
Chapter 2

Number Systems, Arithmetic, and
Code

J. C. Huang, 2003 Digital Logic Design 1

Positional number systems

• What is the underlying principle?
• Can you find an example of a number

system that is not positional?
• What are the reasons for using different

bases?

J. C. Huang, 2003 Digital Logic Design 2

Notational convention

• 234.16
= 2 × 100 + 3 × 10 + 4 × 1 + 1 × 0.1 + 6 × 0.01
= 2 × 102 + 3 × 101 + 4 × 100 + 1 × 10-1 + 6 × 10-2

J. C. Huang, 2003 Digital Logic Design 3

Basic arithmetic operations

• The basic operations are addition,
subtraction, multiplication, and division.

• They are very similar for positional number
systems with different bases.

• Solutions to any computational problems to
be solved on a computer must be expressed
in terms of these operations.

J. C. Huang, 2003 Digital Logic Design 4

Methods of number conversion

• Polynomial method
• Iterative method
• Special conversion method

J. C. Huang, 2003 Digital Logic Design 5

Signed numbers

• sign and magnitude
• r’s-complement
• (r-1)’s complement

J. C. Huang, 2003 Digital Logic Design 6

Graphical
interpretation
of
sign-magnitude
numbers

J. C. Huang, 2003 Digital Logic Design 7

Graphical interpretation of complements

J. C. Huang, 2003 Digital Logic Design 8

Subtraction

• Shown below are the steps involved in
performing M-N through complementation
and addition.

• Here M and N are unsigned numbers.

J. C. Huang, 2003 Digital Logic Design 9

(r-1)’s vs. r’s complement

rn - N(rn - 1) - N
Definition:

given N with
n digits

r's complement(r-1)'s complement

J. C. Huang, 2003 Digital Logic Design 10

(r-1)’s vs. r’s complement

digitwise (bitwise)
complementation + 1

digitwise (bitwise)
complementation

Computation
involved in

obtaining the
complement

r's complement(r-1)'s complement

J. C. Huang, 2003 Digital Logic Design 11

(r-1)’s vs. r’s complement

onetwo (+0 and -0)Number of
zero

r's complement(r-1)'s complement

J. C. Huang, 2003 Digital Logic Design 12

(r-1)’s vs. r’s complement

M - N → M + rn - N
= rn + M - N
= rn - (N - M)

M - N → M + (rn-1) - N
= rn + M - N - 1
= (rn - 1) - (N - M)

Subtraction
operation

r's complement(r-1)'s complement

J. C. Huang, 2003 Digital Logic Design 13

(r-1)’s vs. r’s complement

M - N → M + rn - N
What will happen?
There is a carry.
How to produce M-N?
Subtract rn by
discarding the carry.

M-N → rn + M - N - 1
What will happen?
There is a carry.
How to produce M-N?
(1) Subtract rn by
discarding the carry.
(2) Add 1 to it.

If M > N

r's complement(r-1)'s complement

J. C. Huang, 2003 Digital Logic Design 14

(r-1)’s vs. r’s complement

M - N → rn - (N-M)
What will happen? There is no
carry.

How to produce M-N (in sign-
and-magnitude)?
The result is negative and in r's
complement.
(1) Perform r's complement (i.e.,
(r-1)'s complement plus 1) to
obtain (N-M).
(2) Prefix it with a minus sign to
indicate that it is negative.

M - N → (rn-1) - (N -M)
What will happen? There is
no carry.

How to produce M-N (in
sign-and-magnitude)?
The result is negative and in (r-
1)'s complement.
(1) Perform (r-1)'s complement to
obtain (N-M).
(2) Prefix it with a minus sign to
indicate that it is negative.

if M < N

r's complement(r-1)'s complement

J. C. Huang, 2003 Digital Logic Design 15

(r-1)’s vs. r’s complement

M - N → M + rn - N
What will happen?
There is a carry.
How to produce M-N?
It is treated as if M>N,
producing a "0" as the
result.

M-N → rn + M - N - 1
What will happen?
There is no carry.
How to produce M-N?
It is treated as if M<N,
producing a "-0" as the
result.

if M = N

r's complement(r-1)'s complement

J. C. Huang, 2003 Digital Logic Design 16

Interpretation of four-bit signed binary integers

b3b2b1b0 sign and mag. 1's complement 2's complement

0111 +7 +7 +7
0110 +6 +6 +6
0101 +5 +5 +5
0100 +4 +4 +4
0011 +3 +3 +3
0010 +2 +2 +2
0001 +1 +1 +1
0000 +0 +0 +0
1000 -0 -7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 -4 -3 -4
1101 -5 -2 -3
1110 -6 -1 -2
1111 -7 -0 -1

J. C. Huang, 2003 Digital Logic Design 17

The use of 2’s complement

• In practice, signed numbers are always
represented by 2’s complements because
then there is only one zero.

• Existence of more than one zero leads to
complication in programming.

J. C. Huang, 2003 Digital Logic Design 18

2
5–()

Examples of 1’s complement addition

+ 0 0 1 0
1 0 1 0

+ 0 0 1 0
0 1 0 15+()

2+()+ +()+
0 1 1 1 1 1 0 0-(3)7+()

+ 1 1 0 1+ 1 1 0 1
0 1 0 1 1 0 1 05+()

2
5–()

7–()
2)

0 1 1 11
1

0 0 1 01
1

0 0 1 1 1 0 0 0

+ –(+ –()
3+()

J. C. Huang, 2003 Digital Logic Design 19

5+()
2+

7+()

5+()
2–()

2+
5–()

3–()

5–()
+ 2–()

1 0 1 1

Examples of 2’s complement addition

++ 0 0 1 0
0 1 0 1

1 1 0 1

0 0 1 0

0 1 1 1

++ 1 1 1 0

1 0 0 1

1 0 1 1
1 1 1 0

0 0 1 1

0 1 0 1

11

ignore

()+ ()+

+

–(7)3+()

ignore

J. C. Huang, 2003 Digital Logic Design 20

5+()
2+()

3+()

–

–

5+()
–

5–()

7–()

2+()

2–()

Examples of 2’s complement subtraction
1 1 0 13–()

– 0 0 1 0
0 1 0 1

+ 1 1 1 0
0 1 0 1

1 0 0 1 1

ignore

– 0 0 1 0
1 0 1 1

+ 1 1 1 0
1 0 1 1

1 1 0 0 1

ignore

– 1 1 1 0
0 1 0 1

+ 0 0 1 0
0 1 0 1

0 1 1 17+()

– 1 1 1 0
1 0 1 1

– 2–()
5–()

+ 0 0 1 0
1 0 1 1

J. C. Huang, 2003 Digital Logic Design 21

Overflow

• In adding two binary numbers, an overflow
condition is said to occur if the resulting
sum requires more bits than are available.

• Let x be the carry into the sign-bit position
and y be the carry from the sign-bit
position, then there is an overflow if and
only if x ⊕ y = 1.

J. C. Huang, 2003 Digital Logic Design 22

1 0 0 1

Examples of determination of overflow

++ 0 0 1 0
0 1 1 1

1 0 1 1

0 0 1 0

1 0 0 1

7
2

+()
+ 2+

7–()
()+ ()+

5)–(9+()
c4
c3

=
=

0
1

c4
c3

=
=

0
0

++ 1 1 1 0
0 1 1 1 1 0 0 1

0 1 1 1

1 1 1 0

0 1 0 1

7
2

+()
–

7–()
–()

5+()

+ () + 2

1 1–(9)
c4
c3

c4
c3

=
=

1
1

=
=

1
0

There is an overflow if c3 ⊕ c4 = 1

J. C. Huang, 2003 Digital Logic Design 23

Decimal codes

• Weighted decimal codes
• Non-weighted decimal codes
• Bar codes

J. C. Huang, 2003 Digital Logic Design 24

Weighted decimal codes

0100001
0100010
0100100
0101000
0110000
1000001
1000010
1000100
1001000
1010000

0000
1001
0111
0010
1011
0100
1101
1000
0110
1111

0000
0001
0010
0011
0100
1000
1001
1010
1011
1100

0000
0001
0010
0011
0100
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

0
1
2
3
4
5
6
7
8
9

biquinary
code

5043210

7536
code

5421
code

2421
code

8421
code

(BCD)

decimal
digit

J. C. Huang, 2003 Digital Logic Design 25

Nonweighted decimal codes

11000
00011
00101
00110
01001
01010
01100
10001
10010
10100

0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

0
1
2
3
4
5
6
7
8
9

2-out-of-5 codeexcess-3 codedecimal digit

J. C. Huang, 2003 Digital Logic Design 26

US Postal Service bar code (2 out of 5)

J. C. Huang, 2003 Digital Logic Design 27

Gray code (a unit distance code)

000
001
011
010
110
111
101
100

0
1
2
3
4
5
6
7

Gray codedecimal number

J. C. Huang, 2003 Digital Logic Design 28

Angular position encoders

Gray codeconventional binary

J. C. Huang, 2003 Digital Logic Design 29

The effects of misaligned sensors on the encoders

J. C. Huang, 2003 Digital Logic Design 30

Alphanumeric Codes

• ASCII code
• Unicode Standard

J. C. Huang, 2003 Digital Logic Design 31

Error detection

• A parity bit can be used to detect single-bit
errors.

• Additional parity bits can be used to detect
multiple errors.

J. C. Huang, 2003 Digital Logic Design 32

Examples of ASCII code with parity bit

.

.

.
10000011
10000101
10000110
10001001

.

.

.

.

.

.
10000010
10000100
10000111
10001000

.

.

.

.

.

.
A
B
C
D
.
.
.

with odd paritywith even paritycharacters

J. C. Huang, 2003 Digital Logic Design 33

Error correction

• Hamming code
• Use of check-sum digits

J. C. Huang, 2003 Digital Logic Design 34

Hamming code

• Hamming code is an error-detection and error-
correction binary code.

• A single-bit error can be automatically corrected if
we can determine which bit is in error.

• A single-bit error can be detected by using a parity
bit.

• Multiple parity bits can be used to pinpoint the bit
in error.

J. C. Huang, 2003 Digital Logic Design 35

Hamming code

Bit position 1 2 3 4 5 6 7 8 9 10 11 12

Use P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

Scope of P1 √ √ √ √ √ √

Scope of P2 √ √ √ √ √ √

Scope of P4 √ √ √ √ √

Scope of P8 √ √ √ √ √

J. C. Huang, 2003 Digital Logic Design 36

Example

For example, to cons truct the Hamming code of 00101110

Use P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

0 0 1 0 1 1 1 0

Scope of P1 √ √ √ √ √ √

Scope of P2 √ √ √ √ √ √

Scope of P4 √ √ √ √ √

Scope of P8 √ √ √ √ √

Bit position 1 2 3 4 5 6 7 8 9 10 11 12

J. C. Huang, 2003 Digital Logic Design 37

Example (continued)

Choose 0 for P1 (assuming the use of even parity)

Use P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

0 0 0 1 0 1 1 1 0

Scope of P1 √ √ √ √ √ √

Scope of P2 √ √ √ √ √ √

Scope of P4 √ √ √ √ √

Scope of P8 √ √ √ √ √

Bit position 1 2 3 4 5 6 7 8 9 10 11 12

J. C. Huang, 2003 Digital Logic Design 38

Example (continued)

Choose 1 for P2

Use P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

0 1 0 0 1 0 1 1 1 0

Scope of P1 √ √ √ √ √ √

Scope of P2 √ √ √ √ √ √

Scope of P4 √ √ √ √ √

Scope of P8 √ √ √ √ √

Bit position 1 2 3 4 5 6 7 8 9 10 11 12

J. C. Huang, 2003 Digital Logic Design 39

Example (continued)

Choose 1 for P4

Use P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

0 1 0 1 0 1 0 1 1 1 0

Scope of P1 √ √ √ √ √ √

Scope of P2 √ √ √ √ √ √

Scope of P4 √ √ √ √ √

Scope of P8 √ √ √ √ √

Bit position 1 2 3 4 5 6 7 8 9 10 11 12

J. C. Huang, 2003 Digital Logic Design 40

Example (continued)

Choose 1 for P8

Use P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

0 1 0 1 0 1 0 1 1 1 1 0

Scope of P1 √ √ √ √ √ √

Scope of P2 √ √ √ √ √ √

Scope of P4 √ √ √ √ √

Scope of P8 √ √ √ √ √

Bit position 1 2 3 4 5 6 7 8 9 10 11 12

J. C. Huang, 2003 Digital Logic Design 41

General properties of Hamming code

• It can be used for any code words with m
information bits. It uses k parity bits such
that m ≤ 2k - k - 1.

• By adding an additional parity bit to a
Hamming code, we will be able to achieve
single-error correction and double-error
detection.

J. C. Huang, 2003 Digital Logic Design 42

Check sum digit is inserted to satisfy the relation:
ZIP digit sum + check sum digit = 0 modulo 10

to make error correction possible. (Error detection is
achieved by using the 2-out-of-5 code of individual digit)

	Chapter 2
	Positional number systems
	Notational convention
	Basic arithmetic operations
	Methods of number conversion
	Signed numbers
	Subtraction
	(r-1)’s vs. r’s complement
	(r-1)’s vs. r’s complement
	(r-1)’s vs. r’s complement
	(r-1)’s vs. r’s complement
	(r-1)’s vs. r’s complement
	(r-1)’s vs. r’s complement
	(r-1)’s vs. r’s complement
	The use of 2’s complement
	Overflow
	Decimal codes
	Alphanumeric Codes
	Error detection
	Error correction
	Hamming code
	General properties of Hamming code

