Chapter 2

Number Systems, Arithmetic, and Code

Positional number systems

- What is the underlying principle?
- Can you find an example of a number system that is not positional?
- What are the reasons for using different bases?

Notational convention

- 234.16

$$
\begin{aligned}
& =2 \times 100+3 \times 10+4 \times 1+1 \times 0.1+6 \times 0.01 \\
& =2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0}+1 \times 10^{-1}+6 \times 10^{-2}
\end{aligned}
$$

Basic arithmetic operations

- The basic operations are addition, subtraction, multiplication, and division.
- They are very similar for positional number systems with different bases.
- Solutions to any computational problems to be solved on a computer must be expressed in terms of these operations.

Methods of number conversion

- Polynomial method
- Iterative method
- Special conversion method

Signed numbers

- sign and magnitude
- r's-complement
- (r-1)'s complement

Graphical interpretation of complements

Offset origin True origin

Subtraction

- Shown below are the steps involved in performing M-N through complementation and addition.
- Here M and N are unsigned numbers.

(r-1)'s vs. r's complement

	$(\mathrm{r}-1)^{\prime}$'s complement	r's complement
Definition: given N with n digits	$\left(\mathrm{r}^{\mathrm{n}}-1\right)-\mathrm{N}$	

(r-1)'s vs. r's complement

	(r-1)'s complement	r's complement
Computation involved in obtaining the complement	digitwise (bitwise) complementation	digitwise (bitwise) complementation +1

(r-1)'s vs. r's complement

	$(\mathrm{r}-1)$'s complement	r's complement
Number of zero	two (+0 and -0$)$	one

(r-1)'s vs. r's complement

	(r-1)'s complement	r's complement
Subtraction operation	$\begin{aligned} M & -N \rightarrow M+\left(r^{n}-1\right)-N \\ & =r^{n}+M-N-1 \\ & =\left(r^{n}-1\right)-(N-M) \end{aligned}$	$\begin{gathered} M-N \rightarrow M+r^{n}-N \\ =r^{n}+M-N \\ =r^{n}-(N-M) \end{gathered}$

(r-1)'s vs. r's complement

	$(\mathrm{r}-1)$'s complement	r's complement
	$\mathrm{M}-\mathrm{N} \rightarrow \mathrm{r}^{\mathrm{n}}+\mathrm{M}-\mathrm{N}-1$	
What will happen?	$\mathrm{M}-\mathrm{N} \rightarrow \mathrm{M}+\mathrm{r}^{\mathrm{n}}-\mathrm{N}$	
If $\mathrm{M}>\mathrm{N}$	What will happen? How is a carry. (1) Subtract r^{n} by discarding the carry. (2) Add 1 to it.	There is a carry. How to produce $M-N ?$ Subtract r^{n} by discarding the carry.

(r-1)'s vs. r's complement

	(r-1)'s complement	r's complement
if $\mathrm{M}<\mathrm{N}$	$\mathrm{M}-\mathrm{N} \rightarrow\left(\mathrm{r}^{\mathrm{n}}-1\right)-(\mathrm{N}-\mathrm{M})$ What will happen? There is no carry. How to produce $M-N$ (in sign-and-magnitude)? The result is negative and in (r1)'s complement. (1) Perform (r-1)'s complement to obtain (N-M). (2) Prefix it with a minus sign to indicate that it is negative.	$\mathrm{M}-\mathrm{N} \rightarrow \mathrm{r}^{\mathrm{n}}-(\mathrm{N}-\mathrm{M})$ What will happen? There is no carry. How to produce $M-N$ (in sign-and-magnitude)? The result is negative and in r's complement. (1) Perform r's complement (i.e., (r-1)'s complement plus 1) to obtain (N-M). (2) Prefix it with a minus sign to indicate that it is negative.

(r-1)'s vs. r's complement

	$(\mathrm{r}-1)$'s complement	r 's complement
	$\mathrm{M}-\mathrm{N} \rightarrow \mathrm{r}^{\mathrm{n}}+\mathrm{M}-\mathrm{N}-1$ What will happen?	$\mathrm{M}-\mathrm{N} \rightarrow \mathrm{M}+\mathrm{r}^{\mathrm{n}}-\mathrm{N}$
if $\mathrm{M}=\mathrm{N}$	There is no carry. How to produce $M-\mathrm{N} ?$ It is treated as if $\mathrm{M}<\mathrm{N}$, producing a "-0" as the result.	There is a carry. How to produce $M-N ?$ It is treated as if $\mathrm{M}>\mathrm{N}$, producing a "0" as the result.

Interpretation of four-bit signed binary integers

$\underline{\mathrm{b}}_{3} \underline{\mathrm{~b}}_{2} \underline{b}_{1} \underline{b}_{0} \underline{b}^{2}$	sign and mag.	1's complement	2's complement
0111			
0110	+7	+7	+7
0101	+6	+6	+6
0100	+5	+5	+5
0011	+4	+4	+4
0010	+3	+3	+3
0001	+2	+2	+2
0000	+1	+1	+1
1000	+0	+0	+0
1001	-0	-7	-8
1010	-1	-6	-7
1011	-2	-5	-6
1100	-3	-4	-5
1101	-4	-3	-4
1110	-5	-2	-3
1111	-6	-1	-2

The use of 2's complement

- In practice, signed numbers are always represented by 2's complements because then there is only one zero.
- Existence of more than one zero leads to complication in programming.

Examples of 1's complement addition

$(+5)$
$+(+2)$
$(+7)$
---:
+0010
0111

$(+5)$
$+\quad(-2)$
$(+3)$
---:
+1110

ignore

(-5)
$+(+2)$
(-3)
---:
$+\quad 0010$
1101

Examples of 2's complement addition

(+5)	0101	0101
$\underline{-(-2)}$	-1110	+0010
(+7)		0111
(-5)	1011	1011
$\underline{-(-2)}$	-1110	+0010
(-3)		1101

Examples of 2's complement subtraction

Overflow

- In adding two binary numbers, an overflow condition is said to occur if the resulting sum requires more bits than are available.
- Let x be the carry into the sign-bit position and y be the carry from the sign-bit position, then there is an overflow if and only if $\mathrm{x} \oplus \mathrm{y}=1$.

| $(+7)$ |
| ---: | :--- |
| $+(+2)$ |
| $(+9)$ |\quad| 0111 |
| ---: |
| $+\quad 0010$ |\quad| 1001 |
| :--- |
| $c_{4}=$ |
| $c_{3}=$ |

(-7)
$+(+2)$
(-5)
---:
+0010
1011

$$
c_{4}=0
$$

$$
c_{4}=0
$$

$$
c_{3}=1
$$

$$
c_{3}=0
$$

| $(+7)$ |
| ---: | :--- |
| $+(-2)$ |
| $(+5)$ |\quad| 0 | 1111 |
| ---: | :--- |
| + | 1110 |
| | 10101 |
| c_{4} | $=1$ |
| c_{3} | $=1$ |

| (-7) |
| ---: | :--- |
| $+\quad(-2)$ |
| (-9) |\quad| 1001 | |
| ---: | :--- |
| + | 1110 |
| 10111 | |
| c_{4} | $=1$ |
| c_{3} | $=0$ |

There is an overflow if $\mathrm{c}_{3} \oplus \mathrm{c}_{4}=1$
Examples of determination of overflow

Decimal codes

- Weighted decimal codes
- Non-weighted decimal codes
- Bar codes

Weighted decimal codes

decimal digit	8421 code (BCD)	2421 code	5421 code	7536 code	biquinary code 5043210
0	0000	0000	0000	0000	0100001
1	0001	0001	0001	1001	0100010
2	0010	0010	0010	0111	0100100
3	0011	0011	0011	0010	0101000
4	0100	0100	0100	1011	0110000
5	0101	1011	1000	0100	1000001
6	0110	1100	1001	1101	1000010
7	0111	1101	1010	1000	1000100
8	1000	1110	1011	0110	1001000
9	1001	1111	1100	1111	1010000

Nonweighted decimal codes

decimal digit	excess-3 code	2-out-of-5 code
0	0011	11000
1	0100	00011
2	0101	00101
3	0110	00110
4	0111	01001
5	1000	01010
6	1001	01100
7	1010	10001
8	1011	10010
9	1100	10100

US Postal Service bar code (2 out of 5)

Gray code (a unit distance code)

decimal number	Gray code
0	000
1	001
2	011
3	010
4	110
5	111
6	101
7	100

Angular position encoders

conventional binary

Gray code

J. C. Huang, 2003

Digital Logic Design

The effects of misaligned sensors on the encoders

(a)

Alphanumeric Codes

- ASCII code
- Unicode Standard

Error detection

- A parity bit can be used to detect single-bit errors.
- Additional parity bits can be used to detect multiple errors.

Examples of ASCII code with parity bit

characters	with even parity	with odd parity
\cdot	\cdot	.
\cdot	\cdot	.
\cdot	10000010	10000011
A	10000100	10000101
B	10000111	10000110
D	10001000	10001001
.	\cdot	.
\cdot	\cdot	.
.	.	.

Error correction

- Hamming code
- Use of check-sum digits

Hamming code

- Hamming code is an error-detection and errorcorrection binary code.
- A single-bit error can be automatically corrected if we can determine which bit is in error.
- A single-bit error can be detected by using a parity bit.
- Multiple parity bits can be used to pinpoint the bit in error.

Hamming code

Bit position	1	2		4	5	6		8	9	10	1	12
Use	P_{1}	P_{2}		P_{4}	D_{5}	D_{6}			D_{9}	D_{10}	D	D_{12}
Scope of P_{1}	\checkmark				\checkmark				\checkmark			
Scope of P_{2}		\checkmark				\checkmark				\checkmark		
Scope of P_{4}				\checkmark	\checkmark	\checkmark						\checkmark
Scope of P_{8}								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Example

For example, to cons truct the Hamming code of 00101110
Use

$$
\begin{array}{llllllllllll}
\mathrm{P}_{1} & \mathrm{P}_{2} & \mathrm{D}_{3} & \mathrm{P}_{4} & \mathrm{D}_{5} & \mathrm{D}_{6} & \mathrm{D}_{7} & \mathrm{P}_{8} & \mathrm{D}_{9} & \mathrm{D}_{10} & \mathrm{D}_{11} & \mathrm{D}_{12}
\end{array}
$$

Scope of P_{1}
Scope of P_{2}
Scope of P_{4}
Scope of P_{8}
$\begin{array}{lllllllllllll}\text { Bit position } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

Example (continued)

Choose 0 for P_{1} (assuming the use of even parity)

Example (continued)

Choose 1 for P_{2}

Example (continued)

Choose 1 for P_{4}
Use $\quad \begin{array}{llllllllllll} & \mathrm{P}_{1} & \mathrm{P}_{2} & \mathrm{D}_{3} & \mathrm{P}_{4} & \mathrm{D}_{5} & \mathrm{D}_{6} & \mathrm{D}_{7} & \mathrm{P}_{8} & \mathrm{D}_{9} & \mathrm{D}_{10} & \mathrm{D}_{11} \\ \mathrm{D}_{12}\end{array}$

Scope of P_{1}
Scope of P_{2}
Scope of P_{4}
Scope of P_{8}
$\begin{array}{lllllllllllll}\text { Bit position } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

Example (continued)

Choose 1 for P_{8}
Use
$\begin{array}{llllllllllll}\mathrm{P}_{1} & \mathrm{P}_{2} & \mathrm{D}_{3} & \mathrm{P}_{4} & \mathrm{D}_{5} & \mathrm{D}_{6} & \mathrm{D}_{7} & \mathrm{P}_{8} & \mathrm{D}_{9} & \mathrm{D}_{10} & \mathrm{D}_{11} & \mathrm{D}_{12}\end{array}$

Scope of P_{1}
Scope of P_{2}
Scope of P_{4}
Scope of P_{8}
$\begin{array}{lllllllllllll}\text { Bit position } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

General properties of Hamming code

- It can be used for any code words with m information bits. It uses k parity bits such that $m \leq 2^{\mathrm{k}}-\mathrm{k}-1$.
- By adding an additional parity bit to a Hamming code, we will be able to achieve single-error correction and double-error detection.

Check sum digit is inserted to satisfy the relation:
ZIP digit sum + check sum digit $=0$ modulo 10 to make error correction possible. (Error detection is achieved by using the 2-out-of-5 code of individual digit)

Frame

Frame
bar

Check
sum digit

