
A Communication Framework for
Fault Tolerant Parallel Execution

Nagarajan Kanna Jaspal Subhlok
Edgar Gabriel Eshwar Rohit

University of Houston

David Anderson
UC Berkeley Space Science Lab

Volpex: Parallel Execution on Volatile Nodes

• Key motivation: Idle desktops represent a massive
unused computation resource pool

• BOINC & CONDOR
– BOINC: 500,000+ volunteer nodes worldwide, many

application projects
– CONDOR: job scheduler, widely used for desktops and

clusters, 100s of installations
– But, only Sequential and “bag of tasks” parallelism

• Volpex Goals: Execution of communicating parallel
programs ON volatile ordinary desktops

• Key problem: High failure rates AND coordinated
execution

Example Application: REMD

• Collaboration with Prof. Margaret Cheung, UH
Physics

• Studying the folding thermodynamics of small to
modest size proteins in explicit solvent

• High computation requirements, modest
communication. Use of “dataspace” for

– Synchronization of processes

– Store/Read energy values between neighbors

– Exchange temperature values to drive next
simulation step

REMD – Temperature swapping between replicas

• Application run with 8 scenarios (8 temperatures)

• Processes that swap temperatures at a step have
same background color

Not all HPC applications push communication limits

Major Challenges in VOLPEX

Failure Management
– Replicated processes
– Independent process checkpoint/recovery, i.e., no

coordination on checkpoints or restart
– Hybrid

Programming/Communication Model
– Volpex Dataspace API
– Volpex MPI

Execution management
– Selection of “good” nodes for execution
– Integration with BOINC/Condor

slide 5

Volpex Approach to Fault Tolerant Execution

slide 6

Execution Progress

Process 1

Process 2

Process 3 X failed

Process 4

Application
Execution

Front

Replica 1
Replica 2

Redundancy and/or independent checkpoint/restarts
multiple physical processes per logical process

• Application progress tied to the fastest process replica
• Seamless progress despite failures
• Minimum overhead of redundancy

Dataspace Programming Model

Independent processes communicate with one way
PUT/GETs to abstract dataspace (Linda, Javaspaces..)

PUT (tag, data) place data in dataspace indexed with tag
READ (tag, data) return data matching the tag.
GET (tag, data) return and remove data matching tag
• Single variable length tag

– No associative matching
• Blocking READ/GET

– Synchronization tool. Non-blocking may come later
• PUTs can overwrite locations
Implementation with fault tolernace considered

slide 7

Dataspace API with redundancy

LINDA implemented manyyy times!! What is new?

Fault tolerance approach (checkpoint_replication) implies
redundant processes/execution
a logical PUT/GET may be executed many times

a late replica may PUT a value that is out of date
a late replica may READ a value that has been
overwritten

slide 8

Consistent Execution with Redundant Process
Replicas

Consider that a logical PUT / GET leads to multiple
executable calls in temporal order

PUT1 , PUT2, PUT3… / GET1, GET2, GET3…
• New Consistency rules

– PUT1 is executed normally. PUT2, PUT3,.. Ignored
– GET1 gets the data object that matches at the time of

its execution. GET2, GET3…. must also get a copy of
the same data object.

slide 9

Current Dataspace Implementation

API calls appended with <process id, request #> at client. Server can
distinguish between first and replica calls.

• Replica PUTs identified and ignored
• First GET copies returned data object to a log. Replica GETs

serviced from the log.
• (Assume determinism within a process – but not for application)

Main dataspace storage

Read Log Buffer

Future Dataspace Implementation

Optimistic Logging: Data object moved to log buffer only
when overwritten

Log Buffer Management: Currently circular buffer in core.
Can be on disk, smarter

Distributed

Multithreaded

Main dataspace storage

Read Log Buffer

Implementation, Experiments, Results

• Applications/Examples
– Replica Exchange Molecular Dynamics (REMD)
– Implementation of Map-Reduce
– Parallel Sorting by Regular Sampling (PSRS)
– Sieve of Eratosthenes
– Micro benchmarks

Failure tolerated with no impact on performance
• Testbed for Results

– Clients: Atlantis Itanium2 1.3GHz dual core 4GB
RAM

– DSS: AMD Athlon 2.4GHz dual core, 2GB RAM

BANDWIDTH: ‘PUT’ WITH REPLICAS
(measured at Dataspace server)

Little overhead of replica PUTs that are ignored.

BANDWIDTH: ‘GET’ WITH REPLICAS
(total bandwidth at server. identical for READ)

Replica Gets cause additional traffic.
The link is saturated early with replicas

Example: Sieve of Erastothenes
(finding Primes)

In Parallel SoE: Numbers are distributed among
processes. One process finds a prime and
broadcasts to all. Others eliminate the multiples of
the new prime.

• Dataspace API: one process PUTs a new prime,
others READs it.

Blocking version: A group of prime numbers are
discovered and broadcast as a group instead of
indivudally.

Sieve of Erastothenes
(up to 2 billion numbers)

Blocked version scales well. Unblocked is
communication intensive

Sieve of Erastothenes
(impact of replication)

Replication has no impact on blocked version.
Slows down the unblocked version significantly

Conclusions

Enabling a new class of algorithms and applications to run
on idle ordinary desktops. Dataspace API offers a good
communication solution.

Future work will
• Enhance the design and implementation of API
• Deploy on desktop virtual clusters with BOINC
• Apply to clusters – ideas are general
Code availanble on request jaspal@uh.edu

www.cs.uh.edu/~jaspal

Thanks to NSF

slide 18

mailto:jaspal@uh.edu

	Major Challenges in VOLPEX
	Dataspace Programming Model�
	Dataspace API with redundancy
	Consistent Execution with Redundant Process Replicas
	Current Dataspace Implementation
	Future Dataspace Implementation
	Implementation, Experiments, Results
	BANDWIDTH: ‘PUT’ WITH REPLICAS�(measured at Dataspace server)
	BANDWIDTH: ‘GET’ WITH REPLICAS�(total bandwidth at server. identical for READ)
	Example: Sieve of Erastothenes�(finding Primes)
	Sieve of Erastothenes�(up to 2 billion numbers)
	Sieve of Erastothenes�(impact of replication)
	Conclusions

