
Chapter 2

Number Systems, Arithmetic, and 
Code
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Positional number systems

• What is the underlying principle?
• Can you find an example of a number 

system that is not positional?
• What are the reasons for using different 

bases?
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Notational convention

• 234.16
= 2 × 100 + 3 × 10 + 4 × 1 + 1 × 0.1 + 6 × 0.01
= 2 × 102 + 3 × 101 + 4 × 100 + 1 × 10-1 + 6 × 10-2
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Basic arithmetic operations

• The basic operations are addition, 
subtraction, multiplication, and division.

• They are very similar for positional number 
systems with different bases.

• Solutions to any computational problems to 
be solved on a computer must be expressed 
in terms of these operations.
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Methods of number conversion

• Polynomial method
• Iterative method
• Special conversion method



J. C. Huang, 2003 Digital Logic Design 5

Signed numbers

• sign and magnitude
• r’s-complement
• (r-1)’s complement
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Graphical
interpretation
of
sign-magnitude
numbers



J. C. Huang, 2003 Digital Logic Design 7

Graphical interpretation of complements
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Subtraction

• Shown below are the steps involved in 
performing M-N through complementation 
and addition.

• Here M and N are unsigned numbers.
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(r-1)’s vs. r’s complement

rn - N(rn - 1) - N
Definition: 

given N with 
n digits

r's complement(r-1)'s complement
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(r-1)’s vs. r’s complement

digitwise (bitwise) 
complementation + 1

digitwise (bitwise) 
complementation

Computation 
involved in 

obtaining the 
complement

r's complement(r-1)'s complement
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(r-1)’s vs. r’s complement

onetwo (+0 and -0)Number of 
zero

r's complement(r-1)'s complement
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(r-1)’s vs. r’s complement

M - N → M + rn - N 
= rn + M - N
= rn - (N - M)

M - N → M + (rn-1) - N 
= rn + M - N - 1
= (rn - 1) - (N - M)

Subtraction 
operation

r's complement(r-1)'s complement
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(r-1)’s vs. r’s complement

M - N → M + rn - N 
What will happen?
There is a carry.
How to produce M-N?
Subtract rn by 
discarding the carry.

M-N → rn + M - N - 1 
What will happen?
There is a carry.
How to produce M-N?
(1) Subtract rn by 
discarding the carry.
(2) Add 1 to it.

If M > N

r's complement(r-1)'s complement
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(r-1)’s vs. r’s complement

M - N → rn - (N-M)
What will happen? There is no 
carry.

How to produce M-N (in sign-
and-magnitude)?
The result is negative and in r's 
complement.
(1) Perform r's complement (i.e., 
(r-1)'s complement plus 1) to 
obtain (N-M).
(2) Prefix it with a minus sign to 
indicate that it is negative.

M - N → (rn-1) - (N -M)
What will happen? There is 
no carry.

How to produce M-N (in 
sign-and-magnitude)?
The result is negative and in (r-
1)'s complement.
(1) Perform (r-1)'s complement to 
obtain (N-M).
(2) Prefix it with a minus sign to 
indicate that it is negative.

if M < N

r's complement(r-1)'s complement
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(r-1)’s vs. r’s complement

M - N → M + rn - N
What will happen?
There is a carry.  
How to produce M-N?
It is treated as if M>N, 
producing a "0" as the 
result.

M-N → rn + M - N - 1 
What will happen?
There is no carry.  
How to produce M-N?
It is treated as if M<N, 
producing a "-0" as the 
result.

if M = N

r's complement(r-1)'s complement
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Interpretation of four-bit signed binary integers

b3b2b1b0 sign and mag. 1's complement 2's complement

0111 +7 +7 +7
0110 +6 +6 +6
0101 +5 +5 +5
0100 +4 +4 +4
0011 +3 +3 +3
0010 +2 +2 +2
0001 +1 +1 +1
0000 +0 +0 +0
1000 -0 -7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 -4 -3 -4
1101 -5 -2 -3
1110 -6 -1 -2
1111 -7 -0 -1
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The use of 2’s complement

• In practice, signed numbers are always 
represented by 2’s complements because 
then there is only one zero.

• Existence of more than one zero leads to 
complication in programming.
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2
5–( )

Examples of 1’s complement addition 

+ 0 0 1 0
1 0 1 0

+ 0 0 1 0
0 1 0 15+( )

2+( )+ +( )+
0 1 1 1 1 1 0 0-( 3)7+( )

+ 1 1 0 1+ 1 1 0 1
0 1 0 1 1 0 1 05+( )

2
5–( )

7–( )
2)

0 1 1 11
1

0 0 1 01
1

0 0 1 1 1 0 0 0

+ –(+ –( )
3+( )
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5+( )
2+

7+( )

5+( )
2–( )

2+
5–( )

3–( )

5–( )
+ 2–( )

1 0 1 1

Examples of 2’s complement addition 

++ 0 0 1 0
0 1 0 1

1 1 0 1

0 0 1 0

0 1 1 1

++ 1 1 1 0

1 0 0 1

1 0 1 1
1 1 1 0

0 0 1 1

0 1 0 1

11

ignore

( )+ ( )+

+

–( 7)3+( )

ignore
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5+( )
2+( )

3+( )

–

–

5+( )
–

5–( )

7–( )

2+( )

2–( )

Examples of 2’s complement subtraction 
1 1 0 13–( )

– 0 0 1 0
0 1 0 1

+ 1 1 1 0
0 1 0 1

1 0 0 1 1

ignore

– 0 0 1 0
1 0 1 1

+ 1 1 1 0
1 0 1 1

1 1 0 0 1

ignore

– 1 1 1 0
0 1 0 1

+ 0 0 1 0
0 1 0 1

0 1 1 17+( )

– 1 1 1 0
1 0 1 1

– 2–( )
5–( )

+ 0 0 1 0
1 0 1 1
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Overflow

• In adding two binary numbers, an overflow
condition is said to occur if the resulting 
sum requires more bits than are available.

• Let x be the carry into the sign-bit position 
and y be the carry from the sign-bit 
position, then there is an overflow if and 
only if x ⊕ y = 1.
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1 0 0 1

Examples of determination of overflow 

++ 0 0 1 0
0 1 1 1

1 0 1 1

0 0 1 0

1 0 0 1

7
2

+( )
+ 2+

7–( )
( )+ ( )+

5)–(9+( )
c4
c3

=
=

0
1

c4
c3

=
=

0
0

++ 1 1 1 0
0 1 1 1 1 0 0 1

0 1 1 1

1 1 1 0

0 1 0 1

7
2

+( )
–

7–( )
–( )

5+( )

+ ( ) + 2

1 1–( 9)
c4
c3

c4
c3

=
=

1
1

=
=

1
0

There is an overflow if c3 ⊕ c4 = 1
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Decimal codes

• Weighted decimal codes
• Non-weighted decimal codes
• Bar codes
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Weighted decimal codes

0100001
0100010
0100100
0101000
0110000
1000001
1000010
1000100
1001000
1010000

0000
1001
0111
0010
1011
0100
1101
1000
0110
1111

0000
0001
0010
0011
0100
1000
1001
1010
1011
1100

0000
0001
0010
0011
0100
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

0
1
2
3
4
5
6
7
8
9

biquinary
code 

5043210

7536 
code

5421 
code

2421 
code

8421 
code 

(BCD)

decimal 
digit
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Nonweighted decimal  codes

11000
00011
00101
00110
01001
01010
01100
10001
10010
10100

0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

0
1
2
3
4
5
6
7
8
9

2-out-of-5 codeexcess-3 codedecimal digit
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US Postal Service bar code (2 out of 5)
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Gray code (a unit distance code)

000
001
011
010
110
111
101
100

0
1
2
3
4
5
6
7

Gray codedecimal number
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Angular position encoders

Gray codeconventional binary
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The effects of misaligned sensors on the encoders
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Alphanumeric Codes

• ASCII code
• Unicode Standard
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Error detection

• A parity bit can be used to detect single-bit 
errors.

• Additional parity bits can be used to detect 
multiple errors.
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Examples of ASCII code with parity bit

.

.

.
10000011
10000101
10000110
10001001

.

.

.

.

.

.
10000010
10000100
10000111
10001000

.

.

.

.

.

.
A
B
C
D
.
.
.

with odd paritywith even paritycharacters



J. C. Huang, 2003 Digital Logic Design 33

Error correction

• Hamming code
• Use of check-sum digits
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Hamming code

• Hamming code is an error-detection and error-
correction  binary code.  

• A single-bit error can be automatically corrected if 
we can determine which bit is in error.

• A single-bit error can be detected by using a parity 
bit.

• Multiple parity bits can be used to pinpoint the bit 
in error.
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Hamming code

Bit position 1 2 3 4 5 6 7 8 9 10 11 12

Use P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

Scope of P1 √ √ √ √ √ √

Scope of P2 √ √ √ √ √ √

Scope of P4 √ √ √ √ √

Scope of P8 √ √ √ √ √
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Example

For example, to cons truct the Hamming code of 00101110

Use P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

0 0 1 0 1 1 1 0

Scope of P1 √ √ √ √ √ √

Scope of P2 √ √ √ √ √ √

Scope of P4 √ √ √ √ √

Scope of P8 √ √ √ √ √

Bit position 1 2 3 4 5 6 7 8 9 10 11 12
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Example (continued)

Choose 0 for P1 (assuming the use of  even parity)

Use P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

0 0 0 1 0 1 1 1 0

Scope of P1 √ √ √ √ √ √

Scope of P2 √ √ √ √ √ √

Scope of P4 √ √ √ √ √

Scope of P8 √ √ √ √ √

Bit position 1 2 3 4 5 6 7 8 9 10 11 12
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Example (continued)

Choose 1 for P2

Use P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

0 1 0 0 1 0 1 1 1 0

Scope of P1 √ √ √ √ √ √

Scope of P2 √ √ √ √ √ √

Scope of P4 √ √ √ √ √

Scope of P8 √ √ √ √ √

Bit position 1 2 3 4 5 6 7 8 9 10 11 12
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Example (continued)

Choose 1 for P4

Use P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

0 1 0 1 0 1 0 1 1 1 0

Scope of P1 √ √ √ √ √ √

Scope of P2 √ √ √ √ √ √

Scope of P4 √ √ √ √ √

Scope of P8 √ √ √ √ √

Bit position 1 2 3 4 5 6 7 8 9 10 11 12
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Example (continued)

Choose 1 for P8

Use P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

0 1 0 1 0 1 0 1 1 1 1 0

Scope of P1 √ √ √ √ √ √

Scope of P2 √ √ √ √ √ √

Scope of P4 √ √ √ √ √

Scope of P8 √ √ √ √ √

Bit position 1 2 3 4 5 6 7 8 9 10 11 12
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General properties of Hamming code

• It can be used for any code words with m 
information bits.  It uses k parity bits such 
that  m ≤ 2k - k - 1.

• By adding an additional parity bit to a 
Hamming code, we will be able to achieve 
single-error correction and double-error 
detection.
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Check sum digit is inserted to satisfy the relation:
ZIP digit sum + check sum digit = 0 modulo 10

to make error correction possible.  (Error detection is 
achieved by using the 2-out-of-5 code of individual digit)
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