Chapter 7: Network security

Foundations:

- r what is security?
- r cryptography
- r authentication
- r message integrity
- r key distribution and certification

Security in practice:

- r application layer: secure e-mail
- r transport layer: Internet commerce, SSL, SET
- r network layer: IP security

7: Network Security

Friends and enemies: Alice, Bob, Trudy

- r well-known in network security world
- r Bob, Alice (lovers!) want to communicate "securely"
- r Trudy, the "intruder" may intercept, delete, add messages

7: Network Security

What is network security?

Secrecy: only sender, intended receiver should "understand" msg contents

- m sender encrypts msg
- m receiver decrypts msg

Authentication: sender, receiver want to confirm identity of each other

Message Integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection

7: Network Security

3

Internet security threats

Packet sniffing:

- m broadcast media
- m promiscuous NIC reads all packets passing by
- m can read all unencrypted data (e.g. passwords)
- m e.g.: C sniffs B's packets

7: Network Security

Internet security threats

IP Spoofing:

- m can generate "raw" IP packets directly from application, putting any value into IP source address field
- m receiver can't tell if source is spoofed
- m e.g.: C pretends to be B

7: Network Security

5

Internet security threats

Denial of service (DOS):

- m flood of maliciously generated packets "swamp" receiver
- m Distributed DOS (DDOS): multiple coordinated sources swamp receiver
- m e.g., C and remote host SYN-attack A

The language of cryptography

symmetric key crypto: sender, receiver keys identical
public-key crypto: encrypt key public, decrypt key
secret

7: Network Security

7

Symmetric key cryptography

substitution cipher: substituting one thing for another
m monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

E.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc

Q: How hard to break this simple cipher?:

•brute force (how hard?)

•other?

7: Network Security

Symmetric key crypto: DES

DES: Data Encryption Standard

- r US encryption standard [NIST 1993]
- r 56-bit symmetric key, 64 bit plaintext input
- r How secure is DES?
 - m DES Challenge: 56-bit-key-encrypted phrase ("Strong cryptography makes the world a safer place") decrypted (brute force) in 4 months
 - m no known "backdoor" decryption approach
- r making DES more secure
 - m use three keys sequentially (3-DES) on each datum
 - m use cipher-block chaining

7: Network Security

Symmetric key crypto: DES

-DES operation

initial permutation 16 identical "rounds" of function application, each using different 48 bits of key

final permutation

Public Key Cryptography

symmetric key crypto

- r requires sender, receiver know shared secret key
- r Q: how to agree on key in first place (particularly if never "met")?

public key cryptography

- r radically different approach [Diffie-Hellman76, RSA78]
- r sender, receiver do not share secret key
- r encryption key *public* (known to *all*)
- r decryption key private (known only to receiver)

7: Network Security

Public key encryption algorithms

Two inter-related requirements:

- 1) need $d_{R}(\cdot)$ and $e_{R}(\cdot)$ such that $d_{R}(e_{R}(m)) = m$
- 2) need public and private keys for $d_B(\cdot)$ and $e_B(\cdot)$

RSA: Rivest, Shamir, Adelson algorithm

7: Network Security 13

RSA: Choosing keys

- 1. Choose two large prime numbers p, q. (e.g., 1024 bits each)
- 2. Compute n = pq, z = (p-1)(q-1)
- 3. Choose e (with e < n) that has no common factors with z. (e, z are "relatively prime").
- 4. Choose d such that ed-1 is exactly divisible by z. (in other words: $ed \mod z = 1$).
- 5. Public key is (n,e). Private key is (n,d).

RSA: Encryption, decryption

- O. Given (n,e) and (n,d) as computed above
- 1. To encrypt bit pattern, m, compute $c = m^e \mod n \text{ (i.e., remainder when } m^e \text{ is divided by } n)$
- 2. To decrypt received bit pattern, c, compute $m = c^d \mod n$ (i.e., remainder when c^d is divided by n)

Magic happens!
$$m = (m^e \mod n)^d \mod n$$

7: Network Security

15

RSA example:

```
Bob chooses p=5, q=7. Then n=35, z=24.

e=5 (so e, z relatively prime).

d=29 (so ed-1 exactly divisible by z.
```

encrypt:
$$\frac{\text{letter}}{\text{I}} \qquad \frac{\text{m}}{\text{12}} \qquad \frac{\text{m}^{\text{e}}}{\text{1524832}} \qquad \frac{\text{c = m}^{\text{e}} \text{mod n}}{\text{17}}$$

decrypt:
$$\frac{c}{17}$$
 $\frac{c}{481968572106750915091411825223072000}$ $\frac{m = c^d \mod n}{12}$ letter

RSA: Why: $m = (m^e \mod n)^d \mod n$

Number theory result: If p,q prime, n = pq, then $x \stackrel{y}{\text{mod }} n = x \stackrel{y \text{ mod }}{\text{mod }} (p-1)(q-1) \stackrel{y}{\text{mod }} n$

 $(m^e \mod n)^d \mod n = m^{ed} \mod n$ $= m^{ed \mod (p-1)(q-1)} \mod n$ (using number theory result above) $= m^1 \mod n$ (since we chose ed to be divisible by (p-1)(q-1) with remainder 1) = *m*

7: Network Security 17

Authentication

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap1.0: Alice says "I am Alice"

Failure scenario??

Protocol ap2.0: Alice says "I am Alice" and sends her IP address along to "prove" it.

Failure scenario??

7: Network Security 19

Authentication: another try

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Failure scenario?

Protocol ap3.1: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

Failure scenario?

7: Network Security 21

Authentication: yet another try

Goal: avoid playback attack

Nonce: number (R) used onlyonce in a lifetime

ap4.0: to prove Alice "live", Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key

Failures, drawbacks?

Authentication: ap5.0 ap4.0 requires shared symmetric key m problem: how do Bob, Alice agree on key m can we authenticate using public key techniques? ap5.0: use nonce, public key cryptography I am Alice R d_A(R) Send me your public key e_A authenticating Alice 7: Network Security 23

Digital Signatures

Cryptographic technique analogous to handwritten signatures.

- Sender (Bob) digitally signs document, establishing he is document owner/creator.
- r Verifiable, nonforgeable: recipient (Alice) can verify that Bob, and no one else, signed document.

Simple digital signature for message m:

- r Bob encrypts m with his public key d_B, creating signed message, $d_{B}(m)$.
- r Bob sends m and $d_{R}(m)$ to Alice.

7: Network Security

Digital Signatures (more)

- r Suppose Alice receives Alice thus verifies that: msg m, and digital signature $d_{B}(m)$
- r Alice verifies *m* signed by Bob by applying Bob's public key e_B to $d_R(m)$ then checks $e_B(d_B(m)) = m.$
- r If $e_R(d_R(m)) = m$ whoever signed *m* must have used Bob's private key.

- m Bob signed m.
- m No one else signed m.
- m Bob signed m and not m'.

Non-repudiation:

m Alice can take m, and signature $d_B(m)$ to court and prove that Bob signed *m*.

Message Digests

Computationally expensive to public-key-encrypt long messages

<u>Goal:</u> fixed-length,easy to compute digital signature, "fingerprint"

r apply hash function H to m, get fixed size message digest, H(m).

Hash function properties:

- r Many-to-1
- r Produces fixed-size msg
 digest (fingerprint)
- r Given message digest x,
 computationally infeasible
 to find m such that x =
 H(m)
- r computationally infeasible
 to find any two messages m
 and m' such that H(m) =
 H(m').

7: Network Security

Hash Function Algorithms

- r Internet checksum would make a poor message digest.
 - m Too easy to find two messages with same checksum.
- r MD5 hash function widely used.
 - m Computes 128-bit message digest in 4-step process.
 - m arbitrary 128-bit string x, appears difficult to construct msg m whose MD5 hash is equal to x.
- r SHA-1 is also used.
 - m US standard
 - m 160-bit message digest

7: Network Security 29

Trusted Intermediaries

Problem:

m How do two entities establish shared secret key over network?

Solution:

m trusted key distribution center (KDC) acting as intermediary between entities

Problem:

m When Alice obtains Bob's public key (from web site, email, diskette), how does she know it is Bob's public key, not Trudy's?

Solution:

m trusted certification authority (CA)

Key Distribution Center (KDC)

- r Alice, Bob need shared symmetric key.
- r KDC: server shares different secret key with each registered user.
- r Alice, Bob know own symmetric keys, K_{A-KDC} K_{B-KDC} , for communicating with KDC.

- Alice, Bob communicate using shared session key R1
- r Alice communicates with KDC, gets session key R1, and $K_{B-KDC}(A,R1)$
- r Alice sends Bob $K_{B-KDC}(A,R1)$, Bob extracts R1
- r Alice, Bob now share the symmetric key R1.

7: Network Security 31

Certification Authorities

- r Certification authority (CA) binds public key to particular entity.
- r Entity (person, router, etc.) can register its public key with CA.
 - m Entity provides "proof of identity" to CA.
 - m CA creates certificate binding entity to public key.
 - m Certificate digitally signed by CA.

- r When Alice wants Bob's public
- gets Bob's certificate (Bob or elsewhere).
- r Apply CA's public key to Bob's certificate, get Bob's public

Secure e-mail

• Alice wants to send secret e-mail message, m, to Bob.

- generates random symmetric private key, K_s.
- encrypts message with K_S
- also encrypts K_S with Bob's public key.
- sends both $K_S(m)$ and $e_B(K_S)$ to Bob.

7: Network Security

33

Secure e-mail (continued)

• Alice wants to provide sender authentication message integrity.

- Alice digitally signs message.
- sends both message (in the clear) and digital signature.

7: Network Security

Secure e-mail (continued)

 Alice wants to provide secrecy, sender authentication, message integrity.

Note: Alice uses both her private key, Bob's public key.

7: Network Security 35

Pretty good privacy (PGP)

- r Internet e-mail encryption scheme, a de-facto standard.
- r Uses symmetric key cryptography, public key cryptography, hash function, and digital signature as described.
- r Provides secrecy, sender authentication, integrity.
- r Inventor, Phil Zimmerman, was target of 3-year federal investigation.

A PGP signed message:

---BEGIN PGP SIGNED MESSAGE---Hash: SHA1

Bob:My husband is out of town tonight.Passionately yours, Alice

---BEGIN PGP SIGNATURE---

Version: PGP 5.0 Charset: noconv

yhHJRHhGJGhgg/12EpJ+lo8gE4vB3mqJ hFEvZP9t6n7G6m5Gw2

---END PGP SIGNATURE---

Secure sockets layer (SSL)

- r PGP provides security for a specific network app.
- r SSL works at transport layer. Provides security to any TCP-based app using SSL services.
- r SSL: used between WWW browsers, servers for Icommerce (shttp).
- r SSL security services:
 - m server authentication
 - m data encryption
 - m client authentication (optional)

r Server authentication:

- m SSL-enabled browser includes public keys for trusted CAs.
- m Browser requests server certificate, issued by trusted CA.
- m Browser uses CA's public key to extract server's public key from certificate.
- r Visit your browser's security menu to see its trusted CAs.

7: Network Security 37

SSL (continued)

Encrypted SSL session:

- r Browser generates symmetric session key, encrypts it with server's public key, sends encrypted key to server.
- r Using its private key, server decrypts session key.
- r Browser, server agree that future msgs will be encrypted.
- r All data sent into TCP socket (by client or server) i encrypted with session key.

- r SSL: basis of LETF Transport Layer Security (TLS).
- r SSL can be used for non-Web applications, e.g., IMAP.
- r Client authentication can be done with client certificates.

Secure electronic transactions (SET)

- r designed for payment-card transactions over Internet.
- r provides security services among 3 players:
 - m customer
 - m merchant
 - m merchant's bank

All must have certificates.

- r SET specifies legal meanings of certificates.
 - m apportionment of liabilities for transactions

- r Customer's card number passed to merchant's bank without merchant ever seeing number in plain text.
 - m Prevents merchants from stealing, leaking payment card numbers.
- r Three software components:
 - m Browser wallet
 - m Merchant server
 - M Acquirer gateway
- r See text for description of SET transaction.

7: Network Security 39

Ipsec: Network Layer Security

- r Network-layer secrecy:
 - m sending host encrypts the data in IP datagram
 - m TCP and UDP segments; ICMP and SNMP messages.
- r Network-layer authentication
 - m destination host can authenticate source IP address
- r Two principle protocols:
 - m authentication header (AH) protocol
 - m encapsulation security payload (ESP) protocol

- r For both AH and ESP, source, destination handshake:
 - m create network-layer logical channel called a service agreement (SA)
- r Each SA unidirectional.
- r Uniquely determined by:
 - m security protocol (AH or ESP)
 - m source IP address
 - m 32-bit connection ID

ESP Protocol

- r Provides secrecy, host authentication, data integrity.
- r Data, ESP trailer encrypted.
- r Next header field is in FSP trailer.
- r ESP authentication field is similar to AH authentication field.
- r Protocol = 50.

Authentication Header (AH) Protocol

- r Provides source host authentication, data integrity, but not secrecy.
- r AH header inserted between IP header and IP data field.
- r Protocol field = 51.
- r Intermediate routers process datagrams as usual.

AH header includes:

- r connection identifier
- r authentication data: signed message digest, calculated over original IP datagram, providing source authentication, data integrity.
- r Next header field: specifies type of data (TCP, UDP, ICMP, etc.)

Network Security (summary)

Basic techniques.....

- r cryptography (symmetric and public)
- r authentication
- r message integrity
- used in many different security scenarios
- r secure email
- r secure transport (SSL)
- r IP sec

See also: firewalls, in network management