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Abstract. VolpexMPI is an MPI library designed for volunteer comput-
ing environments. In order to cope with the fundamental unreliability of
these environments, VolpexMPI deploys two or more replicas of each
MPI process. A receiver-driven communication scheme is employed to
eliminate redundant message exchanges and sender based logging is em-
ployed to ensure seamless application progress with varying processor
execution speeds and routine failures. In this model, to execute a receive
operation, a decision has to be made as to which of the sending process
replicas should be contacted first. Contacting the fastest replica appears
to be the optimal local decision, but it can be globally non-optimal as it
may slowdown the fastest replica. Further, identifying the fastest replica
during execution is a challenge in itself. This paper evaluates various
target selection algorithms to manage these trade-offs with the objective
of minimizing the overall execution time. The algorithms are evaluated
for the NAS Parallel Benchmarks utilizing heterogeneous network con-
figurations, heterogeneous processor configurations and a combination of
both.

1 Introduction

Idle desktops have been successfully used to run sequential and master-slave task
parallel codes, most notably under Condor [1] and BOINC [2]. The distributed,
heterogeneous and unreliable nature of these volunteer computing systems make
the execution of parallel applications highly challenging. The nodes have varying
compute, communication, and storage capacity and their availability can change
frequently and without warning. Further, the nodes are connected with a shared
network where available latency and available bandwidth can vary. Because of
these properties, we refer to such nodes as volatile and parallel computing on
volatile nodes is challenging.

The most popular approach for dealing with unreliable execution environ-
ments is to deploy a checkpoint-restart based mechanisms, as has been done
(among others) by MPICH-V [3], OpenMPI [4] or RADIC-MPI [5]. A smaller
number of projects are using replication based techniques, such as P2P-MPI [6]
or rMPI [7]. We have recently introduced VolpexMPI [8], an MPI library which
tackles the challenges mentioned above by deploying two or more copies of each
MPI process, and utilizes a receiver based communication model with a sender



side message logging. The design of VolpexMPI avoids an exponential increase
in the number of messages with increasing degree of replication by ensuring that
exactly one physical message is transmitted to each receiving process for each
logical receive operation. On each process, a priority list of the available replicas
corresponding to every other communicating process is maintained. Clearly, the
ordering of processes in this list will have a fundamental impact on the overall
performance of the application. We refer to this problem throughout this paper
as the target selection problem.

This paper evaluates five different approaches for target selection: a process
team based approach as described in [8], a network performance based approach,
an algorithm based on the virtual time stamps of the messages, a timeout based
algorithm, and a hybrid approach deploying both network parameters as well as
virtual time stamps. The algorithms are evaluated for the NAS Parallel Bench-
marks for heterogeneous network configurations, heterogeneous processor con-
figurations and a combination of both.

The remainder of the paper is organized as follows: section 2 gives a brief
overview of VolpexMPI. Section 3 describes the five target-selection algorithms
in detail. The algorithms are than evaluated for various hardware configurations
in section 4. Finally, section 5 summarizes the results and presents the ongoing
work.

2 VolpexMPI

VolpexMPI is an MPI library designed to deal with the heterogeneity, unrelia-
bility and the distributed nature of volunteer computing environments. The key
features of VolpexMPI are:

1. Controlled redundancy: A process can be initiated as two (or more) replicas.
The fundamental goal for the execution model is to have the application
progress at the speed of the fastest replica of each process.

2. Receiver based direct communication: The communication framework sup-
ports direct node to node communication with a pull model: the sending
processes buffer data objects locally and receiving processes contact one of
the replicas of the sending process to get the data object.

3. Distributed sender based logging: Messages sent are implicitly logged at the
sender and are available for delivery to process instances that are lagging
due to slow execution or recreation from a checkpoint.

The receiver based communication scheme along with the distributed sender
based message logging allows a receiver process to contact any of the existing
replicas of the sender MPI rank to request a message. Since different replicas
can be in different execution states, a message matching scheme is employed to
identify which message is being requested by a receiver. For example, it is not
sufficient for process zero to request a message with a particular tag on commu-
nicator MPI_COMM_WORLD from process one, if the application would send, over its
lifetime, multiple messages with this particular signature. To distinguish between



the different incarnations of each message, VolpexMPI deploys a virtual times-
tamp to each message by counting the number of messages exchanged between
pairs of processes. This virtual timestamp along with the tuple [communicator
id, message tag, sender rank, receiver rank| uniquely identifies each message for
the entire application execution. These timestamps are also used to monitor the
progress of individual process replicas for resource management.

The overall sequence of operations for a point-to-point communication is as
follows: Upon calling MPI_Send, the sending process only buffers the content of
a message locally, along with the message envelope, which includes the virtual
timestamp, in addition to the usual elements used for message matching. In case
any of the replicas of the receiver process requests this particular message, the
sender process will reply with the corresponding data.

The receiving process polls a potential sender and waits for the data item.
Note, that there are two possibilities that have to be handled if a sender process
does not currently have a matching message. First, the data might not be avail-
able yet, because the sender process lags the receiving process. This scenario is
recognized by the sender by comparing the virtual time stamp of the request
message with the most recent message having the same tuple [tag, communica-
tor, sender rank, receiver rank]. In this case, the library will simply postpone
the reply until the request message is available.

The second scenario is that the message is not available anymore, e.g., be-
cause the circular buffer used for sender side message logging has already over-
written the corresponding data item. This scenario only occurs, if the replica
of the receiver process is lagging significantly behind the sender process. In this
case the sender process will not be able to comply with the request. As of now we
are not handling this situation. Thus, the lagging replica keeps on waiting for a
particular message. However, there are various ways in which such a scenario can
be handled, such as a time-out based mechanism, or an explicit reply indicating
the inability to comply with the request. The long-term goal is to coordinate the
size of the circular buffer with checkpoints of individual processes, which will
allow guaranteed restarts with a bounded buffer size.

As different replicas of an MPI rank can be at significantly different stages
of the execution, each process has to be able to prioritize the available replicas
for each MPI rank. This is discussed in the next section.

3 Target Selection Algorithms

In order to meet the goal that the progress of an application correspond to the
fastest replica for each process, the library has to provide an algorithm which
allows a process to generate an order in which to contact the sender replicas. This
is the main functionality provided by the target-selection module. The algorithm
utilized by the target-selection module has to handle two seemingly contradicting
goals: on one hand, it would be beneficial to contact the “fastest” replica from
the performance perspective. On the other hand, the library does not want to
slow-down the fastest replica by making it handle significantly larger number



of messages, especially when a message is available from another replica. The
specific goal, therefore, is to determine a replica which is “close” to the execution
state of the receiver process.

The team based approach, the original algorithm implemented in VolpexMPI [8],
divides the processes into teams at startup, with one replica of each process in
every team. Processes communicate within their own teams and contact a pro-
cess from another team only in case of failure. Since processes are communicating
exclusively within a team, fast processes are bound to communicate with slow
processes, causing the application to execute at the speed of slow processes. A
slow process can be defined as a process running on a slow internet connection,
having a slow processor speed, or busy in some other work. Thus, in order to
advance application at the speed of fast processes, there should be a mechanism
where each process can select their communicating partner. However, team based
approach does not provide any such mechanism. In order to solve this problem,
different algorithms based on network performance, timeout, virtual timeout,
and hybrid approach were developed and implemented.

Network Performance Based Target Selection Two key elements of network per-
formance are latency and bandwidth. These parameters are used to establish an
order among the replicas of an MPI rank on each process. For this, each process
will use all of the known replicas of an MPI processes in a round-robin fashion
for regularly occurring communication and time the operations. After receiving
a fixed number of messages from each replica of the same rank, the receiver pro-
cess calculates the latency and bandwidth corresponding to each sender process.
Priority for the future is based on these parameters.

Note, that the algorithm has the ability to restart the evaluation process
after a certain period of time, e.g. a certain number of messages to that process,
or in case the estimated bandwidth value to the currently used replica changes
significantly compared to the original evaluation. An important disadvantage of
this approach is that, if one of the replicas used has an extremely slow network
connectivity, the evaluation step will bring the fast running processes also to the
speed of the slowest one for the duration of the evaluation.

Timeout Based Target Selection In this approach, each process waits for the
reply from a replica for a limited time. If the requested data is not available
within the predefined time frame, the process switches to another replica and
requests the same message. A technical challenge is how to deal with the data of
the original abandoned replicas, since the user level message buffer should not be
overwritten by that process anymore. Thus, the library has to effectively cancel
the original request before moving to the next replica. If the data from the first
(slow) replica comes in, the data will be placed into the unexpected message
queue of the library instead of the user buffer, and can safely be purged from
there. For this, VolpexMPI maintains a list of items that need to be removed
from the unexpected message queue(s).

One drawback for this algorithm is that it is difficult to define a reasonable
value for the timeout. If the timeout value is too small, processes change their



target too frequently, whereas if the timeout value is large, processes will continue
communication with slow processes for too long. Therefore, setting the correct
threshold value plays a very important role. Another disadvantage is that all slow
processes will try to contact fast processes making them handle more requests
which may slow down the fast processes.

Virtual Time Stamp Based Target Selection This algorithm employs the virtual
timestamps of messages to compare the state of sender and receiver processes. As
explained in section 2, a virtual timestamp is the message number for communi-
cation between a pair of processes. Each sender process attaches its most recent
timestamp for the same message type, i.e. message with same tuple [communi-
cator id, message tag, sender rank, receiver rank] when replying to a receiver
request. The receiver compares the timestamps from different senders to deter-
mine the execution state of the processes.

The overall approach starts by using the teams as created by the team-based
algorithm. If the difference between the timestamps of two processes exceeds a
certain threshold value, a process can decide to switch to another replica for
that particular rank. Ultimately, it will choose the replica closest to its own
execution state. Similarly to the timeout based approach, the major difficulty in
this algorithm is to decide on good values for the threshold, i.e. when to switch
to next replica. This threshold value must not be too small to avoid frequent
change in targets, nor too large to avoid long detection time of slow targets.

Hybrid Target Selection This algorithm combines the network based algorithm
and virtual timestamp based algorithm. Each process first sends a message to
each replica and decides the preferred target based on the best network param-
eters. In order to determine the best target, pairwise communication is initiated
during the initialization of the application. As a result each process is commu-
nicating with fastest communicating replica. This might make the fast running
processes to slow down, since it has to serve potentially multiple instances of
each MPI process. In a second step, the virtual timestamp based approach is
used to separate slow replicas from faster ones, i.e., if a process is lagging far
behind the sender process it changes its target to the slower one. The result is
a reduced communication volume to faster processes. In the long term we en-
vision the first step to be replaced by a more sophisticated process placement
strategy of the mpirun, which can utilize proximity information obtained from
the BOINC server and from internet metrics as presented in [9].

4 Performance Evaluation

This section describes the experiments with VolpexMPI library and the results
obtained.The tests presented here have been executed on a regular dedicated
cluster, in order to achieve reproducible results and understand characteristics
of our algorithm. The cluster is composed of 29 compute nodes, 24 of them
having a 2.2GHz dual-core AMD Opteron processors, and 5 nodes having two



2.2GHz quad-core AMD Opteron processors. Each node has 1GB main memory
per core and network connected by 4xInfiniBand as well as a 48 port Linksys
GE switch. For the subsequent analysis, only the Gigabit Ethernet interconnect
has been utilized.

The NAS Parallel Benchmarks(NPBs) are executed for 8 process and the
problem size B. For each target selection algorithm we record and compare the
results obtained to the numbers obtained with the team based approach, the
original target selection algorithm presented in [8]. Tests have been executed
using two replicas per MPI process, henceforth denoted as double-redundancy,
and three replicas per MPI process, also called triple redundancy runs. Note,
that for triple redundancy runs only CG, EP and IS benchmarks have been
executed. BT and SP would require 9 processes for that particular, which due
to restrictions on the network configuration could not be executed. The triple
redundancy tests of FT failed due to the memory requirement for each process.

4.1 Results for heterogeneous network configurations

In this set of experiments we explore, the cluster switch has been configured
such that the link bandwidth to eight nodes has been decreased from Gigabit
Ethernet(1Gb/s) to Fast Ethernet (100Mb/s), creating a heterogeneous network
configuration. For the double redundancy tests, processes have been distributed
such that no two replicas of the same MPI rank are on same network, i.e. if
process 0,A is on Fast Ethernet then process 0,B is on Gigabit Ethernet. Fur-
thermore, all teams contain processes that use the Gigabit Ethernet and the Fast
Ethernet network. For the triple redundancy tests, one team of processes is being
executed on a single 8-core node, creating a third hierarchy level with respect to
the quality of communication. Similarly to the double redundancy tests, teams
have been initiated such that each process has one replica on each of the three
hierarchy levels, and all teams contain some processes from all three hierarchy
levels. The challenge for the algorithms are to modify the original teams pro-
vided at startup such that (ideally) one set of replicas only contain processes on
fast nodes, and the other one only consists of slow nodes.
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Fig. 1. Comparison of all target selection algorithms for heterogeneous networks.



Fig. 1 shows the results obtained with all implemented algorithms for dou-
ble(x2)(left) and triple(x3)(right) redundancy. The results indicate, that the ex-
ecution time for the network based algorithm is almost equal to the execution
time of the team based algorithm. The main reason for this somewhat surprising
behavior is that in some instances the algorithm identifies the wrong replicas as
being the ’fastest’ target. This happens if a fast process could not send response
to the asking process because it is waiting itself for the result from a slow pro-
cess, and which will falsify the measurements. Consider a simple example, where
process 0,A and 1,B are running on fast nodes and processes 0,B and 1,A are
running on slow nodes. In a situation when process 0,A sends a request for a
message to 1,B, and 1,B is in turn waiting for a message from 0,B, its reply to
process 1,A might be delayed. Note, that for artificial test case the algorithm
worked as expected. However, for more realistic applications/benchmarks such as
the ones used here, the MPI processes are too tightly coupled together in terms
of send and receive operations, and the network performance based approach
does not provide good performance results.

Next, we document the results for timeout based algorithm. The results for
this algorithm are almost similar to the results obtained from network based
algorithm for very similar reasons. As explained in section 3, the threshold value
plays an important role in the overall performance of the algorithm. For the
results presented here, we used a threshold value of 0.5 seconds for the double
redundancy tests and 1.0 seconds for triple redundancy tests. We did perform
experiments with various other threshold values, with lower values resulting in
frequent switching of targets and higher threshold values preventing any process
from switching to another replica.

Similarly to the other two algorithms, the virtual timestamp based algorithm
does not show for the double and triple redundancy runs any difference to the
team based approach, which is due to the fact that the synchronized commu-
nication patterns used in most of the NAS parallel benchmarks does not allow
processes to 'drift apart’. Thus, the speed of fast processes is reduced due to the
communication taking place with slow process and the application advances with
the speed of slow processes. Note furthermore, that this algorithm in theory is
designed to handle varying processor speeds and not necessarily varying network
parameters for homogeneous processor configuration, and thus the result is not
entirely unexpected.

Finally, the results obtained by using the hybrid approach in which processes
are first grouped according to the network parameters and lagging processes
are identified in a second step, is showing the best performance overall. The
overall execution time is matching the performance that the same application
would achieve when using Gigabit Ethernet network connections only. Thus, this
algorithm is a significant improvement over the team-based approach utilized
in [8]. Analyzing the results of this algorithm reveal, that the main difference
comes from the fact, that the network parameters are not determined by timing
the regularly occurring MPI messages of the application, but by introducing a
pair-wise communication step that is executed in MPI_Init.



4.2 Results for heterogeneous processor configurations

In order to analyze the behavior of the algorithms for systems comprised of
heterogeneous processor, the frequency of 9 nodes has been reduced to 1.1 GHz,
while all other nodes are running at full frequency, i.e 2.2 GHz. All nodes are
connected through Gigabit Ethernet, in order to eliminate network influences.
Again we mixed the nodes running on slow frequency and nodes running on full
frequency and compared the performances of different algorithms implemented.
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Fig. 2. Comparison of all algorithms for heterogeneous processor configurations.

Figure 2 shows the results obtained for this setting for all algorithms. The
network based algorithm, timeout based algorithm and virtual timestamp based
algorithm using double redundancy(left) runs are similar as discussed in the
previous paragraph for similar reasons. In contrary to the previous section, the
results obtained with the hybrid algorithm does not show any performance gain
over other algorithms. This is due to the fact, that the network itself does not
expose any hierarchies in this scenario, and therefore the pre-sorting of replicas
and teams does not occur. In fact, nodes are grouped together without any
proper order i.e each team consist of few processes running on slow nodes and
other processes running on fast nodes.

4.3 Results for combinations of heterogeneous network and
processor configurations

For the last set of experiments, the network connection to 8 of the 29 nodes has
been once again reduced to Fast Ethernet. Furthermore, the frequency of the
same 8 nodes has been reduced to 1.1 GHz while all other nodes are running
at full speed. Similarly to the previous tests, teams have been initiated such
that each process has one replica on a slow and on a fast node, and all teams
contain some processes from all three hierarchy levels. For the triple redundancy
runs, a third configuration consisting of 8 processes running at full frequency,
but located on a single 8-core processor are interleaved with the other two sets.
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Fig. 3. Comparison of all algorithms for combination of heterogeneous network and
processor configurations.

Figure 3 shows the results obtained for the double and triple redundancy
runs. The results are similar to the results obtained in the previous sections, with
the network based algorithm, timeout based algorithm and virtual timestamp
based algorithm not being able to correctly identify the optimal configuration.

Table 1. Performance Results for redundancy 3 runs on different networks

Volpex Team A|Volpex Team B|Volpex Team C
CG 87.93 67.69 184.29
IS 3.56 8.15 23.82
EP 29.69 29.72 117.83

The hybrid approach however gives the performance numbers similar to the
results as if all processes are running on fast nodes. Also, for triple redundancy
runs where all processes from each initial team are mixed, the hybrid algorithm
is clearly able to group processes as if all three teams are executing on separate
networks: Team A on shared memory, Team B on Gigabit Ethernet, and Team
C on Fast Ethernet. This fact is highlighted by the results shown in table 1,
which details the execution time observed by each individual team as identified
by the hybrid target selection algorithm.

5 Summary

In this paper we presented and evaluated five different approaches for the target
selection problem. The algorithms have been evaluated for the NAS Parallel
Benchmarks for heterogeneous network configurations, heterogeneous processor
configurations and a combination of both. The analysis reveals that the hybrid
target selection algorithm shows a significant performance benefit over other
algorithms for most (common) scenarios.



The ongoing work in this project includes a full evaluation of the new target
selection method in a volunteer computing environment with a wider range of
applications. On the algorithmic level we envision the initial placement to be
driven by a more sophisticated process that can utilize proximity information
obtained from the BOINC server and from internet metrics as presented in [9].
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