LAN technologies

Data link layer so far:

- services, error detection/correction, multiple access

Next: LAN technologies

- addressing
- Ethernet
- hubs, bridges, switches
- 802.11
- PPP
- ATM

LAN Addresses and ARP

32-bit IP address:

- network-layer address
- used to get datagram to destination network (recall IP network definition)

LAN (or MAC or physical) address:

- used to get datagram from one interface to another physically-connected interface (same network)
- 48 bit MAC address (for most LANs) burned in the adapter ROM
LAN Addresses and ARP

Each adapter on LAN has unique LAN address

LAN Address (more)

- **MAC address allocation** administered by IEEE
- manufacturer buys portion of **MAC address space** (to assure uniqueness)
- Analogy:
 - (a) **MAC address**: like Social Security Number
 - (b) **IP address**: like postal address
- **MAC flat address** => portability
 - can move LAN card from one LAN to another
- **IP hierarchical address** NOT portable
 - depends on network to which one attaches
Recall earlier routing discussion

Starting at A, given IP datagram addressed to B:
- look up net. address of B, find B on same net. as A
- link layer send datagram to B inside link-layer frame

ARP: Address Resolution Protocol

Question: how to determine MAC address of B given B's IP address?

Each IP node (Host, Router) on LAN has ARP module, table

ARP Table: IP/MAC address mappings for some LAN nodes
\(< \text{IP address}; \text{MAC address}; \text{TTL}> \)

TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)
ARP protocol

- A knows B’s IP address, wants to learn physical address of B
- A broadcasts ARP query pkt, containing B’s IP address
 - all machines on LAN receive ARP query
- B receives ARP packet, replies to A with its (B’s) physical layer address
- A caches (saves) IP-to-physical address pairs until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed

Routing to another LAN

walkthrough: routing from A to B via R

![Routing Diagram](image)
Ethernet

"dominant" LAN technology:
- cheap $20 for 100Mbs!
- first widely used LAN technology
- Simpler, cheaper than token LANs and ATM
- Kept up with speed race: 10, 100, 1000 Mbps

Metcalfe's Ethernet sketch
Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble:
- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clock rates

Ethernet Frame Structure (more)

- **Addresses**: 6 bytes, frame is received by all adapters on a LAN and dropped if address does not match
- **Type**: indicates the higher layer protocol, mostly IP but others may be supported such as Novell IPX and AppleTalk
- **CRC**: checked at receiver, if error is detected, the frame is simply dropped
Baseband Manchester Encoding

- Baseband here means that no carrier is modulated; instead bits are encoded using Manchester encoding and transmitted directly by modified voltage of a DC signal.
- Manchester encoding ensures that a voltage transition occurs in each bit time which helps with receiver and sender clock synchronization.

```
<table>
<thead>
<tr>
<th>Bitsheet</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary encoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchester encoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

More Baseband Encoding

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unipolar NRZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polar NRZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRZ-Inverted (Differential Encoding)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bipolar Encoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchester Encoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Manchester Encoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4B/5B Encoding

- Manchester only has 50% efficiency.
- Insert extra bits into the bit stream to break up long sequence of 0s and 1s.
- 4-bit data are encoded in a 5-bit code.
- No more than one leading 0 and no more than two trailing 0s.
- Use NRZI (non-return to zero inverted) to transmit.

<table>
<thead>
<tr>
<th>4B Data Symbol</th>
<th>5-Bit Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>11110</td>
</tr>
<tr>
<td>0001</td>
<td>01001</td>
</tr>
<tr>
<td>0010</td>
<td>10100</td>
</tr>
<tr>
<td>0011</td>
<td>10101</td>
</tr>
<tr>
<td>0100</td>
<td>01010</td>
</tr>
<tr>
<td>0101</td>
<td>01011</td>
</tr>
<tr>
<td>0110</td>
<td>01110</td>
</tr>
<tr>
<td>0111</td>
<td>01111</td>
</tr>
<tr>
<td>1000</td>
<td>10010</td>
</tr>
<tr>
<td>1001</td>
<td>10011</td>
</tr>
<tr>
<td>1010</td>
<td>10110</td>
</tr>
<tr>
<td>1011</td>
<td>10111</td>
</tr>
<tr>
<td>1100</td>
<td>11010</td>
</tr>
<tr>
<td>1110</td>
<td>11100</td>
</tr>
<tr>
<td>1111</td>
<td>11101</td>
</tr>
</tbody>
</table>

Ethernet: uses CSMA/CD

A: sense channel, if idle
 then
 transmit and monitor the channel;
 If detect another transmission
 then
 abort and send jam signal;
 update # collisions;
 delay as required by exponential backoff algorithm;
 goto A
 }
 else (done with the frame: set collisions to zero)
 }
else (wait until ongoing transmission is over and goto A)
Ethernet's CSMA/CD (more)

Jam Signal: make sure all other transmitters are aware of collision; 48 bits;

Exponential Backoff:
- **Goal:** adapt retransmission attempts to estimated current load
 - heavy load: random wait will be longer
- first collision: choose K from \{0,1\}; delay is K \times 512 bit transmission times
- after second collision: choose K from \{0,1,2,3\}...
- after ten or more collisions, choose K from \{0,1,2,3,4,...,1023\}

Ethernet Technologies: 10Base2

- 10: 10Mbps; 2: under 200 meters max cable length
- thin coaxial cable in a bus topology

- repeaters used to connect up to multiple segments
- repeater repeats bits it hears on one interface to its other interfaces: physical layer device only!
10BaseT and 100BaseT

- 10/100 Mbps rate; latter called "fast ethernet"
- T stands for Twisted Pair
- Hub to which nodes are connected by twisted pair, thus "star topology"
- CSMA/CD implemented at hub

- Max distance from node to Hub is 100 meters
- Hub can disconnect "jabbering adapter"
- Hub can gather monitoring information, statistics for display to LAN administrators
Gbit Ethernet

- use standard Ethernet frame format
- allows for point-to-point links and shared broadcast channels
- in shared mode, CSMA/CD is used; short distances between nodes to be efficient
- uses hubs, called here "Buffered Distributors"
- Full-Duplex at 1 Gbps for point-to-point links

Token Passing: IEEE802.5 standard

- 4 Mbps
- max token holding time: 10 ms, limiting frame length

<table>
<thead>
<tr>
<th>SD</th>
<th>AC</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>AC</td>
<td>FC</td>
</tr>
</tbody>
</table>

- **SD, ED** mark start, end of packet
- **AC**: access control byte:
 - **token bit**: value 0 means token can be seized, value 1 means data follows FC
 - **priority bits**: priority of packet
 - **reservation bits**: station can write these bits to prevent stations with lower priority packet from seizing token after token becomes free
Token Passing: IEEE802.5 standard

FC: frame control used for monitoring and maintenance
source, destination address: 48 bit physical address, as in Ethernet
data: packet from network layer
checksum: CRC
FS: frame status: set by dest., read by sender
 - set to indicate destination up, frame copied OK from ring
 - DLC-level ACKing

Interconnecting LANs

Q: Why not just one big LAN?
- Limited amount of supportable traffic: on single LAN, all stations must share bandwidth
- limited length: 802.3 specifies maximum cable length
- large “collision domain” (can collide with many stations)
- limited number of stations: 802.5 have token passing delays at each station
Hubs

- Physical Layer devices: essentially repeaters operating at bit levels: repeat received bits on one interface to all other interfaces
- Hubs can be arranged in a **hierarchy** (or multi-tier design), with **backbone** hub at its top

![Diagram of hub hierarchy]

Hubs (more)

- Each connected LAN referred to as **LAN segment**
- Hubs **do not isolate** collision domains: node may collide with any node residing at any segment in LAN
- Hub Advantages:
 - simple, inexpensive device
 - Multi-tier provides graceful degradation: portions of the LAN continue to operate if one hub malfunctions
 - extends maximum distance between node pairs (100m per Hub)
Hub limitations

- single collision domain results in no increase in max throughput
 - multi-tier throughput same as single segment throughput
- individual LAN restrictions pose limits on number of nodes in same collision domain and on total allowed geographical coverage
- cannot connect different Ethernet types (e.g., 10BaseT and 100baseT)

Bridges

- Link Layer devices: operate on Ethernet frames, examining frame header and selectively forwarding frame based on its destination
- Bridge isolates collision domains since it buffers frames
- When frame is to be forwarded on segment, bridge uses CSMA/CD to access segment and transmit
Bridges (more)

- Bridge advantages:
 - Isolates collision domains resulting in higher total max throughput, and does not limit the number of nodes nor geographical coverage
 - Can connect different type Ethernet since it is a store and forward device
 - Transparent: no need for any change to hosts LAN adapters

Bridges: frame filtering, forwarding

- bridges filter packets
 - same-LAN -segment frames not forwarded onto other LAN segments
- forwarding:
 - how to know which LAN segment on which to forward frame?
 - looks like a routing problem (more shortly!)
Backbone Bridge

Interconnection Without Backbone

- Not recommended for two reasons:
 - single point of failure at Computer Science hub
 - all traffic between EE and SE must path over CS segment
Bridge Filtering

- bridges learn which hosts can be reached through which interfaces: maintain filtering tables
 - when frame received, bridge “learns” location of sender: incoming LAN segment
 - records sender location in filtering table

- filtering table entry:
 - (Node LAN Address, Bridge Interface, Time Stamp)
 - stale entries in Filtering Table dropped (TTL can be 60 minutes)

Filtering procedure:

```plaintext
if destination is on LAN on which frame was received
   then drop the frame
else (lookup filtering table
   if entry found for destination
      then forward the frame on interface indicated;
   else flood; /* forward on all but the interface on which the frame arrived*/
```
Bridge Learning: example

Suppose C sends frame to D and D replies back with frame to C

- C sends frame, bridge has no info about D, so floods to both LANs
 - bridge notes that C is on port 1
 - frame ignored on upper LAN
 - frame received by D

<table>
<thead>
<tr>
<th>address</th>
<th>port</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
</tr>
</tbody>
</table>

- D generates reply to C, sends
 - bridge sees frame from D
 - bridge notes that D is on interface 2
 - bridge knows C on interface 1, so *selectively* forwards frame out via interface 1
Bridges Spanning Tree

- for increased reliability, desirable to have redundant, alternate paths from source to dest
- with multiple simultaneous paths, cycles result - bridges may multiply and forward frame forever
- solution: organize bridges in a spanning tree by disabling subset of interfaces

WWF Bridges vs. Routers

- both store-and-forward devices
 - routers: network layer devices (examine network layer headers)
 - bridges are Link Layer devices
- routers maintain routing tables, implement routing algorithms
- bridges maintain filtering tables, implement filtering, learning and spanning tree algorithms
Routers vs. Bridges

Bridges + and -
+ Bridge operation is simpler requiring less processing bandwidth
- Topologies are restricted with bridges: a spanning tree must be built to avoid cycles
- Bridges do not offer protection from broadcast storms (endless broadcasting by a host will be forwarded by a bridge)

Routers vs. Bridges

Routers + and -
+ arbitrary topologies can be supported, cycling is limited by TTL counters (and good routing protocols)
+ provide firewall protection against broadcast storms
- require IP address configuration (not plug and play)
- require higher processing bandwidth

bridges do well in small (few hundred hosts) while routers used in large networks (thousands of hosts)