
COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-1

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

❒ full duplex data:
❍ bi-directional data flow

in same connection
❍ MSS: maximum segment

size
❒ connection-oriented:

❍ handshaking (exchange
of control msgs) init’s
sender, receiver state
before data exchange

❒ flow controlled:
❍ sender will not

overwhelm receiver

❒ point-to-point:
❍ one sender, one receiver

❒ reliable, in-order byte
steam:

❍ no “message boundaries”
❒ pipelined:

❍ TCP congestion and flow
control set window size

❒ send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket

door

segment

application
writes data

application
reads data

3: Transport Layer 3b-2

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

rcvr window size
ptr urgent datachecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-3

TCP seq. #’s and ACKs
Seq. #’s:

❍ byte stream
“number” of first
byte in segment’s
data

ACKs:
❍ seq # of next byte

expected from
other side

❍ cumulative ACK
Q: how receiver handles

out-of-order segments
❍ A: TCP spec doesn’t

say, - up to
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq =43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

3: Transport Layer 3b-4

TCP: reliable data transfer

simplified sender, assuming

wait
for

event

wait
for

event

event: data received
from application above

event: timer timeout for
segment with seq # y

event: ACK received,
with ACK # y

create, send segment

retransmit segment

ACK processing

•one way data transfer
•no flow, congestion control

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-5

TCP:
reliable
data
transfer

00 sendbase = initial_sequence number
01 nextseqnum = initial_sequence number
02
03 loop (forever) {
04 switch(event)
05 event: data received from application above

06 create TCP segment with sequence number nextseqnum
07 start timer for segment nextseqnum
08 pass segment to IP
09 nextseqnum = nextseqnum + length(data)
10 event: timer timeout for segment with sequence number y
11 retransmit segment with sequence number y

12 compue new timeout interval for segment y
13 restart timer for sequence number y
14 event: ACK received, with ACK field value of y
15 if (y > sendbase) { /* cumulative ACK of all data up to y */
16 cancel all timers for segments with sequence numbers < y
17 sendbase = y

18 }
19 else { /* a duplicate ACK for already ACKed segment */
20 increment number of duplicate ACKs received for y
21 if (number of duplicate ACKS received for y == 3) {
22 /* TCP fast retransmit */
23 resend segment with sequence number y

24 restart timer for segment y
25 }
26 } /* end of loop forever */

Simplified
TCP
sender

3: Transport Layer 3b-6

TCP ACK generation [RFC 1122, RFC 2581]

Event

in-order segment arrival,
no gaps,
everything else already ACKed

in-order segment arrival,
no gaps,
one delayed ACK pending

out-of-order segment arrival
higher-than-expect seq. #
gap detected

arrival of segment that
partially or completely fills gap

TCP Receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single
cumulative ACK

send duplicate ACK, indicating seq. #
of next expected byte

immediate ACK if segment starts
at lower end of gap

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-7

TCP: retransmission scenarios
Host A

Seq =92, 8 bytes data

ACK=100

loss

tim
eo

ut

time lost ACK scenario

Host B

X

Seq =92, 8 bytes data

ACK=100

Host A

Seq =100, 20 bytes data

ACK=100

S
eq

=9
2

ti
m

eo
ut

time premature timeout,
cumulative ACKs

Host B

Seq =92, 8 bytes data

ACK=120

Seq =92, 8 bytes data

S
eq

=1
00

 t
im

eo
ut

ACK=120

3: Transport Layer 3b-8

TCP Flow Control
receiver: explicitly

informs sender of
(dynamically changing)
amount of free buffer
space

❍ RcvWindow field in
TCP segment

sender: keeps the amount
of transmitted,
unACKed data less than
most recently received
RcvWindow

sender won’t overrun
receiver’s buffers by

transmitting too much,
 too fast

flow control

receiver buffering

RcvBuffer = size or TCP Receive Buffer

RcvWindow = amount of spare room in Buffer

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-9

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

❒ longer than RTT
❍ note: RTT will vary

❒ too short: premature
timeout

❍ unnecessary
retransmissions

❒ too long: slow reaction
to segment loss

Q: how to estimate RTT?
❒ SampleRTT: measured time from

segment transmission until ACK
receipt

❍ ignore retransmissions,
cumulatively ACKed segments

❒ SampleRTT will vary, want
estimated RTT “smoother”

❍ use several recent
measurements, not just
current SampleRTT

3: Transport Layer 3b-10

TCP Round Trip Time and Timeout

EstimatedRTT = (1-x)*EstimatedRTT + x*SampleRTT

❒ Exponential weighted moving average
❒ influence of given sample decreases exponentially fast
❒ typical value of x: 0.1

Setting the timeout
❒ EstimtedRTT plus “safety margin”
❒ large variation in EstimatedRTT -> larger safety margin

Timeout = EstimatedRTT + 4*Deviation

Deviation = (1-x)*Deviation +
 x*|SampleRTT-EstimatedRTT|

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-11

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

❒ initialize TCP variables:
❍ seq. #s
❍ buffers, flow control

info (e.g. RcvWindow)
❒ client: connection initiator
 Socket clientSocket = new

Socket("hostname","port
number");

❒ server: contacted by client
 Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:
Step 1: client end system

sends TCP SYN control
segment to server

❍ specifies initial seq #

Step 2: server end system
receives SYN, replies with
SYNACK control segment

❍ ACKs received SYN
❍ allocates buffers
❍ specifies server->

receiver initial seq. #

3: Transport Layer 3b-12

TCP Connection Management (cont.)

Closing a connection:
client closes socket:

clientSocket.close();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-13

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

❍ Enters “timed wait ” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handly
simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed
ti

m
ed

 w
ai

t

closed

3: Transport Layer 3b-14

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-15

Principles of Congestion Control

Congestion:
❒ informally: “too many sources sending too much

data too fast for network to handle”
❒ different from flow control!
❒ manifestations:

❍ lost packets (buffer overflow at routers)
❍ long delays (queueing in router buffers)

❒ a top-10 problem!

3: Transport Layer 3b-16

Causes/costs of congestion: scenario 1

❒ two senders, two
receivers

❒ one router,
infinite buffers

❒ no retransmission

❒ large delays
when congested

❒ maximum
achievable
throughput

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-17

Causes/costs of congestion: scenario 2

❒ one router, finite buffers
❒ sender retransmission of lost packet

3: Transport Layer 3b-18

Causes/costs of congestion: scenario 2
❒ always: (goodput)
❒ “perfect” retransmission only when loss:

❒ retransmission of delayed (not lost) packet makes larger
(than perfect case) for same

λ
in

λ
out

=

λ
in

λ
out

>

λ
inλ

out

“costs” of congestion:
❒ more work (retrans) for given “goodput ”
❒ unneeded retransmissions: link carries multiple copies of pkt

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-19

Causes/costs of congestion: scenario 3
❒ four senders
❒ multihop paths
❒ timeout/retransmit

λ
in

Q: what happens as
and increase ?λ

in

3: Transport Layer 3b-20

Causes/costs of congestion: scenario 3

Another “cost” of congestion:
❒ when packet dropped, any “upstream transmission

capacity used for that packet was wasted!

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-21

Approaches towards congestion control

End-end congestion
control:

❒ no explicit feedback from
network

❒ congestion inferred from
end-system observed loss,
delay

❒ approach taken by TCP

Network-assisted
congestion control:

❒ routers provide feedback
to end systems

❍ single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

❍ explicit rate sender
should send at

Two broad approaches towards congestion control:

3: Transport Layer 3b-22

Case study: ATM ABR congestion control

ABR: available bit rate:
❒ “elastic service”
❒ if sender’s path

“underloaded”:
❍ sender should use

available bandwidth
❒ if sender’s path

congested:
❍ sender throttled to

minimum guaranteed
rate

RM (resource management)
cells:

❒ sent by sender, interspersed
with data cells

❒ bits in RM cell set by switches
(“network-assisted”)

❍ NI bit: no increase in rate
(mild congestion)

❍ CI bit: congestion
indication

❒ RM cells returned to sender by
receiver, with bits intact

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-23

Case study: ATM ABR congestion control

❒ two-byte ER (explicit rate) field in RM cell
❍ congested switch may lower ER value in cell
❍ sender’ send rate thus minimum supportable rate on path

❒ EFCI bit in data cells: set to 1 in congested switch
❍ if data cell preceding RM cell has EFCI set, sender sets CI

bit in returned RM cell

3: Transport Layer 3b-24

TCP Congestion Control
❒ end-end control (no network assistance)
❒ transmission rate limited by congestion window

size, Congwin, over segments:

❒ w segments, each with MSS bytes sent in one RTT:

throughput =
w * MSS

RTT
Bytes/sec

Congwin

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-25

TCP congestion control:

❒ two “phases”
❍ slow start
❍ congestion avoidance

❒ important variables:
❍ Congwin
❍ threshold: defines

threshold between two
slow start phase,
congestion control
phase

❒ “probing” for usable
bandwidth:

❍ ideally: transmit as fast
as possible (Congwin as
large as possible)
without loss

❍ increase Congwin until
loss (congestion)

❍ loss: decrease Congwin,
then begin probing
(increasing) again

3: Transport Layer 3b-26

TCP Slowstart

❒ exponential increase (per
RTT) in window size (not so
slow!)

❒ loss event: timeout (Tahoe
TCP) and/or or three
duplicate ACKs (Reno TCP)

initialize: Congwin = 1
for (each segment ACKed)
 Congwin++
until (loss event OR
 CongWin > threshold)

Slowstart algorithm
Host A

one segment

RT
T

Host B

time

two segments

four segments

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-27

TCP Congestion Avoidance

/* slowstart is over */
/* Congwin > threshold */
Until (loss event) {
 every w segments ACKed:
 Congwin++
 }
threshold = Congwin/2
Congwin = 1
perform slowstart

Congestion avoidance

1

1: TCP Reno skips slowstart (fast
recovery) after three duplicate ACKs

3: Transport Layer 3b-28

TCP Fairness
Fairness goal: if N TCP

sessions share same
bottleneck link, each
should get 1/N of link
capacity

TCP congestion
avoidance:

❒ AIMD: additive
increase,
multiplicative
decrease

❍ increase window by 1
per RTT

❍ decrease window by
factor of 2 on loss
event

AIMD

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-29

Why is TCP fair?
Two competing sessions:
❒ Additive increase gives slope of 1, as throughout increases
❒ multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
o

n
n

e
c

t
i

o
n

2

t
h

r
o

u
g

h
p

u
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

3: Transport Layer 3b-30

TCP latency modeling

Q: How long does it take to
receive an object from a
Web server after sending
a request?

❒ TCP connection establishment
❒ data transfer delay

Notation, assumptions:
❒ Assume one link between

client and server of rate R
❒ Assume: fixed congestion

window, W segments
❒ S: MSS (bits)
❒ O: object size (bits)
❒ no retransmissions (no loss,

no corruption)
Two cases to consider:
❒ WS/R > RTT + S/R: ACK for first segment in

window returns before window’s worth of data
sent

❒ WS/R < RTT + S/R: wait for ACK after sending
window’s worth of data sent

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-31

TCP latency Modeling

Case 1: latency = 2RTT + O/R Case 2: latency = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

K:= O/WS

3: Transport Layer 3b-32

TCP Latency Modeling: Slow Start
❒ Now suppose window grows according to slow start.
❒ Will show that the latency of one object of size O is:

R
S

R
S

RTTP
R
O

RTTLatency P)12(2 −−

 +++=

where P is the number of times TCP stalls at server:

}1,{min −= KQP

- where Q is the number of times the server would stall
 if the object were of infinite size.

- and K is the number of windows that cover the object.

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-33

TCP Latency Modeling: Slow Start (cont.)

RTT

initiate TCP

connection

request
object

first window
= S/R

second window

= 2S/R

third window

= 4S/R

fourth window

= 8S/R

complete

transmissionobject
delivered

time at
client

time at

server

Example:

O/S = 15 segments

K = 4 windows

Q = 2

P = min{K-1,Q} = 2

Server stalls P=2 times.

3: Transport Layer 3b-34

TCP Latency Modeling: Slow Start (cont.)

R
S

R
S

RTTPRTT
R
O

R
S

RTT
R
S

RTT
R
O

stallTimeRTT
R
O

P

k
P

k

P

p
p

)12(][2

]2[2

2latency

1

1

1

−−+++=

−+++=

++=

−

=

=

∑

∑

 windowth after the timestall 2 1 k
R

S
RTT

R

S k =

 −+

+
−

ementacknowledg receivesserver until

segment send tostartsserver whenfrom time=+ RTT
R
S

 window kth the transmit totime2 1 =−

R
Sk

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

COSC 4377, Fall 2000 - Chapter 3b 10/24/00

3: Transport Layer 3b-35

Chapter 3: Summary

❒ principles behind
transport layer services:

❍ multiplexing/demultiplexing
❍ reliable data transfer
❍ flow control
❍ congestion control

❒ instantiation and
implementation in the Internet

❍ UDP
❍ TCP

Next:
❒ leaving the network

“edge” (application
transport layer)

❒ into the network “core”

