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Abstract

The performance skeleton of an application is a short running program whose performance in any

scenario reflects the performance of the application it represents. Specifically, the execution time of the

performance skeleton is a small fixed fraction of the execution time of the corresponding application in

any execution environment. Such a skeleton can be employed to quickly estimate the performance of a

large application under existing network and node sharing.This paper presents a framework for automatic

construction of performance skeletons of a specified execution time and evaluates their use in performance

prediction with CPU and network sharing. The approach is based on capturing the execution behavior of an

application and automatically generating a synthetic skeleton program that reflects that execution behavior.

The paper demonstrates that performance skeletons runningfor a few seconds can predict the application

execution time fairly accurately. Relationship of skeleton execution time, application characteristics, and

nature of resource sharing, to accuracy of skeleton based performance prediction, is analyzed in detail. The

goal of this research is accurate performance estimation inheterogeneous and shared computational grids.

1 Introduction

Computational grids are emerging as the vehicle for future high performance scientific and commercial com-

puting. Execution environments for grids have to address allocation of resources to applications, and that is

driven by the expected performance of an application on different parts of a grid. Estimation of application

performance has an important role to play in grid computing,and the problem is much more complex for

a shared heterogeneous computation environment than for conventional high performance computing plat-

forms.

A large body of research addresses resource selection for grid applications, and several projects are dis-

cussed in section 2. The state of the art can be broadly summarized as consisting of the following steps:

1. System characterization:Measure and predict the status and availability of system resources such as

CPU and network capacities.



2. Application characterization:Develop a model that captures the dependence of an application’s per-

formance on availability of resources.

3. Mapping and scheduling:Select the best nodes to execute the application based on available system

status and application characteristics.

We argue that this state of the art has the following inherentlimitations that motivate a different paradigm:

• Maintaining accurate current system status information isinherently expensive. In order to have re-

cent CPU and network information whenever a resource assignment decision has to be made, available

system resources have to be monitored continuously and status information has to be broadcast fre-

quently. For network properties, measurements themselvesconsume bandwidth and the complexity

increases quadratically with the size of the available computing grid. High speed backbone network

links are particularly challenging since it is not desirable to consume a critical shared resource for

measurements.

• Estimating application performance based on system statusis inherently error prone.Measurement

tools provide resource availability and utilization information such as CPU load factor and unused

bandwidth on various components of a grid. On the other hand,the key information of interest for

resource management is how a particular application will perform on a set of resources under the

current system status. Predicting the performance of application tasks from system status information

is very difficult. The following examples underline the complexity:

– The amount of CPU time that a process is likely to get on a computation node cannot be deter-

mined even when the load average on the node is known since it partly depends on the synchro-

nization structure of the parallel and distributed applications in the system.

– The expected duration of a bulk transfer cannot be estimatedaccurately even when accurate point

to point unused bandwidth information is available since itdepends on the transport protocols

used by the application and other traffic on the network.

Finally even if the performance on individual node computations and data transfers can be determined,

estimating collective communication and overall application performance is still challenging as it de-

pends on the nature of sharing in the network and the application structure.

The conclusion is that it is virtually impossible to estimate application performance from network status

in many scenarios. This has motivated us to follow a different approach to estimating performance in shared

heterogeneous grid environments which is based on the following claim:
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The most effective and efficient way to estimate the performance of an application under the existing status

of grid resources is brief monitored execution of code that mimics the application.

We refer to such code as theperformance skeletonof the application. More formally, a performance

skeleton is a synthetically generated short running program whose execution time always reflects the per-

formance of the application it represents. Hence, simply executing the performance skeleton in a shared

execution environment provides an estimate of the application performance in that environment. The re-

source selection for an application is then addressed as follows. A group of candidate node sets is identified

for execution (using existing approximate methods) and thefinal choice is made by comparing the execution

time of the application skeleton on each node set.

The central contribution of this paper is a framework for automatic construction of accurate performance

skeletons for distributed applications and evaluation of the capability of automatically generated skeletons

to predict performance efficiently and accurately.

While we have used resource selection in shared grid environments for motivating this research, it is

important to point out that this approach to performance prediction has broad applicability. Another example

is prediction of the performance of important applicationson a future architecture under simulation. Since

execution under simulation is multiple orders of magnitudeslower than real execution, this skeleton based

approach can be particularly appropriate. The real application does not have to be simulated at all as the

skeleton can be built on existing machines.

The basic philosophy in construction of a performance skeleton can be stated as follows. If the skeleton

executes operations that are representative of application execution, the performance of the skeleton and the

application will change similarly in response to changes inthe execution environment. Hence, a performance

skeleton must capture the execution behavior of the application in terms of synchronization and message

exchange patterns, CPU usage patterns, and memory access patterns, yet execute for a very short time. Our

approach is to measure the application performance behavior during execution, summarize it by identifying

repeating phases, and then reproduce it as a synthetic skeleton program.

This paper is organized as follows. Section 2 discusses related research in resource management and

performance prediction in grid environments. Section 3 explains the concept of a performance skeleton

and section 4 describes the procedure to construct performance skeletons. Section 5 presents results that

illustrate the accuracy of skeleton based performance prediction. Section 6 discusses the current limitations

and possible extensions of this approach and section 7 contains conclusions.
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2 Related work

The research community clearly recognizes the importance of performance estimation in grid environments

and substantial research effort has been invested in the measurement, modeling, and prediction of various

system resources. Measurement and prediction of CPU availability has been studied in [11, 37]. Measure-

ment and modeling of network bandwidth and latency is a very active area of research [7, 14, 21, 30]. NWS

(Network Weather Service) [38] and REMOS (Resource Monitoring System) [17] are two systems that have

been specifically designed for measurement of available CPUand network resources in grid environments.

NWS, in particular, is in widespread use as a CPU and bandwidth monitoring and prediction tool.

Systems for resource management and scheduling for problemsolving on grid environments include Net-

solve [8], Nimrod/G [6], Gallop [36], AppLeS [4] and Condor [16, 22]. These systems rely on measured and

predicted availability of CPU, bandwidth and other resources to make resource allocation and management

decisions where applicable. AppLeS [4] pioneered application level scheduling, where resource selection is

performed by agents associated with an application based onavailable resource information, rather than by a

central resource manager. A number of algorithms and frameworks have been proposed for resource selection

in networked environments based on system status information, some examples being [4, 31]. Some of the

recent research has emphasized the importance of application properties in resource allocation and addresses

resource selection based on mapping application properties to the system status [5, 9, 23, 28, 33, 35].

We specifically discuss other projects that focus on capturing application behavior and application per-

formance. FAST [10] is a tool that performs abstract simulations while completely avoiding execution of

computation code. Reed et. al. [18] generate compact application signatures that summarize time varying

application behavior while still retaining the compactness of statistical summaries. They use a curve-fitting

approach that reduces event-tracing overheads for online performance monitoring and tuning but still retains

many of the advantages of event-tracing. Snavely et.al. [27, 28] create application and machine signatures

to simulate application behavior across different system or processor architectures, and yield performance

predictions by convolving application signatures with a machine signature. Our approach is driven by many

of the ideas and concepts developed in these projects. However, we have a very different goal, which is to

develop an executable skeleton program, rather than a performance model.

The skeleton construction procedure relies on repetitive application behavior to be effective. There is

abundant evidence that this is the case for practical applications. Duesterwald et.al. [12] explore met-

rics derived from hardware counters to characterize program behavior and its variability. They discover

that phase/periodicity behavior is shared across different metrics and use it for kernel-level resource aware

scheduling. Sherwood et.al. [24, 25] also exploit periodicapplication behavior by building basic block vec-

tors. They identify portions of the program that are representative of an application for the purpose of archi-
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tectural simulations.

Yang et.al. [15] show that performance translation and prediction derived from very short partial execu-

tions can yield high accuracy at a low cost. The reason is thatmost parallel codes are iterative and behave

in a predictable manner after a minimal startup period. Nakazaw et.al. [20] propose an execution model—

MHETA, which takes into account computation, communication, and I/O costs of iterative scientific appli-

cations. This model automatically uses extracted information from a single iteration to predict the execution

time of the remaining iterations. In contrast, a performance skeleton is based on a full analysis of applica-

tion execution. This allows accurate performance estimation across a wider class of applications including

those with multiple diverse phases. Also, a performance skeleton is a stand-alone program that can yield a

performance estimate without even invoking the full application in a new environment.

3 Performance skeletons

A performance skeleton is defined as a program whose execution time is directly related to the execution time

of the application it represents; if the execution time of a skeleton is 1/1000th of the application execution

time on a dedicated cluster, then this relationship should hold in any execution environment, even when nodes

and links are shared with other applications. This definition is idealistic, and in practice, the goal is to build a

skeleton that conforms to these conditions as closely as possible. The skeleton should also be as short-running

as possible as skeleton execution is an overhead. We would like to point out that skeleton execution is very

different from executing the application for a short time. The skeleton should capture the total execution of

an application in a short time while the beginning part of an application is typically not representative of the

entire application execution.

For the performance behavior of a skeleton to be similar to that of an application, the execution and

resource usage patterns of the skeleton must be similar to the dominant corresponding patterns of the appli-

cation. We have the following specific criteria:

1. CPU activity:The processing done by the CPU and CPU busy/idle phase pattern should be similar for

the application and the skeleton.

2. Memory activity:The memory access pattern in the skeleton should be representative of the applica-

tion. This is particularly important to get similar cache performance on nodes with different memory

hierarchies.

3. I/O activity: The I/O pattern in the skeleton should be representative of the application.

4. Communication and synchronization:The data exchange patterns among processes should be similar

for the application and the skeleton to preserve the communication and synchronization performance.
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The sizes, types, frequencies and patterns of network message exchanges should be similar.

5. Application phase transitions:An application transitions between different phases of execution at

multiple levels of granularity. The sequence of these phases, as well as the CPU, memory and commu-

nication activities in each phase, should be reflected in theskeleton.

Our long term project goal is to generate skeletons conforming to the above constructive definition but this

paper is limited to performance skeletons which mimic the communication sequences and coarse computa-

tion behavior of the application. Such skeletons are sufficient for predicting performance of compute and

communication bound applications under resource sharing.Reproduction of memory accesses and fine-grain

instruction level computation behavior is critical for performance estimation across different processor and

memory architectures, but not essential for simple CPU and network sharing scenarios. We discuss our efforts

in reproducing memory behavior for performance predictionin [34].

4 Automatic construction of skeletons

This research has developed a framework for automatic construction of performance skeletons and imple-

mented it for message passing MPI programs. We outline the procedure in this section. The main steps are

as follows:

1. Record application’s execution trace:The application is executed on a controlled testbed and its ex-

ecution activity, specifically CPU usage and message exchanges, is recorded. This is theexecution

trace.

2. Compress execution trace into an execution signature:The repeated patterns in the recorded execution

trace are identified and used to generate a compact representation of the trace by introducing a “loop

structure”. The new compact representation is theexecution signature.

3. Generate performance skeleton program from the execution signature: The application execution sig-

nature is converted to a computer program which generates execution activity that is similar to the

recorded execution signature, but with the execution time scaled down by a given factor K. This is the

performance skeleton.

The skeleton construction procedure is illustrated in Figure 1. This procedure does not involve source

code analysis, modification or instrumentation and hence has broad applicability. Skeleton construction is

driven by the desired ratio between the execution time of theapplication and the corresponding performance

skeleton, which we call thescaling factor. We now discuss each of these steps. Additional details are

available in [29].
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Figure 1: Construction of application performance skeletons.

4.1 Recording of execution trace

To generate an execution trace, the MPI application is linked with a profiling library by employing the stan-

dard PMPI interface [19] to intercept all MPI calls. When an MPI call is executed in the original application,

the control is transferred to the profiling library. The library records the call parameters and the time stamp,

and then invokes the original MPI routine for actual communication. When the control returns to the profiling

library, another time stamp representing the end of the communication operation is recorded and the control

is returned to the original calling routine.

After linking to enable profiling, the application is executed on a dedicated testbed cluster without any

competing jobs or network traffic. The profiling library records information for each application process in

a separate trace file. Each MPI library call, along with the parameters passed to it and its start time and

end time, are recorded. Timing measurement is done to microsecond granularity with Linuxgettimeofday

system call [1]. Time for computation operations is recorded as the time spent between the end of one MPI

operation and the start of the next MPI operation. Generation of the trace file requires no modification of

the application source code. We verified that the execution time overhead of trace generation is negligible,

typically well under 1% of the execution time.

4.2 Compression of execution trace to execution signature

The application execution trace is a long record of message exchanges and interleaved compute operations

of varying duration. The bulk of an application’s executiontime is typically spent in repeating loops as
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application execution activity tends to be cyclic. The goalof this step is to identify cyclic behavior in the

execution trace to generate a compact execution signature.Segments of execution trace denoting similar

activity qualify for repeating behavior; exactly identical activity is not required. This process consists of

clustering similar execution events in the trace followed by the conversion of the repeated operation sequences

into a loop structure.

Clustering similar execution events:

The objective of this stage is to replace the execution traceby a string of symbols where substantially

similar execution events are placed in the same cluster and assigned the same symbol.

As an example, suppose we encounter the following two operations in a trace:

MPI Send(Node 3, 2000 bytes), and

MPI Send(Node 3, 1800 bytes)

If both these events occur only once, they are both replaced by the following operation:

MPI Send(Node 3, 1900 bytes)

Clustering such similar events helps in generating a more compact representation. Events that are

grouped together are execution phases of approximately equal duration or message calls with simi-

lar parameters. Our approach treats different MPI primitives and blocking and non-blocking calls as

distinct events, thus ensuring that they are never grouped together. Further our approach ensures that

point-to-point calls between different pairs of nodes and collective calls with different root nodes are

never grouped together. We identify the non blocking calls and associatedMPI Wait() to determine

the corresponding overlapped region. This helps develop a faithful representation of the application’s

communication structure.

Formally, we have developed a measure for dissimilarity of events in N–dimensional space based

on [13], with one dimension for each parameter of an execution event. The extent of clustering is

controlled by asimilarity thresholdwhich can be assigned a value between 0 and 1. A lower similarity

threshold represents more strict rules for clustering but will lead to less compression, while a higher

similarity threshold implies more relaxed rules for clustering and more compression. A similarity

threshold of 0 implies that only identical events are clustered together.

This stage converts the trace log into a string of symbols such as:

αββγββγββγκαα

where each occurrence of a symbol represents an execution event with different occurrences of the

same symbol referring to functionally identical executionevents.

To summarize, clustering of similar events and representing them by an “average event” implies some

loss of information but leads to significant compression, and subsequently, smaller skeletons. This
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tradeoff can be managed with the similarity threshold parameter as discussed.

Identification of cycles:

The objective of this step is to identify and capture repeated execution behavior as loops to construct

the final execution signature. Since the previous step converts the execution trace into a sequence of

frequently repeating symbols, the problem of identifying repeating application execution behavior is

now represented as the problem of finding repeating sub-strings within a string. As an example, the

following string:

αββγββγββγκαα

should be replaced by:

α[(β)2γ]3κ[α]2

The procedure consists of recursively identifying the repeating sub-strings, starting with the largest

matches and working down to sub-string matches of a single symbol. The repeating sub-strings are

then organized as recursive loop nests with sub-strings of symbols as loop bodies and the number of

repetitions as the number of loop iterations. This algorithm is outlined in Table 1. A straightforward

analysis shows that the complexity of the compression algorithm isO(N3) for a string ofN symbols.

An important parameter in the procedure for the construction of an execution signature is the similarity

threshold, which determines if two similar events can be considered identical for the purpose of compression.

We now address how a given value of similarity threshold translates to specific rules for compression and then

discuss how the value of similarity threshold is determined. For message passing operations, the value of the

similarity threshold linearly relates to the maximum difference in message sizes allowed for communication

operations to be combined into a cluster. The above compression procedure is applied across communication

operations without regard to interleaving computations. When two sequences of communication events with

interspersed computation events are to be combined, an average value of execution time for the corresponding

computation events in the sequence is used to build the compressed sequence. This approach represents

maximum flexibility in combining computation events and wasfound to be effective in our experience.

An iterative process outlined in Table 2 is employed to determine the optimal value of the similarity

threshold based on the desired compression ratio Q between the length of the execution trace and the length

of the compressed execution signature. Initially the similarity threshold is set to 0 and the clustering and

compression procedure is applied. If the degree of compression is less than the desired ratio Q, the similarity

threshold is increased gradually until the desired compression of Q (or higher) is achieved. Now, the question

is how should Q be determined ? Based on our experience, we have used Q = K/2 where K is the scaling

factor between the application execution time and the desired skeleton execution time. It is desirable to have

an upper bound on similarity threshold so that very different execution events are not combined. In practice,
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Table 1: Algorithm to compress strings by finding repeating sub-strings

INPUT: S; a string of symbols.

OUTPUT: A String table of tuples(S0, c0), (S1, c1)....(Sk, ck). S0 represents the compressed string.

Each stringSi is a sequence of symbols and other strings.

Eachci is the number of repetitions of the corresponding string.

1. Initialization:i = 1; S0 = S;

2. w = length(S0)/2;

3. If S0 contains a repeating substring of lengthw then go to step 4. Else go to step 5.

4. LetSi be one repeating substring of sizew that repeatsci times.

Add (Si, ci) to the string table.

Replace the sequence of repeated strings inS0 with symbolSi.

Incrementi = i + 1;

Go to step 2

5. Decrementw = w − 1; If w > 0 go to step 3 Else addS0 to the string table and Stop.

this may not be a significant issue. The similarity thresholdthat was required across the NAS benchmarks

for meaningful execution signatures was frequently 0, and always less than .2. The implication is that only

combining closely similar events may be sufficient for skeleton generation in practice.

4.3 Generation of performance skeleton program from execution signature

The previous stage gave us the execution signature which is acompressed record of the complete execution

of the application. The execution signature compresses execution information by using a loop structure with

loop bodies representing repeating execution behavior. Our goal in this step is to create a short running

program in a programming language like C/C++ which reproduces the scaled down dominant execution

behavior represented by the execution signature. The specific goal is to take the application’s execution

signature and the desiredscaling factorK as inputs, and generate an appropriate performance skeleton. The

skeleton construction procedure is outlined as follows:

1. The numbers of loop iterations in the application signature are reduced by a factor K. Loop iterations

that form the remainder in this division process are unrolled and become a component of the unreduced

part of the signature.
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Table 2: Algorithm used to generate execution signature from the execution trace of an application

INPUT: Execution trace of an application from a single node.

OUTPUT: Execution signature of the application represented as a compressed stringS0.

INITIALIZE

SimilarityThreshold= initial value; (usually 0)

K= Application execution time / Desired skeleton execution time;

M = Null; (Table mapping processed MPI operations to symbols)

1. Replace each MPI operation in the trace by a symbol. Represent similar operations by the same symbol.

2. For each operationOp in trace

FindMinOp (operation in M which is most similar toOp).

If (Dissimilarity(Op, MinOp) < SimilarityThreshold)

Then RepresentOp in S by corresponding symbol forMinOp.

Else RepresentOpby a new symbol in S and add this information toM.

3. Compress resultant traceS using the algorithm in Table 1 yieldingS0.

Compression RatioQ = length(S)/length(S0);

4. If (Q < K/2 andSimilarityThreshold< max allowed)

Then incrementSimilarityThreshold. Goto Step 1.

Else Return (S0). Stop.

This step typically generates the dominant part of the execution skeleton. If the bulk of the execution

trace is represented in the execution signature as loops with a large number of iterations, the remaining

steps, which handle the non-loop part of the execution signature, only make a marginal difference and

can be omitted

2. Groups of K occurrences of identical execution operations anywhere in the unreduced part of the skele-

ton are identified and replaced by a single occurrence.

3. All remaining unreduced operations arescaled downby a factor K by adjusting their parameters. For

compute operations, the duration of execution is reduced bya factor K. For communication operations,

the number of bytes exchanged is reduced by a factor K.
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4. This modified application signature is converted to synthetic C code by generating corresponding syn-

thetic loops, MPI calls, and compute operations.

One weakness of this approach is that scaling down a communication operation by reducing the number

of bytes exchanged is not accurate. Execution time of the reduced operation would typically be higher

than expected because communication operations have two time components; latency, which is fixed for all

message sizes, and message transfer time, which can be scaled down linearly. By reducing the number of

bytes exchanged we only reduce the message transfer time, leaving the latency component intact. A more

accurate scaling cannot be achieved without making some assumptions about the execution environments.

Also, we point out that this kind of reduction is a “last resort” that is employed only for iterations that remain

after division by K and for operations not in loops. In practice, the impact on overall performance estimation

is expected to be minimal for most applications.

4.4 Skeleton construction usage and example

The skeleton construction framework is fully automated. Inorder to build a performance skeleton of an

application, a user takes the following actions. The first step is to link the application with a provided

profiling library and execute in a sample cluster execution environment. This results in the generation of a

set of trace files, one per executing thread. Next, the main skeleton generation program is executed with the

trace files as input and thescaling factorbetween the desired skeleton and application execution times as a

parameter. A performance skeleton is generated as the output. This performance skeleton is a portable C/MPI

program that can be executed in different execution environments.

We selected the class S BT NAS benchmark as a realistic example program to illustrate the construction

of a performance skeleton from an execution trace. The original execution trace is shown in Table 3. The

trace was recorded on Node 0. The trace consists of 2278 MPI calls, with computation sections between

them. Table 3 lists samples from the beginning and end of the trace. This trace only lists the communication

calls, which are always interleaved with computation sections that are omitted for brevity. The general format

of the communication calls in the execution trace is as follows:

MPICallName#Parameter1#Parameter2...#Parametern#StartTime#EndTime

where the number and meaning of parameters depends on the call.

For example the first line in the trace in Table 3 is as follows:

2#1#3220724724#1#28#0#134#0#939220509#939220509

The fields, from left to right, and their values in this trace entry are as follows:

Type of call:(2 representing MPIBCast)

Occurrence number of that call in the trace(1)
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Table 3: Execution Trace

#Generating Logfile

Node=0 #939220507ss#0#939220507

1. 2#1#3220724724#1#28#0#134#0#939220509#939220509 [MPI Bcast(...1, MPIINT, 0,...)]

2. 2#2#136373224#1#27#0#134#0#939220509#939220509 [MPI Bcast(...1, MPIDOUBLE, 0,...)]

3. 2#3#135838396#3#28#0#134#0#939220509#939220509 [MPI Bcast(...3, MPIINT, 0,...)]

4. 7#1#135789088#360#27#1#3000#138#153016848#0#939220509#939220509 [MPI Irecv(... 1, MPIDOUBLE, 360, ...)]

5. 7#2#135786208#360#27#1#2000#138#153017012#0#939220509#939220509 [MPI Irecv(... 1, MPIDOUBLE, 360, ...)]

6. 7#3#135794848#360#27#2#5000#138#153017176#0#939220509#939220509 [MPI Irecv(... 2, MPIDOUBLE, 360, ...)]

7. 7#4#135791968#360#27#2#4000#138#153017340#0#939220509#939220509 [MPI Irecv(... 2, MPIDOUBLE, 360, ...)]

8. 7#5#135800608#360#27#3#6000#138#153017504#0#939220509#939220509 [MPI Irecv(... 3, MPIDOUBLE, 360, ...)]

9. 7#6#135797728#360#27#3#7000#138#153017668#0#939220509#939220509 [MPI Irecv(... 3, MPIDOUBLE, 360, ...)]

10. 9#1#135812616#360#27#1#2000#138#153002824#0#939220509#939220509 [MPI Isend(... 1, MPIDOUBLE, 360, ...)]

11. 9#2#135809736#360#27#1#3000#138#153002964#0#939220509#939220509 [MPI Isend(... 1, MPIDOUBLE, 360, ...)]

12. 9#3#135818376#360#27#2#4000#138#153003104#0#939220509#939220509 [MPI Isend(... 2, MPIDOUBLE, 360, ...)]

13. 9#4#135815496#360#27#2#5000#138#153003244#0#939220509#939220509 [MPI Isend(... 2, MPIDOUBLE, 360, ...)]

14. 9#5#135824136#360#27#3#7000#138#153003384#0#939220509#939220509 [MPI Isend(... 3, MPIDOUBLE, 360, ...)]

15. 9#6#135821256#360#27#3#6000#138#153003524#0#939220509#939220509 [MPI Isend(... 3, MPIDOUBLE, 360, ...)]

16. 22#1#12#153016848#153017012#153017176#153017340#153017504 [MPI Waitall(...)]

#153017668#153002824#153002964#153003104#153003244#153003384

#153003524#0#939220509#939220513

17. 9#7#135786208#1470#27#1#3000#136#153003524#0#939220513#939220513 [MPI Isend(... 1, MPIDOUBLE, 1470, ...)]

18. 7#7#135809736#1470#27#1#3003#136#153017668#0#939220513#939220513 [MPI Irecv(... 1, MPIDOUBLE, 1470,...)]

19. 21#1#153003524#0##939220513#939220513 [MPI Wait(...)]

20. 21#2#153017668#0##939220513#939220513 [MPI Wait(...)]

...... ...... ...... ...... ...... ...... ......

2277. 3#1#3220724688#3220724696#1#27#100#0#134#0#939220642#939220642 [MPI Reduce(...1, MPIDOUBLE, MPI MAX, ...)]

2278. 1#2#91#0#939220642#939220642 [MPI Barrier]

#Finished writing logfile for node=0#939220642#939220646

Data buffer pointer(3220724724)

Count of data elements(1)

Type of data elements(28 representing MPIINT)

Node ID of root of broadcast tree(0)

MPI Communicator ID(134)

Host ID (0)

Start Time of Call(939220509 msecs)

End Time of Call(939220509 msecs)
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Table 3 lists the raw trace, along with summarized call information that includes the type of the call,

destination node number, data type, and message size, wherever applicable.

The next phase of the skeleton construction procedure consists of assigning symbols to identical or similar

communication events. For this example, it was sufficient tokeep thesimilarity threshold, discussed in

section 4.2, at 0 to generate an acceptable trace. Hence every distinct MPI event is assigned a different

symbol. Table 4 lists the symbols representing communication calls and the corresponding MPI events.

Table 4: Symbol table for MPI events
P1: MPI Irecv(... 1, MPIDOUBLE, 360, ...) P2: MPI Irecv(... 1, MPIDOUBLE, 1470, ...)

P3: MPI Irecv(... 1, MPIDOUBLE, 245,...) P4: MPI Irecv(... 3, MPIDOUBLE, 360, ...)

P5: MPI Irecv(... 3, MPIDOUBLE, 1470, ...) P6: MPI Irecv(... 3, MPIDOUBLE, 245,...)

P7: MPI Irecv(... 2, MPIDOUBLE, 360, ...) P8: MPI Irecv(... 2, MPIDOUBLE, 1470, ...)

P9: MPI Irecv(... 2, MPIDOUBLE, 245,...) P10: MPI Isend(... 1, MPIDOUBLE, 360, ...)

P11: MPI Isend(... 1, MPIDOUBLE, 1470, ...) P12: MPI Isend(... 1, MPIDOUBLE, 245,...)

P13: MPI Isend(... 3, MPIDOUBLE, 360, ...) P14: MPI Isend(... 3, MPIDOUBLE, 1470, ...)

P15: MPI Isend(... 3, MPIDOUBLE, 245,...) P16: MPI Isend(... 2, MPIDOUBLE, 360, ...)

P17: MPI Isend(... 2, MPIDOUBLE, 1470, ...) P18: MPI Isend(... 2, MPIDOUBLE, 245,...)

M1: MPI Allreduce(... 5, MPIDOUBLE, MPI SUM, ...) M2: MPI Barrier

M3: MPI Reduce(...1, MPIDOUBLE, MPI MAX, ...) M4: MPI Bcast(...1, MPIINT, 0,...)

M5: MPI Bcast(...1, MPIDOUBLE, 0,...) M6: MPI Bcast(...3, MPIINT, 0,...)

O1: MPI Wait(...) O2: MPI Waitall(...)

After the clustering phase, which consists of replacing theMPI events with symbols according to the

listing in Table 4 in this example, the part of the trace shownin Table 3 will be represented by the following

string:

{M4,M5,M6,P1,P1,P7,P7,P4,P4,P10,P10,P16,P16,P13,P13,O2,P11,P2,O1,O1,...... ......,M3,M2}

The next step is to identify the cycles in this trace by applying the algorithm in Table 1. For this example

we find that there is a single large loop that iterates 60 times. The final execution signature is represented as

follows:

{M4, M5, M6, L 0, M2, (L 0:60), M1, (P1:2), (P7:2), (P4:2), (P10:2), (P16:2), (P13:2), O2, M1, M3,

M2}

The formatSymbol:Numberimplies thatSymbolis repeatedNumbertimes. In the above signature, all

symbols represent MPI calls as listed in Table 4, except thatL 0 represents a loop consisting of 37 MPI calls

listed as follows:

L 0 = [(P1:2), (P7:2), (P4:2), (P10:2), (P16:2), (P13:2), O2,P11, P2, (O1:2), P12, P3, (O1,2), P17, P8,
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(O1:2), P18, P9, (O1:2), P14, P5, (O1:2), P15, P6, (O1:2)]

The final step is to generate a specific performance skeleton program based on the scaling factor discussed

in section 4.3. For this example, the skeleton always consists of the code representing Loop L0 described

above, while the number of iterations of the loop in the skeleton is determined by the scaling factor. Since the

number of trace events outside of this loop is very small as compared to the events represented in the loop,

the skeleton can be limited to this loop. The pseudo code for the skeleton is shown in Table 5.

Table 5: Example skeleton code

loop() /* Iterations determined by scaling factor*/

{

MPI Irecv(... 1, MPIDOUBLE, 360, ...)

MPI Irecv(... 1, MPIDOUBLE, 360, ...)

MPI Irecv(... 2, MPIDOUBLE, 360, ...)

MPI Irecv(... 2, MPIDOUBLE, 360, ...)

MPI Irecv(... 3, MPIDOUBLE, 360, ...)

MPI Irecv(... 3, MPIDOUBLE, 360, ...)

MPI Isend(... 1, MPIDOUBLE, 360, ...)

MPI Isend(... 1, MPIDOUBLE, 360, ...)

MPI Isend(... 2, MPIDOUBLE, 360, ...)

MPI Isend(... 2, MPIDOUBLE, 360, ...)

MPI Isend(... 3, MPIDOUBLE, 360, ...)

MPI Isend(... 3, MPIDOUBLE, 360, ...)

MPI Waitall(12, ...)

MPI Isend(... 1, MPIDOUBLE, 1470, ...)

MPI Irecv(... 1, MPIDOUBLE, 1470, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

MPI Isend(... 1, MPIDOUBLE, 245,...)

MPI Irecv(... 1, MPIDOUBLE, 245,...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

MPI Isend(... 2, MPIDOUBLE, 1470, ...)

MPI Irecv(... 2, MPIDOUBLE, 1470, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

MPI Isend(... 2, MPIDOUBLE, 245,...)

MPI Irecv(... 2, MPIDOUBLE, 245,...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

MPI Isend(... 3, MPIDOUBLE, 1470, ...)

MPI Irecv(... 3, MPIDOUBLE, 1470, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

MPI Isend(... 3, MPIDOUBLE, 245,...)

MPI Irecv(... 3, MPIDOUBLE, 245,...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

}
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4.5 Shortest running “good” skeleton

It is desirable that the performance skeletons be short running since the execution of the performance skeleton

is an overhead in performance estimation. However, the prediction accuracy is likely to be lower for shorter

running skeletons. The framework we have developed is designed to construct skeletons for any scaling factor

that is provided, and equivalently, for an arbitrary skeleton execution time. A key question in this research is

as follows: How short running can a skeleton be and still generate reasonable performance estimates ?

To address this, the skeleton construction framework heuristically determines the shortest runtime skele-

ton that it believes can be constructed without significantly sacrificing prediction accuracy, and issues a

warning if the requested scaling factor implies a smaller skeleton. To determine the shortest “good” skeleton,

the framework identifies thedominant sequence of execution eventsin the application that comprise a signifi-

cantly large percentage of application execution time. A skeleton is considered a good skeleton if at least one

full iteration of the dominant sequence of execution eventsis included.

As an example, consider the NAS IS (Integer Sort) benchmark whose main communication operation is

a large all-to-all transfer. The accuracy of the skeleton isexpected to be good if one or more full all-to-all

transfers are included. Hence the minimum size for a good skeleton is the shortest skeleton that includes at

least one full all-to-all transfer.

5 Experiments and results

A prototype framework for automatic construction of performance skeletons has been implemented. It was

employed to generate skeletons to predict the performance of the corresponding applications on a network

testbed.

5.1 Experimental setup

The testbed for the experiments is a compute cluster composed of 10 Intel Xeon dual CPU 1.7 GHz ma-

chines connected by Gigabit Ethernet links and a full crossbar switch. Results are presented for experiments

conducted on 4 nodes. All experimental results are based on the MPI implementation of the NAS Parallel

Benchmarks [3, 32]. The codes used are BT (Block Tridiagonalsolver), CG (Conjugate Gradient), IS (Inte-

ger Sort), LU (LU Solver), MG (Multigrid) and SP (Pentadiagonal solver). All programs are compiled using

GNU g77 (Fortran) compiler except IS, which is compiled with thegcc (C) compiler. The MPICH imple-

mentation of MPI is used. The bandwidth between computationnodes was managed with the Linux advanced

networkingiproute2[2] in order to simulate limited bandwidth availability dueto competing network traffic.

iproute2works by intercepting the network packets and passing them through artificial queues to simulate
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bandwidth limitations.

Performance skeletons were constructed for each Class B NASBenchmark program with an intended

skeleton execution time of 10 seconds, 5 seconds, 2 seconds,1 second and 0.5 second by defining the appro-

priate scaling factors.

5.2 Validation of skeleton properties

The performance skeletons are expected to have execution behavior that reflects the application. As a basic

test, we compared the percentage of time spent in the communication (MPI) operations versus other compu-

tations for the skeletons and the application. The results are illustrated in Figure 2.
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Figure 2: Time spent by NAS benchmarks and corresponding skeletons in different execution activities. The

bar with horizontal lines is for the actual application.

We observe that the ratio between the computation and communication time is broadly similar for the

skeletons and the corresponding application. The 0.5 second skeleton for the LU benchmark shows a some-

what larger communication time ratio than the other cases. We expect that very small skeletons will not

represent the application as faithfully as larger skeletons as more approximations are involved in their con-

struction. The ratios for the skeletons of BT benchmark showmore variation than others. The conclusion is

that moderate variations are possible because of the natureof skeleton construction process but most skeletons

are fairly close to their application in this respect.
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5.3 Validation of performance prediction

In order to validate the ability of performance skeletons topredict application performance in different sce-

narios the NAS benchmarks and the corresponding performance skeletons were executed on the same testbed

under the following five resource sharing scenarios:

1. Two competing compute intensive processes are run on one node.

2. Two competing compute intensive processes are run on eachnode.

3. Available bandwidth on one of the links was artificially limited to 10Mbps.

4. Available bandwidth on each link was artificially limitedto 10Mbps.

5. Competing processes as above on one node and reduced bandwidth as above on one link.

(Note that at least two competing processes are required to create meaningful CPU contention for an

application process on dual processor nodes.)

We define themeasured scaling ratioas the ratio between the measured execution time of an application

and the measured execution time of a corresponding skeleton. The predicted execution time of an application

in a resource sharing scenario is the product of the measuredskeleton execution time in the same scenario

and the correspondingmeasured scaling ratio. The predicted and measured application execution times were

compared for different skeleton sizes and across differentresource sharing scenarios. The remainder of this

section discusses the results.

Average error in execution time predicted by the performance skeletons across applications and skeleton

sizes is plotted in Figure 3. These results are averaged across resource sharing scenarios. We observe that the

average prediction error across all benchmarks, scenariosand skeleton sizes is a relatively low 6.7% implying

that the performance skeletons can predict execution time effectively. We now discuss the relationship of

prediction accuracy to application characteristics, skeleton size, and resource sharing scenarios.

Skeleton size and benchmarks:

Our goal of “short running” performance skeletons is to reduce overheads but preserve prediction accuracy.

From Figure 3 we observe that the relationship between average prediction error and skeleton size shows

no distinct pattern across benchmarks. For some benchmarks, prediction error does not change much when

going from 10 second to 0.5 second skeletons. However, erroris usually close to the highest for the smallest

0.5 second skeletons. The average error across all applications for 0.5 seconds skeletons is around 8% versus

the range around 5% to 6% for other cases.
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Figure 3: Prediction error for NAS benchmarks across skeletons sizes from 10 to 0.5 seconds. The error is

averaged across all resource sharing scenarios.

The minimum execution time of a “good” skeleton for each benchmark as determined by our framework,

based on discussion in section 4.5, is listed in Figure 4. Based on this table, the skeletons that are flagged

as potentially “not good” are 0.5 and 1 second skeletons for BT, 0.5, 1, and 2 second skeletons for IS, and

0.5 and 1 second skeletons for LU. Indeed the 4 cases with the highest prediction error, i.e., the 0.5 second

BT skeleton and 0.5,1, and 2 second IS skeletons, were flaggedto have low prediction value by the skeleton

construction framework.

Application Smallest Skeleton

BT 1.01 sec 

CG 0.13 sec 

IS 3 sec 

LU 1.97 sec 

MG 0.34 sec 

SP 0.34 sec 

Figure 4: Estimated minimum execution time for the smallest“good” skeleton.

The prediction errors for each skeleton size are grouped together and displayed in Figure 5. While there is

no uniform pattern again, the number of cases with a relatively large prediction error increase with decreasing

skeleton size and is clearly the highest for 0.5 second skeletons.

The main conclusion is that performance skeletons of a few seconds are normally adequate for reasonably
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Figure 5: Prediction error for skeletons of different sizesfor NAS benchmarks. The error is averaged across

all resource sharing scenarios.

accurate performance prediction, with a loose correlationbetween smaller skeletons and lower prediction

accuracy. Also, the framework generates meaningful application specific lower bounds for skeleton sizes.

Sharing scenarios:

We examine how the nature of sharing relates to accuracy of performance prediction. Our experiments have

spanned sharing of one or all CPUs, one or all communication links, and a combination of one node and one

link. Figure 6 shows prediction error under different sharing scenarios when employing representative 10

second skeletons. We observe that the prediction error is higher for scenarios that include competing traffic.

In the case of CPU sharing only, the error is higher for the “unbalanced” sharing of a single node versus

sharing of all nodes.

We believe that prediction error is higher for network sharing because communication operations cannot

be scaled down linearly unlike compute operations, as discussed in section 4.3. We speculate that the error in

unbalanced execution scenarios is higher because of potential inaccuracy in reproduction of synchronization

behavior in performance skeletons. While constructing a skeleton, we set the duration of compute operations

within loops to their average duration across iterations ofthe loop. A more accurate approach that considers

frequency distribution of the duration of compute events will be taken in the future.
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was used.

5.4 Comparison with other prediction techniques

We performed additional experiments to compare the prediction accuracy of performance skeletons versus

two other simple and “reasonable” approaches to performance prediction listed as follows:

Average Prediction: The average slowdown of the entire benchmark suite under a given resource sharing

scenario was used to predict the execution time for every program in the same scenario. The reasoning

is that, if all programs slow down roughly equally under resource competition, there is no need for

customized performance skeletons for applications discussed in this paper; instead, a generic short

running program could be employed to predict the execution time for any application under resource

sharing.

Class S Prediction: The experiments described in this paper were performed withClass B NAS benchmarks,

which run in 30 to 900 seconds without load on 4 machines in ourcluster. Each NAS benchmark also

has a Class S version which typically runs in less than a second. In this case, the Class S benchmarks

were used as the performance skeletons for the Class B benchmarks for performance prediction. The

reasoning is that, since both classes of benchmarks performthe same fundamental calculation but on

different data sizes and scales, the short running class S benchmarks could be considered good manually

generated performance skeletons.
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Figure 7: Minimum, maximum and average prediction error forthe NAS benchmark suite for prediction with

different size skeletons, with class S benchmarks as skeletons, and using average prediction. The execution

scenario is one competing process on one node and traffic on one link

The performance prediction error for each of these approaches is plotted in Figure 7. The performance

skeleton approach based on the framework in this paper is clearly better than the other methods. Prediction

with 0.5 second skeletons, which roughly take as long to run as Class S benchmarks, is also clearly superior

to other methods. Hence the overhead of our approach is also competitive.

The above results are significant for the following reasons.The fact that “average prediction” approach is

relatively ineffective proves that applications have widely varying execution behavior and hence an approach

that is customized to applications is required. The inability of Class S benchmarks to predict the behavior of

larger Class B benchmarks shows that one cannot simply run anapplication with a very small input data set

and expect it to have similar execution behavior as running with realistic data sets.

6 Limitations and extensions

This research establishes performance skeletons as an important and effective approach to execution driven

performance prediction. We discuss the limitations of our implementation and future work that is needed to

develop a comprehensive solution to the problems this framework is designed to solve.

• Coordinated skeletons: In the current framework, skeletons are constructed independently for each

executing process and heuristics are employed to handle anycommunication mismatches among the

skeleton processes. Ongoing research is addressing construction of coordinated skeletonswhere a
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single SPMD skeleton program is constructed by employing a global analysis of all process traces.

• Scalable skeletons:In the current methodology, the number of threads in a skeleton is the number

of nodes employed in skeleton generation. Hence, a skeletonis constructed for execution on a fixed

number of nodes (or threads) and the construction procedurewould have to be repeated for a different

number of nodes. Of course, it is desirable to have skeletonsthat can execute on, and provide a

performance estimate for, any number of nodes. This is a challenge since the program execution

behavior itself can change as the number of execution threads and nodes change. Our current research

is investigating construction of parameterized skeletonsby analyzing the execution behavior for a range

of node sets and employing the coordinated skeleton approach discussed above.

• Efficiency of skeleton construction:The execution time of skeleton construction is dominated bythe

compression procedure that employs anO(N3) algorithm, as noted in section 4.2. Tradeoffs between

the degree of compression and compression time are possibleand may be necessary for long running

programs with frequent communication calls. In particular, if the longest repeating pattern is limited

to lengthL, the complexity can be trivially reduced toO(N2L). Ongoing work is exploring more

efficient algorithms and tradeoffs.

• Fine grain prediction: This paper is limited to modeling coarse computation and communication

behavior. Modeling of instruction level execution and memory access patterns is essential to employ

skeletons to predict performance across architectures. Animportant application is prediction of perfor-

mance by simulation on a future architecture.

• Other programming models: The current implementation is limited to message passing MPI pro-

grams. While the basic concepts are independent of the programming model, implementation will be

significantly different for another programming model. An alternate approach that infers communica-

tion by network modeling can be independent of the programming model and has been investigated

in [26].

• Prediction across data sets:The current methodology constructs a skeleton based on a specific ex-

ecution and input data set. The approach can be made to work across different data set sizes when

execution time is dependent on the size of a data set. However, like most performance prediction

methods, this approach cannot be applied when execution is strongly data dependent.

• Implementation and experimentation: Several aspects of this implementation can be improved. Syn-

chronization overhead is modeled in a simple way as the timing information is approximated. Scaling

down of individual communication operations can be more sophisticated. More experimentation, par-

ticularly on wide area networks, is needed for stronger validation.
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7 Conclusion

This paper introduces performance skeletons, which are short running programs that are constructed to mimic

an application. Monitored skeleton execution in any runtime environment yields an estimate of the perfor-

mance of the corresponding application in that environment. The key advantage of this approach is that

modeling of the runtime environment is not required. Hence,it is particularly suitable for execution in dy-

namic and unpredictable environments. Our driving scenario is a grid environment, where modeling the

dynamic network and host availability can be difficult to impossible.

The paper details how performance skeletons can be generated automatically from execution traces on

an ordinary cluster. We demonstrate that automatically generated performance skeletons that run in seconds

can predict application performance accurately. The average prediction error for 5 and 10 second skeletons

for a variety of scenarios involving network and node sharing was 5-6%. Our framework can also effectively

compute the size of the shortest possible “good” skeleton that can estimate performance accurately. The

results show that good skeletons executing in 2 seconds or less can be constructed for all NAS benchmarks.

The paper offers detailed results and insight into how application characteristics, skeleton size and nature of

resource competition impact prediction accuracy.

The paper discusses the limitations of this approach in detail and points out the major directions in which

improvements are important. One of the goals is to instigatemore research into this approach to performance

prediction. In summary, the paper presents a promising approach to performance estimation with resource

sharing and provides convincing evidence that it is practical and effective.
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