
COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

1

2: Application Layer 1

chapter 2: Application Layer
Chapter goals:
r conceptual +

implementation aspects
of network application
protocols
m client server

paradigm
m service models

r learn about protocols by
examining popular
application-level
protocols

More chapter goals
r specific protocols:

m http
m ftp
m smtp
m pop
m dns

r programming network
applications
m socket programming

2: Application Layer 2

Applications and application-layer protocols
Application: communicating,

distributed processes
m running in network hosts

and in “user space”
m exchange messages to

implement app
m e.g., email, file transfer,

the Web
Application-layer protocols

m one (big) “piece” of a
network application

m define messages exchanged
by apps and actions taken

m use services provided by
lower layer protocols , e.g.,
TCP, UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

2

2: Application Layer 3

Network applications: some jargon

r A process is a program
that is running within a
host.

r Within the same host, two
processes communicate
with interprocess
communication defined by
the OS.

r Processes running in
different hosts
communicate with an
application-layer protocol

r A user agent is an
interface between the
user and the network
application.
m Web:browser
m E-mail: mail reader
m streaming audio/video:

media player

2: Application Layer 4

Client-server paradigm
Typical network app has two

pieces: client and server application
transport
network
data link
physical

application
transport
network
data link
physical

Client:
r initiates contact with server

(“speaks first”)
r typically requests service

from server,
r for Web, client is implemented

in browser; for e-mail, in mail
reader

Server:
r active in listening mode
r responds and provides

requested service to client
r e.g., Web server sends

requested Web page

request

reply

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

3

2: Application Layer 5

Application-layer protocols (cont).

API: application
programming interface

r defines interface
between application
and transport layer

r socket: Internet API
m two processes

communicate by sending
data into socket,
reading data out of
socket

Q: how does a process
“identify” the other
process with which it
wants to communicate?
m IP address of host

running other process
m “port number” - allows

receiving host to
determine to which
local process the
message should be
delivered

… lots more on this later.

2: Application Layer 6

What transport service does an app need?
Data loss
r some apps (e.g., audio) can

tolerate some loss
r other apps (e.g., file

transfer, telnet) require
100% reliable data transfer Timing

r some apps (e.g., Internet
telephony, interactive
games) require low delay to
be “effective”

Bandwidth
r some apps (e.g., multimedia)

require minimum amount of
bandwidth to be “effective”

r other apps (“elastic apps”)
make use of whatever
bandwidth they get

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

4

2: Application Layer 7

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

financial apps

Data loss

no loss
no loss
loss-tolerant
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above
few Kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

2: Application Layer 8

Services provided by Internet
transport protocols

TCP service:
r connection-oriented: setup

required between client,
server

r reliable transport between
sending and receiving process

r flow control: sender won’t
overwhelm receiver

r congestion control: throttle
sender when network
overloaded

r does not provide: timing,
minimum bandwidth
guarantees

UDP service:
r unreliable data transfer

between sending and
receiving process

r does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
or bandwidth guarantee

Q: why bother? Why is
there a UDP?

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

5

2: Application Layer 9

Internet apps: their protocols and transport
protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

remote file server
Internet telephony

Application
layer protocol

smtp [RFC 821]
telnet [RFC 854]
http [RFC 2068]
ftp [RFC 959]
proprietary
(e.g. RealNetworks)
NFS
proprietary
(e.g., Vocaltec)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP
typically UDP

2: Application Layer 10

The Web: some jargon
r Web page:

m consists of “objects”
m addressed by a URL

r Most Web pages consist
of:
m base HTML file, and
m several referenced

objects.
r URL (Uniform Resource

Locator) has three parts:
protocol, host name
(w/port), and path name:

r User agent for Web is
called a browser:
m MS Internet Explorer
m Netscape Communicator

r Server for Web is
called Web server:
m Apache (public domain)
m MS Internet

Information Server

http://www.someSchool.edu:port/someDept/pic.gif

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

6

2: Application Layer 11

The Web: the http protocol
http: hypertext transfer

protocol
r Web’s application layer

protocol
r client/server model

m client: browser that
requests, receives,
“displays” Web objects

m server: Web server
sends objects in
response to requests

r http1.0: RFC 1945, May 1996
r http1.1: RFC 2068, Jan. 1997

PC running
Explorer

Server
running

NCSA Web
server

Mac running
Navigator

http request

http r
eque

st

http response

http r
espo

nse

2: Application Layer 12

The http protocol: more
http: TCP transport

service:
r client initiates TCP

connection (creates socket)
to server, port 80

r server accepts TCP
connection from client

r http messages (application-
layer protocol messages)
exchanged between browser
(http client) and Web server
(http server)

r TCP connection closed

http is “stateless”
r server maintains no

information about
past client requests

Protocols that maintain
“state” are complex!

r past history (state) must
be maintained

r if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

7

2: Application Layer 13

http example
Suppose user enters URL

http://www.someSchool.edu/someDepartment/home.index

1a. http client initiates TCP
connection to http server
(process) at
www.someSchool.edu. Port 80
is default for http server.

2. http client sends http request
message (containing URL) into
TCP connection socket

1b. http server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. http server receives request
message, forms response
message containing requested
object
(someDepartment/home.index),
sends message into sockettime

(contains text,
references to

10 jpeg images)

2: Application Layer 14

http example (cont.)

5. http client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. http server closes TCP
connection.

time

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

8

2: Application Layer 15

Non-persistent and persistent connections
Non-persistent
r HTTP/1.0
r server parses request,

responds, and closes
TCP connection

r 2 RTTs (round-trip time)
to fetch each object

r Each object transfer
suffers from slow
start

Persistent
r default for HTTP/1.1
r on same TCP

connection: server,
parses request,
responds, parses new
request,..

r Client sends requests
for all referenced
objects as soon as it
receives base HTML.
(pipelined)

r Fewer RTTs and less
slow start.

But most 1.0 browsers use
parallel TCP connections.

2: Application Layer 16

http message format: request
r two types of http messages: request, response
r http request message:

m ASCII (human-readable format)

GET /somedir/page.html HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif,image/jpeg
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)
header

 lines

Carriage return,
line feed

indicates end
of message

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

9

2: Application Layer 17

http request message: general format

2: Application Layer 18

http message format: respone

HTTP/1.0 200 OK
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
html file

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

10

2: Application Layer 19

http response status codes

200 OK
m request succeeded, requested object later in this message

301 Moved Permanently
m requested object moved, new location specified later in

this message (Location:)
400 Bad Request

m request message not understood by server
404 Not Found

m requested document not found on this server
505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

2: Application Layer 20

Trying out http (client side) for yourself

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default http server port) at www.eurecom.fr.
Anything typed in sent
to port 80 at www.eurecom.fr

telnet www.eurecom.fr 80

2. Type in a GET http request:
GET /~ross/index.html HTTP/1.0 By typing this in (hit carriage

return twice), you send
this minimal (but complete)
GET request to http server

3. Look at response message sent by http server!

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

11

2: Application Layer 21

User-server interaction: authentication

Authentication goal: control
access to server documents

r stateless: client must present
authorization in each request

r authorization: typically name,
password
m authorization: header

line in request
m if no authorization

presented, server refuses
access, sends
WWW authenticate:

header line in response

client server
usual http request msg
401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization:line

usual http response msg

usual http request msg
+ Authorization:line

usual http response msg time
Browser caches name & password so
that user does not have to repeatedly enter it.

2: Application Layer 22

User-server interaction: cookies

r server sends “cookie” to
client in response mst
Set-cookie: 1678453

r client presents cookie in
later requests
cookie: 1678453

r server matches
presented-cookie with
server-stored info
m authentication
m remembering user

preferences, previous
choices

client server
usual http request msg
usual http response +
Set-cookie: #

usual http request msg
cookie: #

usual http response msg

usual http request msg
cookie: #

usual http response msg

cookie-
specific
action

cookie-
specific
action

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

12

2: Application Layer 23

User-server interaction: conditional GET

r Goal: don’t send object if
client has up-to-date stored
(cached) version

r client: specify date of
cached copy in http request
If-modified-since:

<date>

r server: response contains
no object if cached copy up-
to-date:
HTTP/1.0 304 Not

Modified

client server
http request msg

If-modified-since:
<date>

http response
HTTP/1.0

304 Not Modified

object
not

modified

http request msg
If-modified-since:

<date>

http response
HTTP/1.1 200 OK

…
<data>

object
modified

2: Application Layer 24

Web Caches (proxy server)

r user sets browser:
Web accesses via web
cache

r client sends all http
requests to web cache
m if object at web

cache, web cache
immediately returns
object in http
response

m else requests object
from origin server,
then returns http
response to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

http request

http r
eque

st

http response

http r
espo

nse

http r
eque

st

http r
espo

nse

http requesthttp response

origin
server

origin
server

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

13

2: Application Layer 25

Why Web Caching?
Assume: cache is “close”

to client (e.g., in same
network)

r smaller response time:
cache “closer” to
client

r decrease traffic to
distant servers
m link out of

institutional/local ISP
network often
bottleneck

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

2: Application Layer 26

ftp: the file transfer protocol

r transfer file to/from remote host
r client/server model

m client: side that initiates transfer (either to/from
remote)

m server: remote host
r ftp: RFC 959
r ftp server: port 21

file transfer FTP
server

FTP
user

interface
FTP

client

local file
system

remote file
system

user
at host

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

14

2: Application Layer 27

ftp: separate control, data connections

r ftp client contacts ftp server
at port 21, specifying TCP as
transport protocol

r two parallel TCP connections
opened:
m control: exchange

commands, responses
between client, server.

“out of band control”
m data: file data to/from

server
r ftp server maintains “state”:

current directory, earlier
authentication

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

2: Application Layer 28

ftp commands, responses
Sample commands:
r sent as ASCII text over

control channel
r USER username
r PASS password

r LIST return list of file in
current directory

r RETR filename retrieves
(gets) file

r STOR filename stores
(puts) file onto remote
host

Sample return codes
r status code and phrase (as

in http)
r 331 Username OK,

password required
r 125 data connection

already open;
transfer starting

r 425 Can’t open data
connection

r 452 Error writing
file

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

15

2: Application Layer 29

Electronic Mail
Major Components:
r mail user agents (MUA) and

mailer process (e.g. sendmail)
r mail servers
r simple mail transfer protocol:

SMTP / ESMTP
r mail access protocols (e.g.

POP, IMAP)
User Agent
r a.k.a. “mail reader”
r composing, editing, reading

mail messages
r e.g., Eudora, Outlook, elm,

pine, Netscape Messenger

sending
MUA

types calls sending
mail

server

receiving
mail

server

Internet

on the sending network

on the receiving network

Bob’s
mailbox

Alice

delivers to

Bob’s
MUA

Bob’s
notifier Bob

2: Application Layer 30

Electronic Mail: mail servers
Mail Servers
r mailbox contains incoming

messages (yet to be read)
for user

r message queue of outgoing
(to be sent) mail messages

r smtp protocol used between
mail servers to send email
messages (routing messages)
m client: sending mail server
m “server”: receiving mail

server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agentmail

server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

16

2: Application Layer 31

Electronic Mail: smtp [RFC 821]
r uses tcp to reliably transfer email msg from client to server,

port 25
r direct transfer: sending server to receiving server
r three phases of transfer

m handshaking (greeting)
m transfer of messages
m closure

r command/response interaction
m commands: ASCII text
m response: status code and phrase

r messages must be in 7-bit ASCII
r ESMTP [RFC 1869] - SMTP Service Extension: 8-bit data

transfer

2: Application Layer 32

Sample smtp interaction
 S: 220 hamburger.edu
 C: HELO crepes.fr
 S: 250 Hello crepes.fr, pleased to meet you
 C: MAIL FROM: <alice@crepes.fr>
 S: 250 alice@crepes.fr... Sender ok
 C: RCPT TO: <bob@hamburger.edu>
 S: 250 bob@hamburger.edu ... Recipient ok
 C: DATA
 S: 354 Enter mail, end with "." on a line by itself
 C: Do you like ketchup?
 C: How about pickles?
 C: .
 S: 250 Message accepted for delivery
 C: QUIT
 S: 221 hamburger.edu closing connection

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

17

2: Application Layer 33

try smtp interaction for yourself:

r telnet servername 25
r see 220 reply from server
r enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands
above lets you send email without using email client

(reader)

2: Application Layer 34

smtp: final words
r smtp uses persistent

connections
r smtp requires that message

(header & body) be in 7-bit
ascii

r certain character strings are
not permitted in message (e.g.,
CRLF.CRLF). Thus message has
to be encoded (usually into
either base-64 or quoted
printable)

r smtp server uses CRLF.CRLF
to determine end of message

r esmtp can take 8-bit data

Comparison with http
r http: pull
r email: push
r both have ASCII

command/response
interaction, status codes

r http: each object is
encapsulated in its own
response message

r smtp: multiple objects
message sent in a multipart
message

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

18

2: Application Layer 35

Mail message format
smtp: protocol for exchanging

email msgs
RFC 822: standard for text

message format:
r header lines

(keyword: values), e.g.,
m To:
m From:
m Subject:
different from smtp

commands!
r body

m the “message”, ASCII
characters only

header

body

blank
line

2: Application Layer 36

Message format: multimedia extensions
r MIME: Multipurpose Internet Mail Extension, RFCs 2045-2049,

especially RFC 2045 and 2046
r additional lines in msg header declare MIME content type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

19

2: Application Layer 37

MIME types
Content-Type: type/subtype; parameters

Text
r example subtypes: plain,

html

Image
r example subtypes: jpeg,

gif

Audio
r example subtypes: basic

(8-bit mu-law encoded),
32kadpcm (32 kbps
coding)

Video
r example subtypes: mpeg,

quicktime

Application
r other data that must be

processed by reader
before “viewable”

r example subtypes:
msword, octet-stream

2: Application Layer 38

Multipart Type
From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=98766789

--98766789
Content-Transfer-Encoding: quoted-printable
Content-Type: text/plain

Dear Bob,
Please find a picture of a crepe.
--98766789
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data
--98766789--

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

20

2: Application Layer 39

Mail access protocols

r SMTP: delivery/storage to receiver’s server
r Mail access protocol: retrieval from server

m POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server)
• download mail

m IMAP: Internet Mail Access Protocol [RFC 1730]
m HTTP or Webmail

user
agent

sender’s mail
server

user
agent

SMTP SMTP POP3 or
IMAP

receiver’s mail
server

2: Application Layer 40

POP3 protocol
authorization phase
r client commands:

m user: declare username
m pass: password

r server responses
m +OK
m -ERR

transaction phase, client:
r list: list message numbers
r retr: retrieve message by

number
r dele: delete
r quit

 C: list
 S: 1 498
 S: 2 912
 S: .
 C: retr 1
 S: <message 1 contents>
 S: .
 C: dele 1
 C: retr 2
 S: <message 1 contents>
 S: .
 C: dele 2
 C: quit
 S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user alice
S: +OK
C: pass hungry
S: +OK user successfully logged on

COSC 4377, Spring 2001 - Chapter 2, Part A 9/18/01

21

2: Application Layer 41

Mail access protocols
r Problems with POP

m viewed mail resides on a specific user machine and cannot
be accessed from other machines.

r IMAP
• maintains folder hierarchy on the server
• can receive/download only components of a message,

e.g., header or certain attachments
r HTTP

m Hotmail , Yahoo! Mail, Novell MyRealBox.com, etc.
m Similar in concept to IMAP but with a web interface

