Chapter 2

Number Systems, Arithmetic, and Code

Positional number systems

- What is the underlying principle?
- Can you find an example of a number system that is not positional?
- What are the reasons for using different bases?

Notational convention

- 234.16
 - $= 2 \times 100 + 3 \times 10 + 4 \times 1 + 1 \times 0.1 + 6 \times 0.01$ $= 2 \times 10^{2} + 3 \times 10^{1} + 4 \times 10^{0} + 1 \times 10^{-1} + 6 \times 10^{-2}$

Basic arithmetic operations

- The basic operations are addition, subtraction, multiplication, and division.
- They are very similar for positional number systems with different bases.
- Solutions to any computational problems to be solved on a computer must be expressed in terms of these operations.

Methods of number conversion

- Polynomial method
- Iterative method
- Special conversion method

Signed numbers

- sign and magnitude
- r's-complement
- (r-1)'s complement

Graphical interpretation of complements

Subtraction

- Shown below are the steps involved in performing M-N through complementation and addition.
- Here M and N are unsigned numbers.

	(r-1)'s complement	r's complement
Definition: given N with n digits	(r ⁿ - 1) - N	r ⁿ - N

	(r-1)'s complement	r's complement
Computation involved in obtaining the complement	digitwise (bitwise) complementation	digitwise (bitwise) complementation + 1

	(r-1)'s complement	r's complement
Number of zero	two (+0 and -0)	one

	(r-1)'s complement	r's complement
Subtraction operation	$M - N \to M + (r^{n}-1) - N$ = r ⁿ + M - N - 1 = (r ⁿ - 1) - (N - M)	$M - N \rightarrow M + r^{n} - N$ $= r^{n} + M - N$ $= r^{n} - (N - M)$

	(r-1)'s complement	r's complement
If M > N	$M-N \rightarrow r^{n} + M - N - 1$ <i>What will happen?</i> There is a carry. <i>How to produce M-N?</i> (1) Subtract r^{n} by discarding the carry. (2) Add 1 to it.	$M - N \rightarrow M + r^n - N$ <i>What will happen?</i> There is a carry. <i>How to produce M-N?</i> Subtract r^n by discarding the carry.

	(r-1)'s complement	r's complement
	M - N \rightarrow (r ⁿ -1) - (N -M) What will happen? There is no carry.	M - N \rightarrow r ⁿ - (N-M) What will happen? There is no carry.
	How to produce M-N (in sign-and-magnitude)?	How to produce M-N (in sign- and-magnitude)?
if M < N	The result is negative and in (r-1)'s complement.	The result is negative and in r's complement.
	 (1) Perform (r-1)'s complement to obtain (N-M). (2) P. G. it it 	(1) Perform r's complement (i.e.,(r-1)'s complement plus 1) toobtain (N-M).
	(2) Prefix it with a minus sign to indicate that it is negative.	(2) Prefix it with a minus sign to indicate that it is negative.

	(r-1)'s complement	r's complement
if M = N	$M-N \rightarrow r^n + M - N - 1$ <i>What will happen?</i> There is no carry. <i>How to produce M-N?</i> It is treated as if M <n, producing a "-0" as the result.</n, 	$M - N \rightarrow M + r^n - N$ <i>What will happen?</i> There is a carry. <i>How to produce M-N?</i> It is treated as if M>N, producing a "0" as the result.

$\underline{b_3b_2b_1b_0}$	sign and mag.	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

Interpretation of four-bit signed binary integers

J. C. Huang, 2003

Digital Logic Design

The use of 2's complement

- In practice, signed numbers are always represented by 2's complements because then there is only one zero.
- Existence of more than one zero leads to complication in programming.

Examples of 1's complement addition

Examples of 2's complement addition

	(+ 5) - (+ 2)	$\begin{array}{r} 0 \ 1 \ 0 \ 1 \\ - \ 0 \ 0 \ 1 \ 0 \end{array}$	\Rightarrow	$\begin{array}{r} 0 \ 1 \ 0 \ 1 \\ + \ 1 \ 1 \ 1 \ 0 \end{array}$
	(+3)			1 0 0 1 1
	(-5) - (+ 2) (-7)	$ \begin{array}{r} 1 \ 0 \ 1 \ 1 \\ - \ 0 \ 0 \ 1 \ 0 \\ \end{array} $	\Rightarrow	$ \begin{array}{r} 1 \ 0 \ 1 \ 1 \\ + \ 1 \ 1 \ 1 \ 0 \\ \hline 1 \ 1 \ 0 \ 0 \ 1 \end{array} $
				ignore
	(+ 5) - (-2)	$\begin{array}{r} 0 \ 1 \ 0 \ 1 \\ - \ 1 \ 1 \ 1 \ 0 \end{array}$	=>	$\begin{array}{r} 0 \ 1 \ 0 \ 1 \\ + \ 0 \ 0 \ 1 \ 0 \end{array}$
	(+7)			0111
	(-5) - (-2)	$\begin{array}{r} 1 \ 0 \ 1 \ 1 \\ - \ 1 \ 1 \ 1 \ 0 \end{array}$	⇒	$\begin{array}{r} 1 \ 0 \ 1 \ 1 \\ + \ 0 \ 0 \ 1 \ 0 \end{array}$
	(-3)			1 1 0 1
	Exa	amples of 2's	compleme	ent subtraction
003	Digital Logic Design			

J. C. Huang, 2003

Digital Logic Design

Overflow

- In adding two binary numbers, an *overflow* condition is said to occur if the resulting sum requires more bits than are available.
- Let x be the carry into the sign-bit position and y be the carry from the sign-bit position, then there is an overflow if and only if $x \oplus y = 1$.

(+7) + (+2) (+9)	$ \begin{array}{r} 0 \ 1 \ 1 \ 1 \\ + \ 0 \ 0 \ 1 \ 0 \\ \hline 1 \ 0 \ 0 \ 1 \\ c_4 = 0 \\ c_3 = 1 \end{array} $	(-7) + (+ 2) (-5)	$ \begin{array}{r} 1 \ 0 \ 0 \ 1 \\ + \ 0 \ 0 \ 1 \ 0 \\ \hline 1 \ 0 \ 1 \ 1 \\ c_4 = 0 \\ c_3 = 0 \end{array} $
(+7) + (-2) (+5)	$0 1 1 1 \\ + 1 1 1 0 \\ 1 0 1 0 1 \\ c_4 = 1 \\ c_3 = 1$	(-7) + (-2) (-9)	$ \begin{array}{r} 1 \ 0 \ 0 \ 1 \\ + \ 1 \ 1 \ 1 \ 0 \\ \hline \hline 1 \ 0 \ 1 \ 1 \ 1 \\ c_4 = 1 \\ c_3 = 0 \end{array} $

There is an overflow if $c_3 \oplus c_4 = 1$

Examples of determination of overflow

Digital Logic Design

Decimal codes

- Weighted decimal codes
- Non-weighted decimal codes
- Bar codes

Weighted decimal codes

decimal digit	8421 code (BCD)	2421 code	5421 code	7536 code	biquinary code 5043210
0	0000	0000	0000	0000	0100001
1	0001	0001	0001	1001	0100010
2	0010	0010	0010	0111	0100100
3	0011	0011	0011	0010	0101000
4	0100	0100	0100	1011	0110000
5	0101	1011	1000	0100	1000001
6	0110	1100	1001	1101	1000010
7	0111	1101	1010	1000	1000100
8	1000	1110	1011	0110	1001000
9	1001	1111	1100	1111	1010000

Nonweighted decimal codes

decimal digit	excess-3 code	2-out-of-5 code
0	0011	11000
1	0100	00011
2	0101	00101
3	0110	00110
4	0111	01001
5	1000	01010
6	1001	01100
7	1010	10001
8	1011	10010
9	1100	10100

US Postal Service bar code (2 out of 5)

Gray code (a unit distance code)

decimal number	Gray code
0	000
1	001
2	011
3	010
4	110
5	111
6	101
7	100

Angular position encoders

The effects of misaligned sensors on the encoders

J. C. Huang, 2003

Digital Logic Design

29

Alphanumeric Codes

- ASCII code
- Unicode Standard

Error detection

- A parity bit can be used to detect single-bit errors.
- Additional parity bits can be used to detect multiple errors.

Examples of ASCII code with parity bit

characters	with even parity	with odd parity
•	•	•
	•	•
	•	•
A	1000010	10000011
В	10000100	10000101
C	10000111	10000110
D	10001000	10001001
	•	•
•	•	•
	•	•

Error correction

- Hamming code
- Use of check-sum digits

Hamming code

- Hamming code is an error-detection and errorcorrection binary code.
- A single-bit error can be automatically corrected if we can determine which bit is in error.
- A single-bit error can be detected by using a parity bit.
- Multiple parity bits can be used to pinpoint the bit in error.

Hamming code

Example

For example, to construct the Hamming code of 00101110

Use	\mathbf{P}_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D ₁₀	D ₁₁	D ₁₂
			0		0	1	0		1	1	1	0
Scope of P ₁	\checkmark				\checkmark		\checkmark		\checkmark		\checkmark	
Scope of P ₂		\checkmark	\checkmark			\checkmark	\checkmark				\checkmark	
Scope of P ₄				\checkmark	\checkmark	\checkmark	\checkmark					
Scope of P ₈								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Bit position	1	2	3	4	5	6	7	8	9	10	11	12

Choose 0 for P_1 (assuming the use of even parity)

Use	P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D ₁₀	D ₁₁	D ₁₂
	0		0		0	1	0		1	1	1	0
Scope of P ₁	\checkmark				\checkmark		\checkmark		\checkmark		\checkmark	
Scope of P ₂		\checkmark				\checkmark	\checkmark				\checkmark	
Scope of P ₄				\checkmark	\checkmark	\checkmark	\checkmark					
Scope of P ₈								\checkmark	\checkmark	\checkmark	\checkmark	
Bit position	1	2	3	4	5	6	7	8	9	10	11	12

Choose 1 for P_2

Use	P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D ₁₀	D ₁₁	D ₁₂
	0	1	0		0	1	0		1	1	1	0
Scope of P ₁	\checkmark		\checkmark									
Scope of P ₂		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark	
Scope of P ₄				\checkmark	\checkmark	\checkmark	\checkmark					
Scope of P ₈								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Bit position	1	2	3	4	5	6	7	8	9	10	11	12

Choose 1 for P₄

Use	\mathbf{P}_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D ₁₁	D ₁₂
	0	1	0	1	0	1	0		1	1	1	0
Scope of P ₁	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark	
Scope of P ₂		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark	
Scope of P ₄				\checkmark	\checkmark	\checkmark	\checkmark					
Scope of P ₈								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Bit position	1	2	3	4	5	6	7	8	9	10	11	12

Choose 1 for P₈

Use	P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D ₁₁	D ₁₂
	0	1	0	1	0	1	0	1	1	1	1	0
Scope of P ₁	\checkmark		\checkmark									
Scope of P ₂		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark	
Scope of P ₄				\checkmark	\checkmark	\checkmark	\checkmark					
Scope of P ₈								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Bit position	1	2	3	4	5	6	7	8	9	10	11	12

General properties of Hamming code

- It can be used for any code words with m information bits. It uses k parity bits such that m ≤ 2^k - k - 1.
- By adding an additional parity bit to a Hamming code, we will be able to achieve single-error correction and double-error detection.

Check sum digit is inserted to satisfy the relation: ZIP digit sum + check sum digit = 0 modulo 10 to make error correction possible. (Error detection is achieved by using the 2-out-of-5 code of individual digit)

