 2, MPIDOUBLE, 1470, ...)
MPI_Irecv(... 1, MPLDOUBLE, 360, ...)

MPI_Irecv(... 2, MPLDOUBLE, 1470, ...)
MPI_Irecv(... 2, MPLDOUBLE, 360, ...)

MPI_Wait() /* wait for Isend */
MPI_Irecv(... 2, MPLDOUBLE, 360, ...)

MPI_Wait() /* wait for Irecv */
MPI_Irecv(... 3, MPLDOUBLE, 360, ...)

MPI_Isend(... 2, MPIDOUBLE, 245, ...)
MPI_Irecv(... 3, MPLDOUBLE, 360, ...)

MPI_Irecv(... 2, MPLDOUBLE, 245,...)
MPI_Isend(... 1, MPIDOUBLE, 360, ...)

MPI_Wait() /* wait for Isend */
MPI_Isend(... 1, MPIDOUBLE, 360, ...)

MPI_Wait() /* wait for Irecv */
MPI_Isend(... 2, MPIDOUBLE, 360, ...)

MPI_Isend(... 3, MPIDOUBLE, 1470, ...)
MPI_Isend(... 2, MPIDOUBLE, 360, ...)

MPI_lrecv(... 3, MPIDOUBLE, 1470, ...)
MPI_lsend(... 3, MPIDOUBLE, 360, ...)

MPI_Wait() /* wait for Isend */
MPI_Isend(... 3, MPIDOUBLE, 360, ...)

. MPI_Wait() /* wait for Irecv */
MPI_Waitall(12, ...)

MPI_Isend(... 3, MPIDOUBLE, 245,...)
MPI_Isend(... 1, MPIDOUBLE, 1470, ...)

MPI_lrecv(... 3, MPLDOUBLE, 245,...)
MPl_Irecv(... 1, MPLDOUBLE, 1470, ...)

. . MPI_Wait() /* wait for Isend */
MPI_Wait() /* wait for Isend */

MPI_Wait() /* wait for Irecv */

}

MPI_Wait() /* wait for Irecv */
MPI_Isend(... 1, MPIDOUBLE, 245,...)

MPl_Irecv(... 1, MPLDOUBLE, 245,...)
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4.5 Shortest running “good” skeleton

Itis desirable that the performance skeletons be shorimgraince the execution of the performance skeleton
is an overhead in performance estimation. However, theigtied accuracy is likely to be lower for shorter
running skeletons. The framework we have developed is deditp construct skeletons for any scaling factor
that is provided, and equivalently, for an arbitrary skate¢xecution time. A key question in this research is
as follows: How short running can a skeleton be and still getieereasonable performance estimates ?

To address this, the skeleton construction framework becaily determines the shortest runtime skele-
ton that it believes can be constructed without signifigasécrificing prediction accuracy, and issues a
warning if the requested scaling factor implies a smalletetion. To determine the shortest “good” skeleton,
the framework identifies thdominant sequence of execution evémthe application that comprise a signifi-
cantly large percentage of application execution time. életion is considered a good skeleton if at least one
full iteration of the dominant sequence of execution eveniscluded.

As an example, consider the NAS IS (Integer Sort) benchmédse main communication operation is
a large all-to-all transfer. The accuracy of the skeletoexisected to be good if one or more full all-to-all
transfers are included. Hence the minimum size for a gookkeis the shortest skeleton that includes at

least one full all-to-all transfer.

5 Experiments and results

A prototype framework for automatic construction of penfiance skeletons has been implemented. It was
employed to generate skeletons to predict the performahtteeaorresponding applications on a network

testbed.

5.1 Experimental setup

The testbed for the experiments is a compute cluster cordpafs#0 Intel Xeon dual CPU 1.7 GHz ma-
chines connected by Gigabit Ethernet links and a full crasshvitch. Results are presented for experiments
conducted on 4 nodes. All experimental results are basetleMPI implementation of the NAS Parallel
Benchmarks [3, 32]. The codes used are BT (Block Tridiageakder), CG (Conjugate Gradient), IS (Inte-
ger Sort), LU (LU Solver), MG (Multigrid) and SP (Pentadiagdsolver). All programs are compiled using
GNU g77 (Fortran) compiler except IS, which is compiled with tipec (C) compiler. The MPICH imple-
mentation of MPI is used. The bandwidth between computaibmies was managed with the Linux advanced
networkingiproute2[2] in order to simulate limited bandwidth availability dteecompeting network traffic.

iproute2works by intercepting the network packets and passing theough artificial queues to simulate
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bandwidth limitations.
Performance skeletons were constructed for each Class BB&wghmark program with an intended
skeleton execution time of 10 seconds, 5 seconds, 2 secbedspnd and 0.5 second by defining the appro-

priate scaling factors.

5.2 Validation of skeleton properties

The performance skeletons are expected to have executi@vibe that reflects the application. As a basic
test, we compared the percentage of time spent in the coneation (MPI) operations versus other compu-

tations for the skeletons and the application. The resudtdlastrated in Figure 2.
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Figure 2: Time spent by NAS benchmarks and correspondingtskes in different execution activities. The

bar with horizontal lines is for the actual application.

We observe that the ratio between the computation and comneation time is broadly similar for the
skeletons and the corresponding application. The 0.5 seskeleton for the LU benchmark shows a some-
what larger communication time ratio than the other cases. eWpect that very small skeletons will not
represent the application as faithfully as larger skeletasmore approximations are involved in their con-
struction. The ratios for the skeletons of BT benchmark shrawe variation than others. The conclusion is
that moderate variations are possible because of the raftskeleton construction process but most skeletons

are fairly close to their application in this respect.
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5.3 \Validation of performance prediction

In order to validate the ability of performance skeletongpitedict application performance in different sce-
narios the NAS benchmarks and the corresponding perforerslm@tetons were executed on the same testbed

under the following five resource sharing scenarios:

1. Two competing compute intensive processes are run onahe n

2. Two competing compute intensive processes are run onreaiteh

3. Available bandwidth on one of the links was artificiallynlted to 10Mbps.
4. Available bandwidth on each link was artificially limitéal LOMbps.

5. Competing processes as above on one node and reducedditrasabove on one link.

(Note that at least two competing processes are requirecetiecmeaningful CPU contention for an
application process on dual processor nodes.)

We define themeasured scaling ratias the ratio between the measured execution time of an afiphc
and the measured execution time of a corresponding skel€tmnpredicted execution time of an application
in a resource sharing scenario is the product of the measledeton execution time in the same scenario
and the correspondimgeasured scaling ratior he predicted and measured application execution times we
compared for different skeleton sizes and across differsgurce sharing scenarios. The remainder of this
section discusses the results.

Average error in execution time predicted by the perfornesskeletons across applications and skeleton
sizes is plotted in Figure 3. These results are averagedsimeource sharing scenarios. We observe that the
average prediction error across all benchmarks, scerambskeleton sizes is a relatively low 6.7% implying
that the performance skeletons can predict execution tifeetiwely. We now discuss the relationship of

prediction accuracy to application characteristics,etikl size, and resource sharing scenarios.

Skeleton size and benchmarks:

Our goal of “short running” performance skeletons is to @averheads but preserve prediction accuracy.
From Figure 3 we observe that the relationship between gegueediction error and skeleton size shows
no distinct pattern across benchmarks. For some benchpmaddiction error does not change much when
going from 10 second to 0.5 second skeletons. However, srtmually close to the highest for the smallest
0.5 second skeletons. The average error across all apptisdbr 0.5 seconds skeletons is around 8% versus

the range around 5% to 6% for other cases.
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Applications

Figure 3: Prediction error for NAS benchmarks across skiekesizes from 10 to 0.5 seconds. The error is

averaged across all resource sharing scenarios.

The minimum execution time of a “good” skeleton for each ltenark as determined by our framework,
based on discussion in section 4.5, is listed in Figure 4 e8am this table, the skeletons that are flagged
as potentially “not good” are 0.5 and 1 second skeletons o085, 1, and 2 second skeletons for IS, and
0.5 and 1 second skeletons for LU. Indeed the 4 cases withighedst prediction error, i.e., the 0.5 second
BT skeleton and 0.5,1, and 2 second IS skeletons, were flagdeve low prediction value by the skeleton

construction framework.

Application | Smallest Skeleton
BT 1.01 sec
CG 0.13 sec
IS 3 sec
LU 1.97 sec
MG 0.34 sec
SP 0.34 sec

Figure 4: Estimated minimum execution time for the smallgebd” skeleton.

The prediction errors for each skeleton size are groupesthegand displayed in Figure 5. While there is
no uniform pattern again, the number of cases with a relgtiaege prediction error increase with decreasing
skeleton size and is clearly the highest for 0.5 second &kede

The main conclusion is that performance skeletons of a fearsis are normally adequate for reasonably
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Skeleton Sizes

Figure 5: Prediction error for skeletons of different sif@sNAS benchmarks. The error is averaged across

all resource sharing scenarios.

accurate performance prediction, with a loose correlatietween smaller skeletons and lower prediction

accuracy. Also, the framework generates meaningful agipdin specific lower bounds for skeleton sizes.

Sharing scenarios:

We examine how the nature of sharing relates to accuracyrédipgance prediction. Our experiments have
spanned sharing of one or all CPUs, one or all communicaitis,|land a combination of one node and one
link. Figure 6 shows prediction error under different shgrscenarios when employing representative 10
second skeletons. We observe that the prediction errogieehifor scenarios that include competing traffic.
In the case of CPU sharing only, the error is higher for thebalanced” sharing of a single node versus
sharing of all nodes.

We believe that prediction error is higher for network shgifbecause communication operations cannot
be scaled down linearly unlike compute operations, as damliin section 4.3. We speculate that the error in
unbalanced execution scenarios is higher because of t@aiccuracy in reproduction of synchronization
behavior in performance skeletons. While constructingsdet&n, we set the duration of compute operations
within loops to their average duration across iterationthefloop. A more accurate approach that considers

frequency distribution of the duration of compute eventtlvé taken in the future.
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Figure 6: Prediction error for NAS benchmarks across fiveusse sharing scenarios. A 10 second skeleton

was used.

5.4 Comparison with other prediction techniques

We performed additional experiments to compare the priedietccuracy of performance skeletons versus

two other simple and “reasonable” approaches to performprediction listed as follows:

Average Prediction: The average slowdown of the entire benchmark suite underem gesource sharing
scenario was used to predict the execution time for evergraro in the same scenario. The reasoning
is that, if all programs slow down roughly equally under t&@®@ competition, there is no need for
customized performance skeletons for applications désmlisn this paper; instead, a generic short
running program could be employed to predict the executme for any application under resource

sharing.

Class S Prediction: The experiments described in this paper were performed®iss B NAS benchmarks,
which run in 30 to 900 seconds without load on 4 machines irctuster. Each NAS benchmark also
has a Class S version which typically runs in less than a skdaorthis case, the Class S benchmarks
were used as the performance skeletons for the Class B bank$ifor performance prediction. The
reasoning is that, since both classes of benchmarks petf@same fundamental calculation but on
different data sizes and scales, the short running clase&b®arks could be considered good manually

generated performance skeletons.
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Figure 7: Minimum, maximum and average prediction errotli@NAS benchmark suite for prediction with
different size skeletons, with class S benchmarks as skeleand using average prediction. The execution

scenario is one competing process on one node and trafficelindn

The performance prediction error for each of these appemishplotted in Figure 7. The performance
skeleton approach based on the framework in this paperaslgleetter than the other methods. Prediction
with 0.5 second skeletons, which roughly take as long to su@lass S benchmarks, is also clearly superior
to other methods. Hence the overhead of our approach is aispetitive.

The above results are significant for the following reasdie fact that “average prediction” approach is
relatively ineffective proves that applications have vyderying execution behavior and hence an approach
that is customized to applications is required. The inghdf Class S benchmarks to predict the behavior of
larger Class B benchmarks shows that one cannot simply rapplication with a very small input data set

and expect it to have similar execution behavior as runniitig rgalistic data sets.

6 Limitations and extensions

This research establishes performance skeletons as antémpand effective approach to execution driven
performance prediction. We discuss the limitations of ouplementation and future work that is needed to

develop a comprehensive solution to the problems this fnarieis designed to solve.

e Coordinated skeletons:In the current framework, skeletons are constructed inaggetly for each
executing process and heuristics are employed to handle@nynunication mismatches among the

skeleton processes. Ongoing research is addressing wctitstr of coordinated skeletonghere a
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single SPMD skeleton program is constructed by employinipbal analysis of all process traces.

Scalable skeletons:In the current methodology, the number of threads in a skelet the number

of nodes employed in skeleton generation. Hence, a skeletoonstructed for execution on a fixed
number of nodes (or threads) and the construction procedound have to be repeated for a different
number of nodes. Of course, it is desirable to have skelettmatscan execute on, and provide a
performance estimate for, any number of nodes. This is destgd since the program execution
behavior itself can change as the number of execution teraad nodes change. Our current research
is investigating construction of parameterized skelelynsnalyzing the execution behavior for a range

of node sets and employing the coordinated skeleton apipiacussed above.

Efficiency of skeleton construction:The execution time of skeleton construction is dominatethey
compression procedure that employs(a(V?) algorithm, as noted in section 4.2. Tradeoffs between
the degree of compression and compression time are poasittlmay be necessary for long running
programs with frequent communication calls. In particuifathe longest repeating pattern is limited
to length L, the complexity can be trivially reduced (N2L). Ongoing work is exploring more

efficient algorithms and tradeoffs.

Fine grain prediction: This paper is limited to modeling coarse computation and roamication
behavior. Modeling of instruction level execution and meynaccess patterns is essential to employ
skeletons to predict performance across architecturegnpartant application is prediction of perfor-

mance by simulation on a future architecture.

Other programming models: The current implementation is limited to message passing pié*
grams. While the basic concepts are independent of the @amoging model, implementation will be
significantly different for another programming model. Ateenate approach that infers communica-
tion by network modeling can be independent of the programgmiodel and has been investigated
in [26].

Prediction across data sets:The current methodology constructs a skeleton based oncifispex-
ecution and input data set. The approach can be made to wksadifferent data set sizes when
execution time is dependent on the size of a data set. Howkkemost performance prediction

methods, this approach cannot be applied when executiomiggty data dependent.

Implementation and experimentation: Several aspects of this implementation can be improved. Syn
chronization overhead is modeled in a simple way as the gnmiformation is approximated. Scaling
down of individual communication operations can be moreh&ijzated. More experimentation, par-

ticularly on wide area networks, is needed for strongeidzion.
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7 Conclusion

This paper introduces performance skeletons, which amt glvming programs that are constructed to mimic
an application. Monitored skeleton execution in any ruetiemvironment yields an estimate of the perfor-
mance of the corresponding application in that environmérite key advantage of this approach is that
modeling of the runtime environment is not required. Hetiicis, particularly suitable for execution in dy-
namic and unpredictable environments. Our driving sceniaria grid environment, where modeling the
dynamic network and host availability can be difficult to iosgible.

The paper details how performance skeletons can be gederatematically from execution traces on
an ordinary cluster. We demonstrate that automaticallyeged performance skeletons that run in seconds
can predict application performance accurately. The aeepaediction error for 5 and 10 second skeletons
for a variety of scenarios involving network and node shavimas 5-6%. Our framework can also effectively
compute the size of the shortest possible “good” skeletah ¢an estimate performance accurately. The
results show that good skeletons executing in 2 seconds®chn be constructed for all NAS benchmarks.
The paper offers detailed results and insight into how apfibn characteristics, skeleton size and nature of
resource competition impact prediction accuracy.

The paper discusses the limitations of this approach irildetd points out the major directions in which
improvements are important. One of the goals is to instigatee research into this approach to performance
prediction. In summary, the paper presents a promisingaggirto performance estimation with resource

sharing and provides convincing evidence that it is prattod effective.
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