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Abstract—A pool of distributed volunteer PCs presents an
extremely hostile environment for execution of communicating
parallel codes due to system and network heterogeneity, varying
availability, and frequent failures. Well known methods for fault
tolerance, specifically replication and checkpointing, are challeng-
ing to deploy and not sufficient individually to provide continuous
forward application progress. As the failure of a single logical
process leads to application failure, the degree of redundancy
needed for long running applications is too large to be practical.
Checkpointing and rollback does not provide protection against
slow and variable speed nodes and is impractical when system
wide MTBF is in minutes or less, common for a moderate size
volunteer computing pool. The approach taken in this research
is to exploit both, but that presents formidable challenges;
efficient checkpointing of distributed replicated processes, dy-
namic management of redundancy, quick restart in a distributed
environment, and others. Proposed solution also leverages node
selection based on availability prediction. The integrated runtime
system is shown to effectively execute moderate size, coarse-
grain, communicating codes on a worldwide distributed volunteer
environment, a new milestone in volunteer computing. The results
provide new insight into how multiple techniques interact and
contribute to robustness. The programming model is based on
one-sided Put/Get calls to an abstract global shared space that
works seamlessly with replicated processes. A Replica Exchange
Molecular Dynamics code is employed to drive evaluation. The
execution environment includes hosts on a University campus as
well as hosts distributed around the world.

Keywords-Volunteer computing, distributed computing, fault
tolerance, BOINC, PC grids

I. INTRODUCTION

Ordinary PCs have been employed successfully for large
scale scientific computing, most commonly using Condor [30]
or BOINC [5] as middleware. Condor, a scheduler that en-
ables idle desktops to be employed for compute intensive
applications, is deployed at 100s of sites worldwide. The
BOINC middleware uses volunteered public PCs for scientific
applications when idle. It has been remarkably successful,
managing as much as 5 Petaflops of aggregate compute power
and supporting over 60 scientific research projects. However,
this is a tiny fraction of the volunteer compute power that
could be exploited. The research presented in this paper
aims to enhance the state-of-the-art for parallel computing
on volunteer PC grids. We will refer to PCs made available
for scientific computing when idle as volunteer nodes (or

hosts, or PCs) and an execution environment composed of
PCs connected by a LAN or Internet as a volunteer PC grid
(VPG); even if the PCs are managed hosts in an organization.

Volunteer PCs represent a potentially immense but volatile
resource; they are heterogeneous in terms of architecture,
networking, and operating system, prone to failure, and their
availability to execute guest scientific applications can change
suddenly and frequently based on the PC owner’s actions.
Execution of communicating parallel applications on volunteer
PC grids is extremely challenging because process failures and
slowdowns are frequent and the failure or slowdown of a single
process impacts the entire application. The state of the art of
parallel computing on volunteer nodes is generally limited to
applications with “master-slave” or “bag-of-tasks” parallelism.

The context of this research is the VoLPEx (Parallel Execu-
tion on Volunteer nodes) project that has the goal of effective
execution of parallel codes with coarse grain communication
on volunteer nodes. The Volpex programming model is based
on autonomous redundant processes, where a process can have
multiple concurrent independent replicas that can be created at
invocation, re-created from a checkpoint, or terminated, with-
out coordination with other processes or replicas. The overall
program progress is dictated by the instance of each process
that is furthest ahead in execution. Volpex has developed two
programming frameworks: the Dataspace API [19,24] with
a Put/Get communication model, and a subset of the MPI
standard called the VolpexMPI [2, 3].

The central contribution of this paper is a runtime exe-
cution environment that achieves the key Volpex objective of
continuous forward application progress despite network and
host heterogeneity, routine failures, and other challenges of
a volunteer environment. A suite of techniques is employed
to make this possible: node selection to minimize the chance
of failure during execution, redundant processes to provide
failure resistance, checkpointing to allow application rollback,
and heartbeat monitoring and hot spares for quick restarts. The
runtime system innovations that allow application progress in
such a harsh execution environment include: i) checkpointing
and replication developed and implemented as a unified con-
cept; typically minimal replication is deployed for seamless
application progress on failure with checkpoint/restart to main-
tain a degree of redundancy, ii) checkpointing is co-operative;



more process replicas imply fewer checkpoints per replica iii)
procedures to automatically “identify, kill, release and replace”
healthy processes that are lagging in execution status; this is
critical for managing heterogeneity and slowdowns that are
not caused by failures, and iv) a “knob” to manage tradeoffs
between resource expenditure and performance with control
of the degree of replication, checkpointing frequency, and
node selection standards. The goal of the integrated execution
environment is to allow long running applications to execute
effectively on volunteer PC grids.

The Volpex execution framework presented in this paper is
in the context of the Dataspace programming framework. The
execution environment leverages the Dataspace programming
API, that normally stores application communication data
objects, for storing checkpoints and other management data
objects. The Volpex execution framework is integrated with
the BOINC middleware that is used for the basic management
of volunteer hosts. Some of the runtime features, in particular
node selection, are implemented by modifying the BOINC
framework. The challenging task of integration with BOINC
was undertaken, first to avoid “reinventing the wheel”, but
equally importantly, to reach out to the substantial BOINC
community of scientists as potential real-life customers for
the software modules from this research.

The evaluation of this research is done on a volunteer
environment that combines a group of hosts at the Uni-
versity of Houston with other hosts distributed worldwide.
The evaluation is driven by a Replica Exchange Molecular
Dynamics (REMD) code that is being used actively in physics
research, e.g. [31]. The objectives of the evaluation are i) to
demonstrate that Volpex execution framework can effectively
manage distributed applications on volunteer hosts, and ii)
to evaluate the role of node selection, checkpointing, and
redundancy in enhancing the performance of long running
codes on a volunteer PC grid.

While the primary goal of this research is to transform
volunteer PC grids into “virtual clusters” to run a variety of
parallel codes, the results from the research can potentially
have wider significance. Other emerging platforms for dis-
tributed computing, in particular, computational clouds, also
have to deal with heterogeneity, errors, and failures, especially
as they scale up. The methods developed can play a role in
improving reliability of clusters by employing unused cores to
run redundant process replicas.

This paper is organized as follows. Section 2 discusses re-
lated work. Section 3 details the properties of volunteer nodes
that are critical for the design of programming APIs as well as
the execution environment. Section 4 introduces the concept
of autonomous redundant processes. Section 5 discusses the
Dataspace programming API as the context for this research.
Section 6 discusses the design and implementation of the
execution environment, including checkpointing, redundancy,
and node selection. Section 7 presents evaluation results and
Section § contains conclusions.

II. RELATED WORK

Idle desktops are widely used for parallel and distributed
computing. The Berkeley Open Infrastructure for Network
Computing (BOINC) [5] is a middleware system widely used
for volunteer computing. Condor [30], is a workload manage-
ment system that can effectively harness wasted CPU power.
Other systems that build desktop computing grids include
Entropia [21] and iShare [25]. Mechanisms applied for fault
tolerance in PC grids, such as redundancy in BOINC and
checkpointing in Condor, are important for long running se-
quential and bag-of-tasks codes, but are generally not sufficient
for communicating parallel programs.

Linda [9], TSpaces [1], JavaSpaces [23] and many others
represent a Put/Get model of coordination and communication
among parallel processes based on a logically global associa-
tive memory. The Volpex Dataspace API [19,24], the under-
lying framework for this research, is also based on Put/Get
calls to a logically shared memory, the key enhancement
being efficient support for distributed replicated processes. The
notion of having a distributed shared memory programming
model using an abstract data space has also been explored
in [11], without however, support for fault tolerance.

Several implementations of the MPI specification have
focused on fault-tolerance mechanisms. The vast majority
of these projects rely on system level check-pointing and
automatic roll back of the application, often relying on a third
party system level library such as BLCR [13]. Representatives
of these libraries include LAM/MPI [27], Open MPI [17],
and MPICH-V [8]. Some approaches have utilized process
replication to create robust MPI libraries, such as MPI/FT [7],
P2P-MPI [16], rtMPI [15] and VolpexMPI [3], the latter being
developed as a complementary aspect of the work presented
in this paper. P2P-MPI and VolpexMPI are the only libraries
targeting volunteer computing within this group. Process repli-
cation is also deployed in the MOON framework [22] for
MapReduce applications on volunteer resources.

The key innovation of this work is customizing and inte-
grating replication and checkpointing to build an execution
framework that can handle very high failure rates and other
peculiarities of volunteer environments. A Put/Get model of
communication is deployed as it is particularly suitable for a
distributed environment. The runtime system will be adapted
for an MPI implementation in the future.

An important component of the Volpex execution environ-
ment is a host selection module that leverages ample existing
research. Multiple predictors of future availability of a host
based on previous history are described and evaluated in [6,
26]. Prediction of application execution time in a volunteer
environment is studied in [14,29]. In contrast to research
discussed above, this paper focuses on communicating parallel
jobs rather than “bag-of-tasks” jobs, and on actual execution
on a testbed rather than simulation. The predictor we employ
is primarily based on recent host availability, a choice made
partly because [6] showed that this simple predictor was nearly
as effective as other complex and sophisticated predictors.



Finally checkpointing is an important component of the
Volpex execution environment. Uncoordinated checkpoint-
ing [8] is the only viable option in a volunteer environment as
coordinated checkpointing [27] requires finer synchronization
and is difficult to handle with redundancy. Volpex currently
employs application level checkpointing in the context of
BOINC [4]. Our approach to sharing of checkpoints between
replicas is partially motivated by [12].

III. CHARACTERISTICS OF VOLUNTEER HOSTS

We list the characteristics of volunteer computing hosts that
present challenges for creating and running communicating
parallel applications. In the subsequent sections, we address
the design of the Volpex programming models and execution
environment to address these challenges.

o Heterogeneity: Nodes are heterogeneous in terms of op-
erating system, CPU model and speed, presence of a
graphics processing unit (GPU), memory size, network
bandwidth, and so on. They are on public internet im-
plying that network connectivity to a server and to other
nodes changes continuously.

e Reliability: Nodes are unreliable and untrustworthy. In
addition to catastrophic failures, there can be Byzantine
failures where incorrect results are returned. Some nodes
have high error or failure rates because of hardware
failures (due in some cases to overclocking). In principle,
hackers can introduce malicious errors although this is
extremely rare in practice.

e Shared resource: Most importantly, a volunteer node is
not dedicated. Nodes may become unavailable because
they are turned off, not allowed to compute due to user ac-
tivity, or unable to communicate. Periods of unavailability
may be short (e.g., when the user CPU usage exceeds a
threshold and the guest process is disabled) or long (e.g.,
when an office machine is turned off for the weekend). A
study of availability in BOINC systems [20] shows that
nodes are available about 65% of the time, and about
35% of nodes are available and connected 99% or more
of the time. The mean and median availability interval
lengths are 20 hours and 8 hours respectively, and about
60% of the volunteer hosts have mean availability interval
lengths greater than 4 hours

o Accessibility: Many volunteer hosts are behind firewalls,
NATs, and HTTP proxies. Hence, only client initiated
communication between a client and a Volpex/BOINC
server works consistently. One implication is that
scheduling must use a “pull” model in which the server
waits for clients to request work. Also, direct commu-
nication between hosts may be available but cannot be
taken for granted.

e Resource abundance: In volunteer computing environ-
ments, computational resources are often abundant and
the primary challenge is to harness them effectively. In
particular, it is generally reasonable to trade off reduced
resource utilization to achieve reliable execution.

IV. AUTONOMOUS REDUNDANT PROCESSES

Our goal is an execution environment that converts a pool
of volunteer hosts into a virtual cluster that supports reliable
execution of parallel programs. Important considerations are
redundancy and checkpointing with minimum coordination in
the control layer. We refer to the approach as autonomous
redundant processes outlined as follows.

e Redundancy: A process can have multiple concurrent
executing replicas (or instances), typically two but it can
be higher. Process replicas may be explicitly created at
program invocation or a new instance may be created
from a checkpoint to replace a slow or failed process
instance, and/or to maintain a certain level of redundancy.

o Autonomous processes: Process replicas are not aware of
the existence of, or coordinate with, other process replicas
and largely act autonomously. A process can checkpoint
its state without coordinating with other processes. A
process can be recreated from a checkpoint irrespective of
whether the original process is dead or alive, and without
coordination with other replicas or other processes.
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Fig. 1. Application progress is determined by the leading front created by
the fastest replica for each process

The execution model ensures consistent and seamless ap-
plication progress while at least one replica of each process is
active; other replicas may be dead or lagging. This is illustrated
in Figure 1. Lagging replicas may be be used for result
verification and for providing protection from Byzantine faults
due to software/hardware errors or malicious hosts. Redundant
computations may appear “wasteful” but are important and
complement checkpointing for a host of challenges; in partic-
ular, data corruption, malicious software, nodes and networks
of varying speeds, transient delays, and frequent failures.

V. BACKGROUND: DATASPACE COMMUNICATION API

The main contribution of this paper is an execution envi-
ronment for reliable execution on volunteer hosts. The context
of this research is the Volpex Dataspace programming frame-
work. We summarize the Dataspace API and implementation
here with more details available in [19, 24].

The Volpex Dataspace communication library consists of
asynchronous calls to add, read and remove data objects
to/from an abstract shared Dataspace, with each object iden-
tified by a unique fag, which is a global index into the
Dataspace. The concept of a Dataspace is similar to that



of a tuplespace in Linda [9] and many variants. The main
communication calls are abbreviated as follows:

Volpex_put(tag, data); A Volpex_put call writes the data
object data into the abstract Dataspace identified with a tag.
Any existing data object with the same tag is overwritten.
Volpex_read(tag); A Volpex_read call returns the data object
that matches the tag in the Dataspace.

Volpex_get(tag); A Volpex_get call returns the data object
that matches the fag in the Dataspace, and then removes that
data object from the Dataspace.

Additional calls are available to retrieve the process Id, the
number of processes, and for other housekeeping functions.
The set of calls in the Dataspace API is minimal but sufficient
to simulate basic message passing and shared memory style
communication.

Dataspace Execution Model: The basic semantics of the
communication operations are straightforward as listed with
the API above. However, managing autonomous redundant
processes, implying that multiple copies of the same process
may execute asynchronously, is the main challenge. The key
problem is that a logical call (with side effects) may be
executed repeatedly at different times. To ensure consistency,
the execution model consists of the following fundamental
rules:

1) Atomicity rule: The basic put/read/get operations are

atomic and executed in some global serial order.

2) Single put rule: When multiple replicas of a process
issue a Volpex_put, the first writer accomplishes a suc-
cessful operation. Subsequent corresponding Volpex_put
operations are ignored.

3) Identical get rule: The first replica issuing a Volpex_get
or a Volpex_read receives the value stored at the time in
the Dataspace. Subsequently, replicas of the correspond-
ing Volpex_get or Volpex_read receive the same value,
independent of the time at which they are executed.

If these rules are followed, all process instances are guaran-
teed to execute identically. Application results are consistent
for deterministic as well as nondeterministic parallel programs
as long as the sequential execution of a single process code is
deterministic.

Dataspace Implementation: A prototype implementation
with a single Dataspace server process exists from prior
research. The atomicity rule is satisfied with a single threaded
server process. For single put and identical get rules of the
execution model, the Dataspace server maintains two separate
pools of storage:

e Dataspace table: Logically “current” data objects indexed

with tags.

o Log buffer: Data objects that may not be current, but may

be needed to process future get and read calls.

Each logical communication call is uniquely identified by
the pair: (process_id, request_number), where request_number
is the current count in the sequence of requests from a process.
This allows the server to discern new communication calls
from subsequent replicated calls. If a communication call is

recognized at the server as a new call, then normal operations
are executed from the Dataspace table, while a replica call
may be serviced from the Log buffer. The implementation is
outlined in Figure 2.
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Fig. 2. Volpex Dataspace server design

In the current implementation, the Dataspace server is a
single point of failure and a potential bottleneck. However,
it should be noted that the server is normally hosted on
reliable dedicated hardware. Distributed, multithreaded, and
fault tolerant implementations are possible but a discussion is
beyond the scope of this paper.

VI. EXECUTION ENVIRONMENT

The execution environment is critical for parallel Volpex
jobs to run effectively on volunteer hosts characterized by
heterogeneity, fluctuating availability and failures, and limited
accessibility, as discussed in section III. We first describe the
basic functions and implementation of the execution frame-
work, and then discuss the key features in more detail.

A. Execution manager overview
The basic tasks of the execution manager are as follows:

1) Initiation: A new Volpex job provides the execution
manager with the number of worker processes and the
list of application versions available (e.g. Windows,
Linux, GPU types, etc.). Additional parameters include
total FLOPs (reflecting nominal execution time), FLOPs
between checkpoints, size of checkpoints, memory and
disk requirements, communication bandwidth, etc. The
execution manager starts recruiting hosts for the job by
selectively accepting volunteer hosts that contact the
server. A set of additional hosts are recruited as hot
spares. When sufficient nodes are recruited, application
execution starts simultaneously on all selected nodes;
processes may have two or more replicas at initiation
based on application request and execution manager
policy.

2) Progress: During execution, the hosts create and store
independent checkpoints. The execution manager mon-
itors execution with heartbeats. When a replica dies
or slows down so much that it becomes irrelevant,
additional process replicas are created by activating hot
spares, possibly from a checkpoint. Lagging live replicas
are shut down.



Figure 3 outlines the implementation of the execution
management framework. The BOINC middleware is used for
core execution management tasks such as dispatching binaries
and data files to hosts and verifying and collecting results.
The host selection is implemented as an extension to the
core BOINC scheduler. The Dataspace communication API
is used by the hosts for sending heartbeats and checkpoints,
and by the execution manager to activate or deactivate hosts.
A shared database allows access to information across BOINC
and Volpex Dataspace server boundaries.

Active Node Pool

%@ %@ Scheduling

%® %@ Host selection
<

BOINC Server

Shared DB

Heartbeat
Checkpoint

Volpex DSS

App. Comm.

Activate Host
Terminate Host

Fig. 3. System Execution Framework

B. Host selection

We first discuss the policy for host selection and then the
mechanism for selecting hosts and initiating execution.

Policy: It is important to note that parallel applications
typically make progress at the speed of the slowest process.
The objective is to maximize the minimum performance rather
than maximizing the average performance. We discuss the key
considerations in the host selection policy.

o Computation and storage capacity: Only hosts above a
minimum threshold of CPU capacity, memory storage,
available communication bandwidth, and available disk
capacity are selected. This reduces the probability that
a single host becomes a bottleneck because of limited
system or communication capacity.

o Expected future host availability: When a host fails or be-
comes unavailable, the execution may have to be restarted
from the beginning, or from a previous checkpoint, while
the rest of the hosts are blocked for communication.
Considerable research has reported on the predictability
of host availability in volunteer environments [6, 18, 26].
We have implemented a basic predictor called Lastval
which is simply based on the availability of the host in
the immediate past. This predictor, although very simple,
has been shown to be competitive with the best predictors
in simulations [6].

Mechanisms: Host selection has been implemented by
modifying the basic BOINC scheduling policy. When an
application request is obtained, the runtime system starts
recruiting hosts as they contact the application server. Some

additional hosts are recruited as hot spares. Note that volunteer
computing with BOINC employs a “pull” based policy where
hosts initiate all contact with the server. Hot spares are
recruited ahead of time so that (i) execution does not block
when another host is needed and the BOINC server has to wait
until it is contacted by an appropriate host, and ii) to avoid the
startup time of shipping executables etc. once a replacement
host has to be activated. After a host is recruited, it is provided
with the necessary binaries and data files, and then it contacts
the execution manager, with a Dataspace API call, to request
a process ID. Once sufficient hosts are recruited, execution
is initiated on all hosts, by providing them with process IDs.
Hot spares are denied a process ID, until they are needed.
Depending on the user preferences and policy parameters, one,
two, or more instances of each process may be initiated.

C. Checkpoint and Restart

Volpex design is based on integrated redundancy and check-
point management. The challenges for checkpoint manage-
ment in the Volpex execution environment stem from the
following considerations: i) Volpex processes and process
replicas are distributed and may be in different stages of
execution, ii) there can be a varying number of process
replicas, and iii) checkpointing overhead has to be managed
even though an individual process that issues a checkpoint
does not have the information necessary to make optimal
checkpointing decisions. We discuss how these are addressed
in the Volpex execution environment.

Currently only application level checkpointing is supported,
although system level checkpointing (e.g. [13]) may be sup-
ported in the future. Uncoordinated checkpointing [8] is the
only viable option in a volunteer environment as coordinated
checkpointing [27] requires synchronization of all processes.
Global synchronization to create a checkpoint is especially
impractical when multiple replicas of a process exist and the
objective is for the application execution front to move forward
with the leading replica and to never have to wait for lagging
replicas. Recovery from an uncoordinated checkpoint requires
that re-executed communication calls from past logical exe-
cution states must also receive a logically correct response.
However, this is a central feature of the Dataspace communi-
cation API designed to support redundancy and process restart
from a checkpoint.

Volpex checkpoints are stored on the Dataspace server via
a Put(DataObject) call. While the application issues the calls
to create checkpoints, the execution manager controls the
maximum frequency at which a checkpoint is generated and
stored, in order to prevent the system from being overwhelmed
by excessive checkpoints. Essentially, the execution manager
ignores an application call to checkpoint if sufficient time has
not elapsed since the previous checkpoint.

Recording of checkpointing is also co-operative between
the replicas of a process. A new checkpoint is created and
stored only when it represents meaningful application progress
beyond the most recent recorded checkpoint across replicas.
As replicated processes may be at different stages of execution,



it is inevitable that some process replicas will attempt to check-
point their state after another replica has already recorded
a checkpoint that represents a state further ahead in logical
execution. A checkpoint that represents a state older than the
state represented by the most recent checkpoint in the system
is of no value. Such a checkpoint request is identified as an
obsolete request with a logical timestamp mechanism and the
request to checkpoint is ignored. An important benefit of such
co-operative checkpointing is that the checkpoint frequency for
a process instance decreases as the number of replicas increase.
Also, lagging process replicas will not need to checkpoint at
all.

Finally, a restart is achieved by activating a spare node with
the most recent checkpoint of the process that needs to be
restarted.

D. Runtime process control

Once execution is in progress, the main responsibility of
the Volpex execution environment is to generate new process
instances when needed and terminate process instances that are
not useful for application progress. The default policy followed
by the Volpex execution environment is to maintain the degree
of redundancy with which an application was started. A new
process instance is created when an existing process instance
is dead or obsolete. We first discuss how dead and obsolete
process instances are identified.

a) Dead processes: Every process periodically sends a
heartbeat to the Dataspace server. If several heartbeats are
missed, i.e., no heartbeat is received for a preset period of time,
then the process is considered dead. Note that the reason may
be that the host had a failure, the host process was terminated
due to user activity, or there was a network outage.

b) Obsolete processes: A host may be providing heart-
beats, but for a variety of reasons, it may be making very
slow progress. As a result, it is possible that a process replica
gets so far behind in execution that there is no benefit to the
application in keeping it running. In this case, the process
replica is considered obsolete. Obsolete processes are detected
by a logical timestamp reported with every checkpoint request
that is tracked by the execution manager.

Whenever a process instance is considered dead or obsolete,
it is terminated if possible, and a spare host activated to take
its place. A process instance is terminated by sending a Kill
response to a heartbeat. Note that a dead process may become
alive (a zombie) and send a heartbeat in the future, in which
case it is terminated. The reason for terminating a process
instance is that the host can be used for another application
when healthy.

The creation of a process instance is simply done by
providing the process ID to one of the spare nodes. After
receiving a process ID, a new process automatically checks
for the most recent checkpoint in the system for that process.
If a checkpoint is found, execution starts from that state, else
execution starts from the beginning.

VII. USAGE AND RESULTS

The Volpex Dataspace programming framework has been
implemented, deployed and tested with several benchmarks
and applications. The execution management system is in-
tegrated with the Volpex Dataspace system and the BOINC
scheduler. Experimentation and validation was done on a
volunteer host pool that consists of ordinary internet-connected
desktops as well as compute clusters and lab computers. The
results presented in this paper focus on validating the execution
environment, rather than the overall usage of Volpex. The
following are the specific objectives:

1) To demonstrate that the Volpex execution environment
integrated with the Dataspace API and BOINC scheduler
effectively converts a volunteer node pool to a virtual
cluster capable of executing long running parallel jobs.

2) Evaluate the importance of the execution management
mechanisms, specifically node selection, replication, and
checkpointing, on the performance of parallel programs
executed on a volunteer environment with extensive
experimentation on a real-world testbed.

A. Testbed for experiments

For the results presented in this paper, the codes were
executed on a volunteer environment managed by BOINC
middleware consisting of clusters and desktops from UH
Computer Science Labs, desktops from a UH Physics Lab,
individual volunteer nodes on campus and a substantial num-
ber of volunteer nodes from around the world. The clusters
and lab nodes inside UH are in active use for other tasks
but available to BOINC/Volpex when idle. The most common
configuration of a lab PC was a 1.86GHz Intel x86 processor
with 2GB of memory. Computer science lab PCs were running
Windows XP and most Physics Lab PCs were running Unix.
Our scheduling policy allows only one Volpex process to run
on a node at a given point in time. We verified that virtually
all our experiments employed a mix of on-campus nodes and
volunteer nodes from around the world. We also observed that
on-campus and other nodes were of similar distribution in
terms of execution quality; in particular the best and worst
nodes in terms of execution quality were both a mix of on-
campus nodes and other volunteer nodes.

The Dataspace server and the BOINC server were running
on an AMD Athlon 2.4GHz dual core machine with 2GB
memory running Ubuntu 9.01. The server and on-campus
client nodes were on different subnets that are part of a
100Mbps LAN on UH campus.

B. Applications and benchmarks

Several programs have been developed for the Volpex
environment including a Sieve of Eratosthenes (SoE) program,
a Parallel Sorting by Regular Sampling program and a simple
implementation of Map-Reduce framework. We have also
adapted a Replica Exchange Molecular Dynamics (REMD)
code from an active physics project to run under Volpex. For
this paper, we report results only from the Sieve and REMD
programs, so we describe them in more detail.



Sieve of Eratosthenes (SoE): is a well known algorithm
for finding prime numbers. The Dataspace API was used to
broadcast a block of new prime numbers to all processes in
the parallel implementation.

Replica Exchange for Molecular Dynamics (REMD): is a
real world application used in protein folding research [28].
Each node runs a piece of molecular simulation at a different
temperature using the AMBER program [10]. At certain time
steps, temperature data is exchanged between neighboring
nodes based on the Metropolis criterion, in case a given
parameter is less than or equal to zero. In our implementation
of this code, the dataspace API is used for i) storing process-
temperature mapping, ii) synchronization of the processes
at the end of each step, iii) identification and retrieval of
energy values from neighboring processes, and iv) swapping
of temperatures between processes when needed.

In the REMD experiments we conducted, each temperature
replica' represents a process which starts running simulations
for a certain temperature. At the end of each step, neighboring
temperatures may be exchanged between processes based
on the Metropolis criterion. A snapshot of such exchange
of temperatures is presented in Figure 4, from one of the
experiments. It shows how temperatures are exchanged for an
execution with 10 temperature replicas and 5 steps. In each
step, temperatures that are swapped are highlighted in bold
with the same background pattern.
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Fig. 4. REMD Temperature(K) swaps: 10 temperature replicas for 5 steps

C. Experiments

The SoE and REMD benchmarks were employed for the
experiments that are reported in this paper. All codes were
executed with 32 processes. Only one process instance was
placed on one host, meaning that a total of 32 , 64 or 96
hosts were employed for a degree of replication of 1, 2, and
3, respectively. The nodes available in the environment at
a given time were up to 200. While the processes in both
applications communicate regularly, the volume and frequency
of the communication is relatively low and the computation to
communication ratio is high. For the particular configuration
that was used, the normal run (on good nodes with no failures)
would last just around 100 seconds for SoE while it is around
4.5 hours for REMD. Both the applications were run 10
times in each scenario and the scenarios were constructed

IThe term ‘temperature replica’ has an application specific meaning in the
context of REMD, unrelated to Volpex process replicas.

based on all the combinations of parameters listed below, with
exceptions noted in the description of results. For REMD, all
runs for a single scenario will typically complete in 50 to 100
hours. The number of runs was cut short in one case as the
amount of time being consumed was excessive as is pointed
out in the corresponding discussion.

The execution scenarios were combinations of the following
applications and parameters:

1) REMD and SoE with No replicas, 2 replicas (i.e. 2
process instances) , and 3 replicas.

2) REMD and SoE with and without threshold based node
selection.

3) REMD with a nominal checkpoint interval of 15 mins
and 1 hour.

D. Experimental results

We present a suite of experimental results. Figure 9 shows
the mean, median, and standard deviation for the set of 10
readings for each scenario for REMD, except for the case of
3 replicas. We now present graphs showing individual results
from 10 execution runs with one scenario for one program. As
expected for a volunteer environment, the results sometimes
vary dramatically from run to run.

Impact of replication: Figure 5 presents experimental re-
sults for SoE and REMD when executed with no replication,
2 replicas per process and 3 replicas per process. No host
selection was employed and a fixed checkpoint interval of
15 minutes was used for REMD (checkpointing does not
apply for SoE). It is clear from the figure that employing
replication has a dramatically positive impact on the execution
time and the variability of the execution time. However,
increasing the degree of replication from 2 to 3 does not
have a significant positive or negative effect. The impact of
replication is qualitatively similar for SOE and REMD although
the relative difference is higher for the shorter running SoE.

Impact of host selection: Figure 6 presents experimental
results for SoOE and REMD when executed with and with-
out replication, and with and without host selection. When
replication is employed, the degree of replication is 2. A
checkpoint interval of 15 minutes was used for REMD, with
no checkpointing for SoE.

It can be seen from that figure that host selection improves
the performance for both the programs. Node selection has a
substantial positive effect on performance when no replication
is used and reduces the range of execution times significantly.
Now we focus on the following cases in relation to each other:
node selection alone, replication alone, and node selection and
replication together. It is difficult to visually tell the difference
from the graph so we focus on the table in Figure 9. We
note that the mean and the standard deviation are the highest
for node selection alone (16.3,2.4), followed by replication
alone(15.9, 0.7) followed by both (14.8, 0.11). The unit is
1000s of seconds. The overall conclusion is that both node
selection and replication have a substantial positive effect
individually and their cumulative effect is a small but clear
improvement over using either one of them alone. Of the two,
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replication has a slightly stronger impact in terms of reducing
the magnitude and variance of execution time.
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Fig. 7. REMD with different checkpoint intervals

Impact of Checkpoint interval: Experiments shown in Fig-
ure 7 were done for REMD without replication or host selec-

tion and the checkpoint intervals of 15 minutes and 1 hour. For
the latter case, the execution times were consistently very high,
more than 14 hours for each run when the nominal runtime was
around 4.5 hours. The full set of experiments was abandoned
after 3 runs. The reason is that a single host failure can lead to
a delay around 1 hour and we certainly expect many failures
in an execution. Clearly a well chosen checkpoint interval is
very important in a volunteer environment, especially if good
node selection and replication is not available.

Figure 8 examines the impact of the checkpoint interval
value when there is replication, with two replicas per process.
The cases with and without host selection are covered. All
the lines in the graph seem close to each other, so it appears
that in the presence of replication, making checkpointing less
frequent has a very small effect. By looking closely at Figure 9
we observe that the mean execution time does not change in
any meaningful way when the checkpoint interval increases
from 15 mins to 60 mins. The standard deviation of execution



time increases very slightly when the checkpoint interval is
increased from 15 mins to 60 mins; from .11 to .33 for
the case with host selection and from 0.7 to 1.1 for the
case with no host selection; the unit is 1000s of seconds.
However, these are very small changes so the observation is
that the execution time is virtually unaffected with increased
checkpoint interval when replication is deployed. Another way
to interpret the result is that replication allows us to have a
longer checkpointing interval with no negative impact. For
REMD, the size of the checkpoints is very small as only the
execution parameters (like energy, temperature) need to be
restored. An application with large footprint checkpoints could
benefit significantly with a reduced frequency of checkpoints
made possible by host selection and replication.
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Fig. 8. REMD with checkpoints of 15 and 60 mins, with and without host
selection. There is replication of degree 2 in all cases

VIII. DISCUSSION

The experimental results clearly demonstrate that mean-
ingful execution of long running parallel jobs in a volun-
teer environment is possible only with some combination of
host selection, replication, and checkpointing. Application of
multiple techniques yields more benefits than employing a
single method, but the additional benefits are minimal in some
cases. Checkpointing interval is not a critical issue when host
selection and/or replication are also deployed. Host selection
and replication are important even when checkpointing is used.
As compared to host selection, replication seems to have a
slightly higher beneficial effect.

The experiments represent over a month of execution on
a real volunteer testbed. While the evaluation is still limited,
the results provide significant insight into performance of other
applications and on larger testbeds. We also note that different
methods have different costs; replication doubles the resources
that are used, node selection limits the number of nodes that
are useful, and checkpointing can be expensive with the cost
being strongly application specific.

Following are some of the directions of future work in this
project:

o Further analysis of the impact of the techniques dis-

cussed. This will include experiments with a larger suite

of applications, a larger set of parameters such as check-
point intervals, and a larger testbed and application size.

o Evaluating the impact of more sophisticated scheduling
and host selection schemes that identify and benefit from
long range host availability patterns.

o Enhancing the execution framework to identify and cor-
rect Byzantine faults caused by hardware/software errors
or by hackers.

o Full automation of checkpointing and replication, such
that the checkpointing interval and the degree of redun-
dancy are optimized dynamically during execution.

o Migration of a suite of parallel scientific codes to use
volunteer computing with Volpex and BOINC.

IX. CONCLUSIONS

The central contribution of this paper is an execution
environment that is able to effectively convert a volunteer PC
grid into a virtual cluster for the execution of communicating
parallel applications. Replication, checkpointing and host se-
lection are combined and integrated in new ways to meet the
daunting challenge of effective parallel execution on failure
prone and heterogeneous nodes with dynamically changing
execution behavior. Key innovations include fully autonomous
replicas, unified replication and checkpointing, co-operative
checkpointing across process replicas, hot spares for quick
restarts, termination and restart of lagging processes, and high
level user control over resource and performance tradeoffs.
This work provides the first implementation and evaluation
of the combination of these methods for volunteer computing
with a real-life testbed. The system has been integrated with
BOINC middleware to provide, to the best of our knowledge,
the first comprehensive solution to the reliable execution of
general parallel programs on volunteer nodes. The principles
and methods developed in this work are applicable to other
heterogeneous environments including computation clouds.

This research enables the use of volunteer computing to a
significantly broader class of scientific codes than the state-of-
the-art. The work also represents an actual execution platform
that is free and freely available to scientists. We hope that this
publication will serve as a medium for the scientists to contact
us to deploy Volpex to achieve their scientific goals.
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