
Efficient Discovery of Loop Nests in Execution
Traces

Qiang Xu
CGGVeritas Inc.

Email: Qiang.Xu@cggveritas.com

Jaspal Subhlok and Nathaniel Hammen
Department of Computer Science

University of Houston
Email: jaspal@uh.edu

Abstract—Execution and communication traces are central
to performance modeling and analysis. Since the traces can
be very long, meaningful compression and extraction of rep-
resentative behavior is important. Commonly used compression
procedures identify repeating patterns in sections of the input
string and replace each instance with a representative symbol.
This can prevent the identification of long repeating sequences
corresponding to outer loops in a trace. This paper introduces
and analyzes a framework for identifying the maximal loop nest
from a trace. The discovery of loop nests makes constructionof
compressed representative traces straightforward. The paper also
introduces a greedy algorithm for fast “near optimal” loop nest
discovery with well defined bounds. Results of compressing MPI
communication traces of NAS parallel benchmarks show that
both algorithms identified the basic loop structures correctly.
The greedy algorithm was also very efficient with an average
processing time of 16.5 seconds for an average trace length of
71695 MPI events.

Index Terms—Trace compression, loop discovery, performance
modeling

I. I NTRODUCTION

Execution and communication traces are central to perfor-
mance analysis and performance modeling. However, trace
processing is a challenge as the trace length can be large
even for traces of relatively coarse grain events. Fortunately
execution traces often contain repeating sequences that can
be identified to capture representative behavior. The goal of
the research presented in this paper is to develop effective
and efficient procedures to identify the representative sections
of an execution traces by discovering the loop nest structure
inherent in the trace. There are, of course, several well known
algorithms and tools for string compression. Most compression
procedures apply heuristics to selectively reduce sets of re-
peating substrings. Examples includegzip [1] that constructs a
dictionary of frequently occurring substrings and replaces each
occurrence with a representative symbol, andSequitur [2],
[3], [4] that infers the hierarchical structure in a string by
automatically constructing and applying grammar rules for
reduction of substrings. These approaches are efficient and
procedures can be designed to have execution time that is
nearly linear in trace length. The key reasons for developing
a new approach are as follows:

1) These compression procedures are not guaranteed to
identify long range loop patterns because of heuristic
early reductions.

2) An important objective of this research is to identify
the representative sections of a trace. These are clearly
defined in a loop nest but not if the compressed rep-
resentation is in the form of string tables (gzip) or a
grammar (Sequitur).

In Table I, we illustrate these points by showing the com-
pressed form of LU benchmark trace with Sequitur and our
loop discovery procedure. The compressed representation is
a grammar for Sequitur and a loop nest for our procedure.
While the compression achieved is good in both cases, it is
easy to see that the representative sections of the trace are
easily identified in the loop nest form as the elements of the
loops with large numbers of iterations.

The loop nest in an execution trace can be derived in
a straightforward way by repeatedly identifying the longest
matching substring first. However, commonly used algorithms
to achieve this are quadratic for a given match length and
hence cubic in trace length, and therefore impractical for
long traces. A practical approach is to limit the window size
for substring matching, which again risks missing long span
repeats [5].

Before presenting our approach, we introduce the basic
terminology for distinguishing various types of repeatingpat-
terns. Repeating substrings (orrepeats) in a string can betan-
dem repeats where successive repeat substrings immediately
follow each other,overlappingrepeats where repeat substrings
overlap, andsplit repeats where repeat substrings are separated
by other symbols. Since we seek to identify the loop structure
in a trace, we are only interested in tandem repeats. A tandem
repeat isprimitive if it is itself not composed of tandem repeats
of another substring. A set of tandem repeats ismaximal
if there is no identical substring immediately preceding or
succeeding the sequence of tandem repeats. We will refer to
the primitive and maximal tandem repeats in a string asPM-
repeats. In the rest of the paper, “loops” technically refer to
PM-repeats in the execution trace, which (presumably) exist
because of the execution of program loops.Our objective
is find and reduce the PM-repeats of different spans in an
execution trace, which is the same as discovering the inherent
loop nest structure in the execution trace.

To illustrate the properties of PM repeats, consider the string
abababab. The PM-repeats corresponding to this string are
represented as(ab)4 which is the most compact representation.

Compressed trace with Sequitur algorithm:
S0→ V V V 1 X 1 W 2 3 4 Y R U 5 6 7 8 9 9 9 10 11 12 13 R 14 R S R P Y A O Y F T T T
1→ W W 2→ Q 4 3→ Y Q 4→ J 3 H 3 E 3 C 5→ 15 15 6→ 5 15
7→ 16 16 8→ 7 16 9→ 10 10 10→ 11 11 11→ 12 12 12→ 17 17
13→ 14 6 5 8 7 14→ 2 Y 15→ 18 18 16→ 19 19 17→ 20 20 18→ 21 21
19→ 22 22 20→ 13 13 21→ 23 23 22→ 24 24 23→ 25 25 24→ 26 26
25→ 27 27 26→ 28 28 27→ N K I D 28→ M L G B
Compressed trace with loop nest discovery algorithm:
(V)3(W)2X(W)3(QJY QHY QEY QCY)2RU((NKID)160(MLGB)160QJY QHY QEY QCY)249

(NKID)160(MLGB)160RQJY QHY QEY QCY RSRPY AOY F (T)3

TABLE I
COMPRESSED TRACE WITHSEQUITUR AND THE LOOP NEST DISCOVERY ALGORITHM PRESENTED IN THIS PAPER. EACH SYMBOL REPRESENTS A UNIQUE

MPI OPERATION. THE INPUT TRACE IS FORCLASS C LU BENCHMARK WITH 323048TRACE SYMBOLS

The string can also be represented as tandem repeats(abab)2

but this would not be primitive, since the repeating substring
itself is a tandem repeat of another stringab. The string can
also be represented as(ab)3ab but this would not be a maximal
repeat. Hence,(ab)4 represents the only PM-repeats sequence,
or optimal loop, for this string.

Our approach to identifying the loop structure in a trace is
derived from Crochemore’s algorithm [6], which can identify
all repeats in a string, including tandem, split, and overlapping
repeats, inO(nlogn) time. A framework was developed in
this research to discover the loop nest structure by recursively
identifying the longest span PM repeat in a trace. Intuitively,
this procedure discovers loop nests by repeatedly identifying
and reducing the outermost loop in a trace. For the terminology
of this paper we will refer to such a loop nest as “optimal”.
The procedure was applied to identify the loop nests in the
MPI communication traces of NAS benchmarks. The com-
pression results were very good, but the execution time was
unacceptable for long traces; processing of a trace consisting
of approximately 320K MPI calls took over 31 hours.

The results motivated us to develop a greedy procedure
for loop structure discovery, which is a key contribution of
this paper. The greedy procedure intuitively works bottom up
- it identifies and reduces the shorter span inner loops and
replaces them with a single symbol, before discovering the
longer span outer loops. In this respect, it appears similarto
other approaches that apply heuristics to identify repeating
substrings and replace them with symbols to enable efficient
processing. However, the key characteristic of our algorithm is
that only primitive and maximal tandem repeats (PM-repeats)
representing a section of the trace that corresponds to loop
execution, are reduced to a single symbol. No other repeating
substrings are reduced. The intuition is that reduction of trace
sections corresponding to complete inner loop execution will
not interfere with the discovery of outer loops. An important
contribution of this work is to establish that the loop structure
discovered by the greedy algorithm is provablynear optimal.
Intuitively, the greedy approach still guarantees the discovery
of long span loops or PM-repeats, but with up to 2 less
iterations. The result is formally described and refined in the
paper.

The greedy loop nest discovery procedure was also imple-
mented and employed to discover the loop nests in the MPI
traces of NAS benchmarks. The loop nests always satisfied the
criteria above, and were, in fact, identical to the optimal loop
nests in all but one case. However, the time for loop discovery
was dramatically lower than the optimal algorithm, with the
compression time reduced to approximately 62 seconds from
31 hours for one trace.

To the best of our knowledge, this is the first effort toward
extracting complete loop nests from execution traces. The
paper presents detailed results on the effectiveness of these al-
gorithms in discovering loop nests and achieving compression.
The performance and scalability of the greedy and optimal
algorithms are also presented and analyzed. Of particular
interest are the insights into the theoretical complexity of the
algorithms and the empirical measurements of performance.
The methodology developed is applicable to any sequence
that is likely to contain a loop structure even though the
experimental results presented in this paper are limited to
message passing communication traces.

II. M OTIVATION AND CONTEXT

This research was motivated by performance estimation
in foreign environments based on performance skeletons. A
performance skeletonof an application is defined to be a short
running program whose execution time in any scenario reflects
the execution time of the application it represents; thus anes-
timate of the application execution time in a new environment
is obtained by simply executing the performance skeleton and
appropriately scaling the measured skeleton execution time.
The key steps in the construction of a performance skeleton
from the MPI level process traces of an application are the
following:

1) Trace logicalizationFor parallel scientific applications,
the traces for different processes are typically similar
to each other and the communication is associated with
a well defined global communication pattern.Logical-
ization converts a family of processor traces into a sin-
gle logical program tracethat represents the aggregate
execution of the program. Logicalization is a complex
and potentially lossy procedure that is orthogonal to the
subject of this paper but is detailed in [7].

2) Trace compressionThe focus of this paper is trace
compression by discovering the implicit loop structure,
which is applied to a single logicalized trace for skeleton
construction. Trace logicalization and trace compression
are complementary procedures. Although the results
presented in this paper are in the context of compression
of logical MPI traces, the framework for compression
can be applied to any trace to identify any loop structure
that may exist.

3) Performance skeleton generationThe final step is gen-
eration of an executable performance skeleton program
from the compressed logical trace consisting of MPI
communication and computation sections. Synthetic
computation and communication calls are generated to
recreate the execution behavior captured by the traces.

This discussion provides a brief context for this paper.
Skeleton construction and the prediction power of skeletons
in different execution scenarios are detailed in [8].

III. R ELATED WORK

Compression is a basic operation in a wide variety of
scenarios. Many algorithms have been developed for text
compression and employed in utilities likegzip [1]. The basic
approach in such algorithms is to identify recurring short
strings and replace them with identifiers.Sequitur [2], [3],
[4] is a well-known algorithm that was developed to discover
the natural hierarchy in text and other data. The insight is
that repeating substrings are replaced by a grammar rule
that generates that substring and the process is continued
recursively, resulting in a hierarchical representation of the
structure of the string. In order to improve the processing time
and quality of compression, PGTC (path grammar guided trace
compression) [9] is proposed as an enhanced approach that
employs program static analysis to build a grammar and guide
compression. Noeth et al. [5] have developed an online method
for identifying loops in a message passing trace. However, the
algorithm is not guaranteed to capture long range loops as
matching is limited to a maximum sliding window to avoid
O(n2) time complexity in the length of the trace.

The goal of this work is to identify complete loop nests
from the repeating substrings discovered in a string. There
are two well known approaches to identifying all repeats in
a string systematically - one based on suffix trees and the
other based on Crochemore’s algorithm. We have employed
Crochemore’s algorithm as the basis of our approach and that
is discussed in detail in this paper. We briefly discuss suffix
trees here. Suffix trees are a fundamental data structure sup-
porting a wide variety of efficient string searching algorithms.
In particular, suffix trees are well known to allow efficient
and simple solutions to problems concerning the identification
and location of repeated substrings. Several algorithms [10],
[11], [12] can build a suffix tree in linear time. Stoye and
Gusfield have developed anO(n log n) time method [13] to
find all occurrences of primitive tandem repeats in a string with
suffix trees. They also proposed a novel method [14] to collect
only the primitive tandem repeattypes in O(n) time and find

occurrences of all primitive tandem repeats inO(n + z) time,
where z is the number of occurrences of primitive tandem
repeats in a string. In [15], the repeating substrings in a string
and their statistics are inferred from suffix trees, and usedfor
compression through greedy off-line textual substitution.

We have based our loop nest identification procedure on
Crochemore’s algorithm instead of suffix trees for two main
reasons. First, we are not aware of a straightforward approach
to finding all primitive and maximal tandem repeats with
suffix trees. Second, the process of building and processing
suffix trees is significantly more complex than that based on
Crochemore’s algorithm.

IV. OPTIMAL TRACE COMPRESSION

The main contribution of this paper is a framework to
compress execution traces by discovering the loop structure
inherent in the trace. All repeating substrings in a trace
are identified by employing the well known Crochemore’s
algorithm, but these repeats are implicit in a complex data
structure. The total number of repeats can be combinatorialin
the size of a string and very large in practice. The contribution
of this work in this context is the development of a framework
to efficiently construct the loop structure in the trace by
selectively filtering and reducing the repeats. The procedure
consists of the following steps for discovery and reductionof
outermost loops:

1) Repeats discovery: Discovery of all types of re-
peats (overlapping, split, and tandem) of all sizes by
Crochemore’s algorithm.

2) Loop identification: Identification of all PM-repeats
(primal and maximal tandem repeats) corresponding to
loops.

3) Loop filtering: Discovery of outermost loops and their
replacement with loop symbols.

The above process is repeated recursively inside each
discovered loop. For a string withn symbols, the repeats
discovery takesO(n log n) time while loop identification and
loop filtering takeO(n2) time. Hence the overall complexity
is O(n2). We discuss each of the above steps and the overall
loop identification and compression procedure.

A. Repeats discovery

Before we can discuss theloop identification, and loop
filtering that are our contributions, we have to explain how
repeats discoveryis done with Crochemore’s algorithm. As
an optimizedsuccessive refinement method, Crochemore’s
algorithm [6] computes all repeating substrings (tandem, over-
lapping, and split) in a finite stringS of lengthn in O (n log n)
time. The successive refinement begins with grouping all
positions in the string that have the same symbol/characterinto
a single class. Each class is then refined into new subclasses
that contain starting positions of repeating substrings oflength
two. The process is continued to find the starting position of
all repeating substrings of length, 3,4,5....until a size is reached
for which no repeating substrings exist.

Before describing the details of Crochemore’s algorithm, we
introduce some basic string definitions.

Definition: A string S = s1s2s3...sn is an ordered list of
characters/symbols written contiguously from left to right. The
length of S is |S|. S[i..j] is the substringof S that starts at
position i and ends at positionj.

Definition: Ek is an equivalence relationover a stringS
defined as follows:iEkj if and only if substringsS[i..i + k]
and S[j..j + k] are identical.Ek partitions the positions of
string S into equivalence classes; ifiEkj then i and j will
be in the sameEk class. We also useEk to denote the set of
those equivalence classes.

The simple successive refinement is based on the fact that
for stringS, if iEkj andS[i+ k]=S[j + k], theniEk+1j. For
example, consider the string

S = a b a a b a b a a b a a b $
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Initially, we construct threeE1 classes containing repeating
substrings of length one. Note that the unique character “$”
is appended as the end of string symbol.

E1 : {1,3,4,6,8,9,11,12} {2,5,7,10,13} {14}
a b $

The first step of refinement splits each class ofE1 into
classes that contain starting positions of substrings of length
two. We check the character following each position in that
class. For classa–{1,3,4,6,8,9,11,12}, we need to check posi-
tions{2,4,5,7,9,10,12,13} in S. SinceS[4]=S[9]=S[12]=a and
S[2]=S[5]=S[7]=S[10]=S[13]=b, classa is split into subclass
aa–{3,8,11} and subclassab–{1,4,6,9,12}. Similarly, classb–
{2,5,7,10,13} is split into subclassba–{ 2,5,7,10} and subclass
b$–{13}. The class$–{14} has no substring of length two
starting from it, so it is discarded.

The successive refinement continues with checking of the
kth character following the positions in each class ofEk to
constructEk+1. Any singleton classes are discarded. Eventu-
ally a value ofk is reached for which there are no classes ofEk

and the process is terminated. The entire process of refinement
of string S = abaababaabaab$ is shown in Table II.

The total running time for the algorithm as described above
is O

(

n2
)

, since there can beO (n) levels and each level can
takeO (n) time. But two techniques proposed in [6] optimize
the successive refinement and reduce the running time to
O (n logn). We mention them very briefly here.

The first technique is “indirect refinement”. This is based
on the observation that any class ofEk+1 is a subset of
someEk class. Because,iEk+1j, if and only if iEkj and
i+1Ekj+1, we can use classes at the same level to carry out
successive refinement instead of referring back to the original
string S. This helps in reducing the complexity when used
with another technique called “small classes”, which can be
outlined as follows. The indirect refinement process for an
Ek class intoEk+1 classes requires matching against several,
but not all, otherEk classes. The small classes technique
prescribes that the classes be selected in a specific manner that

favors matching against smaller classes, and thereby avoiding
some matching against larger classes. This description only
gives a flavor of these technique and the interested reader is
referred to [6], [16] for details. Our implementation includes
the indirect refinement and small classes techniques.

B. Loop identification

We formally define and illustrate the various types of repeats
that are central to the discussion and analytical results inthis
paper. The repeats discovered by Crochemore’s algorithm in-
clude tandem, overlapping, and split repeats. Their definitions
are as follows:

Definition: For positionsi andj of string S, that belong
to the sameEk class, if|j − i| = k, then repeating substrings
S[i..i + k − 1] and S[j..j + k − 1] are tandem repeats; if
|j − i| < k they areoverlapping repeats; and if|j − i| > k
they aresplit repeats.

For example, the substringaba repeats four times in string
S at positions 1,4,6, and 9 in Table II. The secondaba is right
behind the first one, so they constitutetandem repeats. The
second and thirdaba areoverlapping repeats, while the first
and thirdaba aresplit repeats.

Our goal here is to find loop structures, so we need to
identify and report only the tandem repeats. Tandem re-
peats in a string can be represented by a triple(i, β, l),
where i is the starting position,β is the repeated substring,
and l is the number of iterations. But a substring may be
represented by multiple tandem repeats. For example, the
string abababababababab, could be described as(1, ab, 8),
or (1, abab, 4), or (1, abababab, 2). Clearly the loop that we
would like to identify corresponds to(1, ab, 8). To generalize,
we definePM-repeatsand a correspondingPM-triple , where
P and M stand forprimitive andmaximal. A triple (i, β, l)
corresponds to a primitive tandem repeats sequence if and
only if β is not periodic. The triple corresponds to a maximal
tandem repeats sequence if and only if there is noβ right
before or after the repeats. So, the above string can be
represented by a unique PM-triple,(1, ab, 8). (A PM-triple
is a representation of a PM-repeats sequence and we will use
the terms interchangeably.)

For eachEk class refined in Crochemore’s algorithm, a PM-
triple can be identified by the following Lemma, which is also
mentioned in [16]:

Lemma 4.1:Triple (i,β, l) is a PM-triple, whereβ is a
k-length substring, if and only if some single class ofEk

contains a maximal series of numbers i, i+k, i+2k, ..., i+lk,
such that each consecutive pair of numbers differs by k.

In order to identify loops, PM-triples must be identified at
each level during the execution of Crochemore’s algorithm.
Since the total number of members in all classes at a levelk
is bounded by string lengthn, the process takesO (n) time.
Since the maximal possible size ofβ, the loop element, is half
the length of the stringn, we need to report PM-triples after
discovering the repeats by Crochemore’s algorithm till level
n/2. The running time for identifying loops represented by
PM-triples isO

(

n2
)

.

Level1 − E1 : {1,3,4,6,8,9,11,12} {2,5,7,10,13} {14}
a b $

Level2 − E2 : {1,4,6,9,12} {3,8,11} {2,5,7,10} {13}
ab aa ba b$

Level3 − E3 : {1,4,6,9} {12} {3,8,11} {2,7,10} {5}
aba ab$ aab baa bab

Level4 − E4 : {1,6,9} {4} {3,8} {11} {2,7,10}
abaa abab aaba aab$ baab

Level5 − E5 : {1,6,9} {3} {8} {2,7} {10}
abaab aabab aabaa baaba baab$

level6 − E6 : {1,6} {9} {2} {7}
abaaba abaab$ baabab baabaa

Level7 − E7 : {1} {6}
abaabab abaabaa$

TABLE II
SUCCESSIVEREFINEMENT OFSTRING abaababaabaab$

C. Loop filtering

The previous steps provide a list of PM-triples which
represent all the loops in the trace. Our interest is in finding
all the outermost or longest span loops. These are represented
by the PM-triples at the highest level. (The inner loops are
discovered by running the entire process recursively). In case
of multiple overlapping loops of equal span at the same level,
we select the one that starts earliest in the string.

As an example, for the stringabcdabcdabcdabcda, 4 PM-
triples will be identified. These PM-triples are(1, abcd, 4),
(2, bcda, 4), (3, cdab, 3) and (4, dabc, 3). The first two
PM-triples both have a span of 4 versus a span of 3 for
the remaining two. Based on the earliest starting point, the
selected loop will be(1, abcd, 4).
As another example, consider the string
EababababFEababababFEababababF , which contains
a loop nest containing loops at two levels. The PM-triple
(1, EababababF, 3) represents the selected outer loop. The
inner loops represented by triples(2, ab, 4), (12, ab, 4), and
(22, ab, 4) are ignored at this stage.

The loop filtering step repeatedly finds the PM-triple cor-
responding to the longest span loop, until no PM-repeats are
left. Since the loop element can theoretically be as small as2
symbols, the theoretical upper bound of this step with a simple
implementation isO(n2). An O(nlogn)implementation is
possible. However, in practice this is a very quick step as
the number of loops is normally very small, andO(n2) is a
very loose upper bound.

D. Compression framework summary

The procedure discussed in this section identifies all out-
ermost loops represented in a trace. The algorithm runs
recursively on the substring that constitute the loop element
(or body) for identification of the inner loops. The recursive
steps are important to get a high degree of compression. It is
theoretically possible to reuse some of the information from
discovery of outer loops to identify inner loops. In practice,

this is likely to make little difference in performance since
the processing time is dominated by the time to discover
outer loops. In order to develop a compressed representation,
the loop spans in the trace are replaced with tuples(LE, l),
whereLE represents the loop element, andl is the number of
loop iterations. A separate table is constructed, which maps a
loop element symbol to the substring that constitutes the loop
element. The overall complexity of the steps in this procedure
is O(n2) and is dominated by the loop identification step.

V. GREEDY TRACE COMPRESSION

The scheme discussed in Section IV discovers the outermost
loop. However, the execution time for loop discovery can be
high for long traces. We will discuss experimental results in
detail later in this paper, but we jump ahead to Table IV
to motivate the case for a faster approach. As an example
consider the class C SP benchmark in the table. The total
time to run the algorithm is around 747 seconds, although
all program loops had already been discovered in just 5.8
seconds. The reason is that the largest loop consists of only67
symbols while the trace size is 26888 symbols. Our approach
builds equivalence classes and looks for loops in increasing
order from 1 to half the trace length. Even though all loops
were discovered by the time the equivalence class of 67 was
constructed, (and these loops spanned over 99% of the trace)
there is no way for the algorithm to be certain that a larger
loop does not exist, and hence refinement continues until the
equivalence class of 13444 that corresponds to half the original
string size. If the loops already discovered were replaced by
a single symbol at the equivalence class of 67, the trace size
to be processed would be less than 1% of the original trace
size, and the remaining processing would be much faster. This
motivates greedy compression.

The key idea of greedy compression is early compression
as PM-triples are discovered. The entire span of the corre-
sponding loop is replaced by a single symbol, and compression
continues on the newly formed (shorter) string. The procedure
continues until half the current string size is reached, but

the string size decreases dynamically as loops are discovered,
which is the key reason for improved performance. Figure 1
outlines the greedy compression procedure.

S = string corresponding to the original trace
Current S = S; Level = 1;
Step 1:
if Level > |Current S|/2 then

Goto Step 3
else

i) Find all repeats of sizeLevel in Current S by
successive refinement with Crochemore’s algorithm.
ii) Identify all PM-triples with repeating substring of size
Level.
if any PM-triples with repeating substring of sizeLevel
are discoveredthen

Goto Step 2
else

Level = Level + 1; Goto Step 1
end if

end if
Step 2:
UpdateCurrent S by reducing all PM-triples with repeat-
ing substrings of sizeLevel in decreasing order of loop
span, employing filtering (discussed in section IV-C) for
overlapping triples. The symbols replacing the PM-triples
are stored in a mapping table.
Level = 1; Goto Step 1.
Step 3:
Stop.Current S along with the mapping table for symbols
is the compressed trace that captures the loop nests.

Fig. 1. Greedy compression procedure

The worst case time complexity for this greedy algorithm is
the same as the optimal algorithm discussed in Section IV. In
fact, the two algorithms will run identically if there were no
PM-repeats in a trace. However, the greedy algorithm is much
more efficient in practice for programs with a loop structure.

A. Risk of greedy compression

For most traces that we have analyzed, the greedy and
optimal procedures yield identical results. Here we illustrate
with carefully selected examples how the results of greedy
compression can be suboptimal.

Consider the stringabaababaabaab. The greedy compres-
sion proceeds as follows:

a b a a b a b a a b a a b $
a b L1 b a b L1 b L1 b $ L1 =(a)2

a b L1 b a L2 b $ L2 =(bL1)
2 =(baa)2

The loop structured discovered by the greedy procedure
is ab(a)2ba(b(a)2)2b whereas the optimal loop structure is
(ab(a)2b)2(a)2b. A 2 iteration loop with the largest element,
(abaab)2, is completely missed.

Now consider the stringabaababaababaabaab. The greedy
compression proceeds as follows:

a b a a b a b a a b a b a a b a a b $
a b L1 b a b L1 b a b L1 b L1 b $ L1 =(a)2

a b L1 b a b L1 b a L2 b $ L2 =(bL1)
2 =(baa)2

L3 a L2 b $ L3 =(abL1b)
2 =(abaab)2

The loop structured discovered by the greedy procedure
is (ab(a)2b)2a(b(a)2)2b whereas the optimal loop structure
is (ab(a)2b)3(a)2b. The loop with the largest loop element
(abaab) is captured, but with one less iteration than optimal.

In general, the greedy algorithm will discover any loop,
except that the discovered loop may have up to 2 less iterations
than the maximal loops (first and/or last iteration may not
be discovered) and the elements in the loop body may be
a rotation of the elments in the maximal loop. In practice,
the difference between the results of the two algorithms are
identical or trivially different from compression standpoint.
The “near optimality” of the greedy algorithm is discussed
further in Section VII.

VI. EXPERIMENTAL RESULTS

A framework for loop discovery and compression discussed
in Section IV and a framework for greedy compression as
discussed in Section V were implemented. The goal was to
validate loop discovery and compression achieved by these
algorithms and study the tradeoffs between the execution
performance and the degree of compression.

This research was motivated in the context of analysis of
execution traces of MPI applications to build representative
executable “performance skeleton” programs. All results pre-
sented in this paper are for compression of MPI communica-
tion traces for Class B/C NAS Parallel Benchmarks running
on 16 nodes. The traces were collected with the PMPI library
and converted to strings of symbols. Each symbol in the trace
that was input to the compression procedure corresponds to a
specific MPI operation with a specific set of parameters.

A. Results and discussion

Table III shows the results of the optimal compression
procedure. We observe that the length of the traces ranged
from 8909 to 323048 (average 71695) and the length of the
compressed traces ranged from 38 to 1118 (average 281) with
the degree of compression ranging from 8 to 5384 (average
1173). The structures of the major loop nests discovered are
also described in the table. Most of the trace was covered
by loops for all benchmarks, around 98% on average. The
conclusion is that many MPI traces have a loop structure that
can be discovered automatically by this approach. The degree
of compression is excellent and the length of the compressed
trace is generally relatively small. However, we caution that
the degree of compression is naturally dependent on the loop
structure implicit in a trace and good compression results are
not universal. In particular, compression will be poor if the
control flow of a program leads to dynamic execution behavior
with little repetition in the execution trace.

Table IV focuses on the execution time for optimal com-
pression. The total time for loop discovery, which includes
repeats discovery, loop identification and loop filtering, is

Trace Span Compressed
Name Trace Major Covered Trace Compression

Length Loop Structure by Loops Length Ratio
BT B/C 17106 (85)200 = (13 + (4)3 + ... + (4)3)200 99.38% 85 201.25
SP B/C 26888 (67)400 99.67% 162 165.97
CG B/C 41954 (552)75 = ((21)26 + 6)75 98.68% 38 1104.05
MG B 8909 (416)20 93.39% 1006 8.86
MG C 10047 (470)20 93.56% 1118 8.99
LU B 203048 (812)249 = ((4)100 + (4)100 + 12)249 99.58% 60 3384.13
LU C 323048 (1292)249 = ((4)160 + (4)160 + 12)249 99.58% 60 5384.13
Average 71695 98.16% 281 1172.86

TABLE III
RESULTS OF OPTIMAL COMPRESSION

Repeats Discovery Time (sec) Loops Discovery Time (sec) Loop Element Size
Name Trace Up to Up to Up to Up to Per

Length Total Smallest Largest Total Smallest Largest Trace Smallest Largest
Repeat Repeat Element Element Record Size Size

BT B/C 17106 12.85 0.47 0.87 311.18 0.63 4.84 .013 4 85
SP B/C 26888 15.88 0.98 0.98 747.73 5.81 5.81 .014 67 67
CG B/C 41954 239.29 1.46 5.78 2021.78 3.73 67.77 .018 21 552
MG B 8909 35.85 0.00 3.95 113.48 0.00 13.74 .027 1 416
MG C 10047 45.96 0.00 4.97 144.54 0.00 17.41 .048 1 470
LU B 203048 2565.73 4.93 24.31 44204.82 6.51 463.18 .218 4 812
LU C 323048 8028.83 7.83 59.72 113890.21 10.18 1172.63 .352 4 1292

TABLE IV
PERFORMANCE AND EXECUTION TIME BREAKUP FOR OPTIMAL COMPRESSION. THE LOOPS DISCOVERY TIME INCLUDES THE TIME FOR REPEATS

DISCOVERY THAT IS ALSO LISTED SEPARATELY AS WELL AS THE TIME FOR LOOP IDENTIFICATION AND LOOP FILTERING.

reported along with the time per trace record. The largest
and the smallest loop element sizes are also noted. One
observation is that the repeats discovery time is a relatively
small component of the total loop discovery time, which is
dominated by the loop identification time. The loop filtering
time was consistently very small in comparison and is not
reported separately in the table.

The times for repeats discovery and loop discovery increase
as the trace size increases. Further, the time per trace record
for loop discovery increases from .013 seconds for the shortest
trace to .352 seconds for the longest trace, suggesting a low
polynomial relationship between trace length and processing
time. The LU class C benchmark takes 8028.83 seconds
(2.23 hours) to finish discovering all possible repeats, and
identification of loops from those repeats takes 113890.21
seconds (31.64 hours). As the experiments are for a modest
input data size running on only 16 nodes, the execution time
is a major concern for realistic longer running applications on
larger clusters.

Table IV also shows the times at which the smallest loop
and the largest loop was discovered during the compression
of each benchmark trace. For all benchmarks, the largest loop
was discovered within a small fraction of time as compared to
the total execution time. A similar pattern is observed for the
largest repeats. Loop discovery with Crochemore’s algorithm
employs successive refinement from 1 up to half the trace size.
However, the largest loop element in all cases was a small
fraction of the trace size. Hence, the bulk of the time spent

by the algorithm wasafter all the loops had already been
discovered. Of course, in hindsight, the process could have
been terminated earlier with the same results. However, there
is no definitive way to be certain that optimal compression has
been achieved, although heuristics can be developed based on
the degree of compression already achieved.

The observations from the results of this optimal algorithm
and the fact that it spent much of the time in processing that did
not contribute to final compression was the motivation for usto
develop a greedy compression algorithm. Greedy compression
reduces the running time by reducing the length of the original
string during compression as loops are discovered. Consider
the trace of class C LU benchmark. Table IV shows that the
smallest loop contains 4 symbols, so the reduction in trace
size starts at level 4 by replacing those loops with new loop
symbols. The largest loop has 1292 symbols, which contains
two inner loops with 4 symbols iterating 160 times and another
12 symbols. The loops span 99.58% of the trace. Hence, after
the next reduction, which happens at level 14, the trace size
will be approximately (100-99.58) = 0.42% of the original
trace size, and compression will be virtually over. In contrast,
optimal loop discovery procedure will have to execute all
levels with the the full trace size of 320348 until a level equal
to half that size.

The results from greedy compression are presented and
compared with the optimal compression results in Table V.
The reduction in the execution time with the greedy approach
is dramatic. The maximum compression time with the greedy

Greedy Optimal Compression Ratio
NPB Trace Compression Compression Major Loop Structure Discovered Optimal Greedy
Name Length Time (secs) Time (secs) by Greedy Compression Algorithm Algorithm

BT B/C 17106 8.91 311.18 (85)200 = (13 + (4)3 + ... + (4)3)200 201.25 201.25
SP B/C 26888 7.61 747.73 (67)400 165.97 165.97

CG B/C 41954 8.48 2021.78 (552)75 = (5 + (21)25 + 22)75 1104.05 524.43

MG B 8909 8.64 113.48 (416)20 8.86 8.86
MG C 10047 10.88 144.54 (470)20 8.99 8.99
LU B 203048 33.16 44204.82 (812)249 = ((4)100 + (4)100 + 12)249 3384.13 3384.13
LU C 323048 61.9 113890.21 (1292)249 = ((4)160 + (4)160 + 12)249 5384.13 5384.13

TABLE V
RESULTS OF GREEDY COMPRESSION

procedure ranges from 7.6 seconds to 61.9 seconds, versus
the range from 113 seconds to 113,000 seconds for the
optimal procedure. Clearly, this is a much more promising
approach for large traces. Since the greedy approach is not
guaranteed to always identify the outer loops correctly, we
report the loop nests discovered and the compression achieved
for each benchmark. For 6 of the 7 benchmarks, the loop
nests discovered and the compression achieved were identical
with the optimal and greedy approaches. One exception was
the CG benchmark as noted in Table V. In this case the
optimal procedure yielded a compressed trace size of 38, while
the greedy procedure yielded a compressed trace size of 80.
Clearly this is not a practical concern even though the degree
of compression reported varies by a factor of 2. The reason
for the difference is clear when the loop nest discovered for
the CG benchmark as shown in Table V is compared with the
loop nest discovered as shown in Table III. One discovered
loop is offset due to the greedy procedure such that it has
one less iteration as compared to the optimal loop nest, and
as a result, there are more symbols outside of loop nests with
greedy compression.

VII. A LGORITHMIC RESULTS

We have observed that the algorithms that we have de-
veloped generally return the best loop nest that is possible,
or something very close. An important contribution of this
work is theoretical results that provide specific bounds and
more insight. Because of lack of space and complexity of the
problem, the discussion here is abbreviated.

Our “optimal” algorithm is guaranteed to discover the
longest span loop in a string at every step, but not necessarily
the most compact loop nest overall. The two definitions of
optimality are different although they lead to the same result
except in in pathological cases. Further discussion is beyond
the scope of this paper. More interesting to us is how the loop
nest discovered by the greedy algorithm may differ from this
optimal algorithm. In general, the following result holds:

The early reduction of inner loops corresponding to a fixed
loop body can impact the identification of a longer span outer
loop only as follows: the body of the discovered loop may be a
reordering of the body of the original loop, and the number of

iterations in the discovered loop may be up to 2 fewer than the
number of iterations in the original longest span outer loop.

We have established this is indeed the case when one inner
loop is reduced. The result is formally stated as follows:

Consider PM-tripleL represented as(j, α, m) with |α| > 2.
Let β be another substring with|α| > |β|. Suppose every
PM-triple with β as the repeating substring is identified and
reduced to a symbol. As a result of these reductions, ifL
is not identified as a PM-triple, then another PM-tripleL′

(j′, α′, m′) will be identified where,
j′ is betweenj and j + |α − 1|,
α′ and α are identical strings or one is a rotation of the

elements of the other,
m′ is betweenm and m − 2.
The proof is detailed in Appendix A.
The above result places a bound on the impact of reduction

of one inner loop, on the discovery of an outer loop.The
result does not specifically address the impact of multiple loop
reductions on the discovery of an outer loop.In practice, it is
still the case that the outer loop is generally discovered, with
up to 2 fewer iterations. However, there are pathological cases
where a long span outer loop is not discovered at all, even
when there are more than 2 iterations. An example is the string
abcabcabcdbcdbcdbcdacdacdacdabdabd repeated 5 times with
an optimal loop nest((abc)3(dbc)3(dac)3(dab)2d)5. The
greedy algorithm proceeds to reduce it as follows:

(abc)3 (dbc)3 (dac)3 (dab)3 (cab)2
The result is that the long outer loop with 5 iterations is not

detected at all.
Additional machinery is necessary to ensure that results

within the bounds discussed are always achieved when a series
of loops is reduced with the greedy approach. Specifically, the
greedy algorithm is modified as follows:

• loops with 3 or fewer iterations are not reduced.
• the loop elementα of a newly discovered loop is

compared against the loop elements of all previously
discovered loops. In case the loop elementα is a rotation
of the loop element of an existing loop, sayβ, then a
modified version of the new loop with loop elementβ is
reduced, possibly with one fewer loop iteration.

With these changes the near optimality of the greedy algo-

rithm can be retained in general. For the above example, the
final loop nest discovered is:
(abc)3 ((dbc)3(dac)3(dab)3c(abc)2)4 (dbc)3 (dac)3 (dab)2 d
The discovered outer loop has one less iteration than optimal.

A version of the algorithm with these additions is not
implemented yet, and detailed analysis is omitted due to
lack of space. However, we have not seen any instances in
actual traces where this machinery is necessary to keep the
compressed greedy traces withing the stated bounds.

VIII. C ONCLUSION

This paper has presented an efficient and effective frame-
work to identify complete loop nests in execution traces.
The methodology constructs a loop nest from the repeating
patterns implicitly identified by Crochemore’s algorithm.A
fast greedy approach is also developed. Experimental results
demonstrate that the approach is effective in identifying loop
nests in communication traces. Both the optimal and greedy
approaches discover similar loop nests and deliver similar
compression results. However, the processing time rises to
hours with the optimal procedure for modest length traces of
1000s of MPI calls. The greedy approach provides virtually
identical compression at a fraction of the execution time ofthe
optimal method. The maximum compression time for our test
suite was around one minute with the greedy procedure. Most
importantly, unlike most compression heuristics, the greedy
approach developed is theoretically proven to yield “near
optimal” results.

While many compression algorithms exist, the efficient
discovery of long range repeating patterns due to outer loops
in an execution trace remains a significant challenge. Further,
an important objective in trace analysis is to identify the parts
of the trace corresponding to execution loops, and not simply
to compress the trace. To the best of our knowledge, this is the
first effort to discover the optimal loop nest in execution traces.
The algorithms developed in this work have already been
applied as a module in generation of executable performance
skeletons from parallel application traces by identifyingthe
dominant execution and communication patterns. However, the
procedures developed are general and can be applied to trace
compression and similar problems in a variety of scenarios.
We believe this paper makes an important fundamental algo-
rithmic contribution and represents a concrete step forward
in analyzing execution traces for performance modeling and
performance prediction.

IX. A CKNOWLEDGMENTS

Support for this work was provided by the National Sci-
ence Foundation under Award No. CNS-0410797 and CNS-
0834750. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression.”IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337–343, 1977.

[2] C. Nevill-Manning and I. Witten, “Sequitur. http://SEQUITUR.info.”
[Online]. Available: http://SEQUITUR.info

[3] ——, “Identifying hierarchical structure in sequences:A linear-time
algorithm,” Journal of Artificial Intelligence Research, vol. 7, pp. 67–82,
1997.

[4] C. Nevill-Manning, I. Witten, and D. Maulsby, “Compression
by induction of hierarchical grammars,” inData Compression
Conference, Snowbird, UT, Mar 1994, pp. 244–253. [Online].
Available: citeseer.ist.psu.edu/129141.html

[5] M. Noeth, F. Mueller, M. Schulz, and B. Supinski, “Scalable com-
pression and replay of communication traces in massively parallel
environments,” in21th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2007), Long Beach, CA, April 2007.

[6] M. Crochemore, “An optimal algorithm for computing the repetitions in
a word.” Inf. Process. Lett., vol. 12, no. 5, pp. 244–250, 1981.

[7] Q. Xu, J. Subhlok, S. Voss, and R. Zheng, “Logicalizationof com-
munication traces from parallel execution,” in2009 IEEE International
Symposium on Workload Characterization, Austin, TX, Oct 2009.

[8] Q. Xu and J. Subhlok, “Construction and evaluation of coordinated per-
formance skeletons,” inThe 15th annual IEEE International Conference
on High Performance Computing (HiPC 2008), Bangalore, India, Dec
2008.

[9] X. Gao, A. Snavely, and L. Carter, “Path grammar guided trace compres-
sion and trace approximation,” in15th IEEE International Symposium
on High Performance Distributed Computing (HPDC-15), Paris, France,
June 2006.

[10] P. Weiner, “Linear pattern matching algorithms,” inFOCS, October
1973, pp. 1–11.

[11] E. McCreight, “A space-economical suffix tree construction algorithm.”
J. ACM, vol. 23, no. 2, pp. 262–272, 1976.

[12] E. Ukkonen, “On-line construction of suffix trees.”Algorithmica, vol. 14,
no. 3, pp. 249–260, 1995.

[13] J. Stoye and D. Gusfield, “Simple and flexible detection of contiguous
repeats using a suffix tree,”Theoretical Computer Science, vol. 270, no.
1-2, pp. 843–856, 2002.

[14] D. Gusfield and J. Stoye, “Linear time algorithms for finding and
representing all the tandem repeats in a string.”J. Comput. Syst. Sci.,
vol. 69, no. 4, pp. 525–546, 2004.

[15] A. Apostolico and S. Lonardi, “Some theory and practiceof greedy off-
line textual substitution.” inData Compression Conference, Snowbird,
UT, Mar 1998, pp. 119–128.

[16] D. Gusfield,Algorithms on Strings, Trees, and Sequences - Computer
Science and Computational Biology. Cambridge University Press, 1997.

APPENDIX

Impact of inner loop reduction on discovery of an outer loop

We present a set of results that will be employed to prove
that the early reduction of an inner loop can impact the
identification of a longer span outer loop only as follows:
the body of the discovered loop may be a reordering of the
body of the original loop, and the number of iterations in the
discovered loop may be up to 2 fewer than the number of
iterations in the original longest span outer loop. Recall that
the notation(j, α, m) representing a PM-triple means that the
corresponding PM-repeats start at locationj in the string, the
repeating substring isα and the number of repeats ism.

Lemma A.1:Suppose PM-tripleL represented as(j, α, m)
is leftmostmeaning that there are no PM-repeats of length|α|
starting left ofL, from locationi − 1. Let A = |α| − 1 and
assumem > 2. Then there exist PM-triples(i + 1, β1, k1),
(i + 2, β2, k2),(i + A, βA, kA) such thatβi is a rotation of
α andki is eitherm or m − 1.

We refer to this group as the family of PM-triples corre-
sponding to leftmost PM-tripleL.

Proof: This result is stating the direct observation that,
for every repeating sequence, starting with a forward offset
smaller than the size of the repeating string yields another
repeating sequence with at most one fewer number of repeats
and with a rotated repeating string.

Lemma A.2:Let S be a string of symbols. Suppose there
exist strings A and B such that:S = AB = BA. Then there
must be another string C such thatS = [C]k. One implication
is thatS cannot be the repeating substring in a PM-repeat as
it is not primal.

Proof:
1) If |A| = 1, then it can be easily shown thatS = [A]k,

wherek = |S|. Same holds if|B| = 1.
2) If |A| = |B|, thenS is of the form[A]2.

If either of the above cases holds, the result holds.
3) Otherwise, without loss of generality, let|A| < |B|.

Then we can define a stringT such thatB = TA. Now,
we haveS = AB = ATA, andS = BA = TAA. This
implies thatS = ATA = TAA.
We defineS = S′A, with S′ = AT = TA. We again
have:

a) If |T | = 1, then S′ = [T]k
′

, where k′ is |S′|.
Hence,S = [T]k, wherek is |S|. Hence the result
holds.

b) If |T | = |A|, then S′ = [T]2 = [A]2, and S =
S′A = [A]3. Hence, the result holds.

c) Otherwise,S′ can again be split asS was split in
the previous level.

The size of the string decreases by at least 1 in every
new level. The result is proved based on the principle
of induction.

Lemma A.3:Given two PM-triplesL andS, with repeating
substringsEL and ES , respectively, where|EL| > |ES |.
If there is an overlap between any interior instance (i.e. all
instances except the first and the last) ofEL and the span of
S, then the length of the span ofS cannot equal or exceed
|EL|.

Proof:
Without loss of generality, we assume that overlapping

instances ofEL, and S are aligned at the left boundary as
shown in Figure 2. If that is not the case, then the proof is
generated with an aligned member of the family of PM-triples
corresponding to PM-tripleL as discussed in Lemma A.1.

b a ba

............��������EL ��������EL

ES

b

ES ES ES

a

Fig. 2. Overlapping PM repeats

If span ofS = EL, then clearly PM-tripleS is not maximal
as repeats ofES continue in the next instance ofEL. Hence

that cannot be true.
Suppose the length of span ofS > EL in contradiction
to the result to be proved. Then one instance ofES will
cross the boundary between instances ofEL as shown in
Figure 2. (Since the first instance ofEL is an interior instance,
a following instance must exist.) We split this instance ofES

in two substringsa and b at the boundary as illustrated in
Figure 2, i.e.,ES = ab. Now the left instance ofEL starts
with ES = ab, while the right instance ofEL starts withba.
But since they are repeats, they must be identical.

Hence we haveES = ab = ba.
From Lemma A.2,ES = [x]k for somex and k, which

means thatS is not aprimitive repeat. Hence, by contradiction,
the span ofS cannot exceedEL. Therefore, the span ofS must
be strictly smaller than|EL|.

We now present the main result formally.
Theorem A.4:Consider PM-triple L represented as

(j, α, m) with |α| > 2. Let β be another substring with
|α| > |β|. Suppose every PM-triple withβ as the repeating
substring is identified and reduced to a symbol. As a result
of these reductions, ifL is not identified as a PM-triple, then
another PM-tripleL′ (j′, α′, m′) will be identified where,

j′ is betweenj andj + |α − 1|,
α′ and α are identical strings or one is a rotation of the

elements of the other,
m′ is betweenm andm − 2.

Proof:
Let S be a PM-triple with repeating substringβ that

overlaps with an interior instance ofα corresponding toL.
We initially assume that no other PM-triple with repeating
substringβ overlaps with this instance ofα. From Lemma A.3
we know that the entire span ofS must be smaller than
|α|. Further we assume for now that the entire span ofS is
contained within a single instance ofα.

Under the above scenarios, every instance ofα in L will
containS as part of the substring at the same location, which
will be replaced by the same symbol. Hence the identification
of the PM-triple corresponding toL will be unaffected by
reductions ofS.

Now suppose the span ofS is not contained within a single
instance ofα and crosses two instances. In that case the
above result can be proved for another member of the family
of PM-triples corresponding to PM-tripleL as discussed in
Lemma A.1, although the number of repeats (or iterations)
may be reduced by 1.

Finally, there can be multiple PM-triples with repeating
substringβ that overlap with the same instance ofα. However
these instances themselves cannot be overlapping - otherwise
it can be shown that they are not PM-repeats based on
Lemma A.2. The impact of non-overlapping PM-triples can be
serialized leading to the same result as for a single overlapping
PM-triple above.

The final result is that the number of repeats in the recog-
nized PM-triples can be up to 2 less thanL since none of the
results applies to the first or the last instance ofα in L.

