
Rakhi Anand

Optimizing the Execution of Parallel
Applications in Volunteer Environments

Parallel Software Technologies Laboratory
Department of Computer Science

University of Houston
rakhi@cs.uh.edu

Presented by: Rakhi Anand

Advisor: Edgar Gabriel

mailto:gabriel@cs.uh.edu
mailto:gabriel@cs.uh.edu

Rakhi Anand

Outline
• Introduction

 Background, Challenges, Related Work
• Research objectives
• Introduction to VolpexMPI

 VolpexMPI Design and Experimental results
• Target Selection module

 Implementation of various algorithms
 Experiments and results

• Runtime Environment support
 Event handler and Tools implemented

• Summary and conclusion
• Future Work

Rakhi Anand

Introduction (I)
• Why parallel computing
 To solve larger problems
 To solve given problems fast
• Classes of parallel applications:
 Bag of task applications (no communication): e.g.

SETI@home...
 Low degree, static communication pattern: e.g. CFD...
 Low degree, dynamic communication pattern: e.g. Adaptive

mesh refinement…
 High degree communication pattern: e.g. FFTs...

Rakhi Anand

Introduction (II)
• Cluster computing

 Tightly coupled computers that act like a single system
 Expensive computing resources

• Grid computing
 The combination of computer resources from multiple

administrative domain for a common goal
 Support only non-interactive jobs

Rakhi Anand

Introduction (III)
• Cloud Computing

 Internet based computing providing compute resources
and/or software on demand

 High speed network interconnects are not currently
supported

Rakhi Anand

Introduction (IV)
• Volunteer Computing

 Volunteers around the world donate a portion of computer
resources

 E.g. SETI@home runs on about 1 million computers

• Advantages
 High resources in terms memory and computing power
 Easy to use
 Compute cost

Rakhi Anand

Challenges of volunteer computing (I)
• High failure rate:

 Hard failures: system crash, shutdown or hardware failure
 Soft failures: owner starting to utilize his machine
 Failure rates are much higher in volunteer environment

than e.g. on compute clusters

• Communication requirements:
 No information about where the nodes are located.
 No guarantee whether public IP addresses are used

Rakhi Anand

Challenges of volunteer computing (II)
• Heterogeneity:

 Volunteer environment provide heterogeneous collection
of nodes

 Different processor types, frequency, memory size...
 Node properties change dynamically

Rakhi Anand

Related Work (I)
• Various volunteer computing exploit unused cycles on ordinary

desktops.
 Boinc : provide support for bag of task applications

• No mechanism for node-to-node communication
 Condor: a batch scheduler that allows to control

distributed resources
• can run MPI jobs on clusters
• No support for executing MPI applications on volunteer

nodes

Rakhi Anand

Related Work (II)
• MPI is the dominant programming paradigm for parallel

scientific applications
 Message passing paradigm
 Support for heterogeneous environments through

• Notion of data types
• Process grouping
• Collective (group) communication operations

• MPI specification does not provide any mechanism to deal with
process failures

Rakhi Anand

Related Work (III)
• Research projects exploring fault tolerance for MPI can be

divided into 3 categories
 Extension of MPI semantics: FT-MPI

•Requires major changes to user program
 Roll-back recovery: MPICH-V, LAM/MPI

• Better for less frequent failures
 Replication: MPI/FT, P2P-MPI, rMPI

•All replicas executed in a lock-step fashion

Rakhi Anand

Thesis Goals (I)
• Extend an efficient and scalable communication infrastructure

for volatile compute environments
 Deal with heterogeneity of volunteer computing

environments
 Deal with frequent process failures efficiently
 Deal with challenges of new computer architecture

• Increase the class of applications that can be executed in
volunteer computing

Rakhi Anand

Thesis Goals (II)
• Target Selection :

 To optimize the communication operations by contacting
the most appropriate copy of target process.

• Runtime environment support :
 Support for flexible number of processes, replication

levels, process failures and various process management
systems.

 Support for tools for managing runtime environment

Rakhi Anand

Introduction VolpexMPI
• VolpexMPI is an MPI library designed for executing parallel

applications in volunteer environments

• Key Features-
 Controlled redundancy
 Receiver based direct communication
 Distributed sender based logging

Rakhi Anand

VolpexMPI Design (I)
• Point to point communication

 Based on pull model
 Goal: make the application progress according to the fast

replica
• Message matching scheme

 Virtual timestamp: a sequence counter used to count
number of messages having the same message envelope
[communicator id, message tag, sender rank, receiver
rank].

 Messages matching based on message envelope +
timestamp

Sender

Buffer

Receiver

Rakhi Anand

VolpexMPI Design (II)
• Buffer Management

 Messages are stored with the message envelope
 Circular buffer is used to store messages
 Oldest entry is overwritten

• Data transfer
 Non blocking sockets
 Handling connection setup on demand
 Timeout for connection establishment and communication

operations

Rakhi Anand

Managing Replicated MPI processes
• Processes are spawned

in teams

• Only in case of failure,
processes from
different team is
contacted

Rakhi Anand

Experimental results VolpexMPI (I)

Runs for
32 procs

Runs for
64 procs

Rakhi Anand

Experimental results VolpexMPI (II)

Redundancy
runs(16 procs)

Failure runs
(16 procs)

Rakhi Anand

The Target Selection Problem (I)
• Identifying best set of replicas

• Beneficial to connect to fastest replica
• Will make fast replica slow by making it handle more number

of requests

0

1

1

1

0

0

.....

.....

.....

n-1

n-1

n-1

Rakhi Anand

The Target Selection Problem (II)
• Definition: create an order of replicas for each application

process in order to optimize the performance of application

• Four algorithms explored:
 Network performance based
 Virtual timestamp based
 Timeout based
 Hybrid approach

Rakhi Anand

Network performance based algorithm
• Each process prioritize replicas based on latency/bandwidth

values
 Measurements performed during the regularly occurring

communication operations of the application
• Advantage: can dynamically detect changes in network

characteristics
• Disadvantage: misleading performance numbers due to

overlapping, asynchronous communication operations

0,A

1,B0,B

1,A

Rakhi Anand

Virtual timestamp based algorithm
• Two processes which are close in execution perspective should

contact each other

• Advantage: processes close in execution state will group
together without interfering the execution of other processes

• Disadvantage: difficult to determine for synchronised MPI
applications

Rakhi Anand

Timeout based algorithm
• Switching the replica if the request is not handled within the

given time frame

• Advantage: if a replica is too slow the application will advance
at the speed of fast set of replicas

• Disadvantage: difficult to determine good timeout value

Rakhi Anand

Hybrid algorithm
• Combination of network based and virtual timestamp based

algorithms
• First step:

 Pairwise communication is initialised during initialization
 Best target is determined based on network parameters

• Second step:
 Based on virtual timestamp
 If process is lagging behind it changes its target to slow

process
• Disadvantage: Increased initialization time

Rakhi Anand

Experiments (I)
• Three different sets of experiments are performed

 Heterogeneous network: reduce network performance to
fast Ethernet for selected nodes

 Heterogeneous processor: reduce processor frequency to
1.1 GHz for selected nodes

 Heterogeneous network and processor: reduce network
performance to fast Ethernet and processor frequency to
1.1 GHz for selected nodes

• Executed NAS Parallel Benchmarks (Class B)
 BT, CG, EP, FT, IS, SP (for double redundancy x2)
 CG, EP, IS (for triple redundancy x3)

Rakhi Anand

Experiments (II)
• No two replicas of same rank are on same network or same

processor type

• All teams have processes on each set of nodes

• Runtime of original team based approach is compared with all
other algorithms

Rakhi Anand

Results for heterogeneous network configuration

Rakhi Anand

Results for heterogeneous processor configurations

Rakhi Anand

Results for heterogeneous network and processor(I)

Rakhi Anand

Results for heterogeneous network and
processor(II)

Team A Team B Team C

CG 87.93 67.69 184.29

IS 3.56 8.15 23.82

EP 29.69 29.72 117.83

• Team A running on shared memory
• Team B running on Gigabit Ethernet
• Team C running on Fast Ethernet

Rakhi Anand

Findings
• The hybrid approach shows the significant performance

benefit over other algorithms for most common scenarios.

• Pairwise communication is required to determine network
parameters

Rakhi Anand

Run Time Environment Support
• A light weight environment support for spawning processes in

volunteer environments
• Challenges involved

 flexible number of processes
 replication levels
 process failures
 supporting various software infrastructures(ssh, Condor)
 to manage MPI processes
 dynamically add new processes, new hosts or delete

already existing processes

Rakhi Anand

Process Manager (I)
• Command used to start different processes on different hosts

./mpirun -np 2 -redundancy 2 -hostfile host.txt ./test

number of
processes

file with list of
host names

Name of executable

redundancy
 level

Rakhi Anand

Process Manager (II)
• Goal: to spawn given number of processes according to the

desired replication level

• Maintains the information about hosts and processes

• Processes are spawned according to the requested execution

environment(ssh, Condor)

• If hostlist is provided processes are distributed to each host in

round robin manner

Rakhi Anand

Process Manager (III)
• Spawning on Condor(Volunteer environment)

 Process manager creates a submit file for Condor and
spawns the executable on each available node

 During initialization each process sends their hostname and
ask for their rank

 On receiving the message from each process, process
manager sends the necessary information to each process

Rakhi Anand

Experimental results for Condor

Rakhi Anand

Event Management
• System messages use an integrate event management system

 PRODUCER: who generates an event
• existing processes or external process

 DISTRIBUTOR: who distributes the generated event
• Event Manager
• distributor event handling functions

 CONSUMER: who should be aware of the event
• existing processes
• consumer event handling functions

Rakhi Anand

Types of Events
• ADD : adding a new process

• DEATH : deleting an existing process

• EXIT : ask a process to stop execution

• ABORT : aborting the jobid

• INFO : get details of a process, host, or job

Rakhi Anand

Handling process failure

Proc 1

Proc 2

Proc 3

Process Manager
= Event Manager

Rakhi Anand

Tools Implemented

• Process Monitor :
 Analyses the progress of an application
 Retrieves the information about processes, hosts, jobs

• Process Controller:
 Adds or deletes processes
 Adds a new host
 Provides the capability to spawn a new replica

Rakhi Anand

Summary and conclusion (I)
• New target selection algorithm lead to significant benefits in

heterogeneous settings
 Hybrid algorithm performance numbers similar to the

results as if all processes are running on fast nodes
 Initial node distribution plays a very important role
 Communication characteristic of an application can help to

reduce the initialization time using hybrid approach

Rakhi Anand

Summary and conclusion (II)
• Architecture for a dynamic, fault-tolerant run-time

environment developed
 Support for various replication levels
 Support for dynamic process management
 Support for various software infrastructures

Rakhi Anand

Future Work (I)
• Initial node selection

 Using available network proximity algorithms
 Distributing processes according to the communication

patterns
• Extending the Run-time environment

 Integration with BOINC
 Adding support for a new event: CHECKPOINT
 Adding a policy component which allows to specify rules

for automatic actions

Rakhi Anand

Future Work (II)
• Multi-core optimizations

 Matching the number of processes with the number of
cores offered by volunteer clients

 Share buffer management between multiple processes on a
multi-core processor

 Adapt communication scheme to process layout
• Explore real-world applications in volunteer compute

environments
• Optimizing collective operations

 Using underlying network topology
 Extend topology aware algorithms

Rakhi Anand

Timetable

Rakhi Anand

Publications
•Troy LeBlanc, Rakhi Anand, Edgar Gabriel, and Jaspal Subhlok.
VolpexMPI: an MPI Library for Execution of Parallel Applications on
Volatile Nodes. in M. Ropo, J. Westerholm, J. Dongarra (Eds.) 'Recent
Advances in Parallel Virtual Machine and Message Passing Interface',
LNCS 5759, pp. 124-134

•Rakhi Anand, Edgar Gabriel, and Jaspal Subhlok. Communication
Target Selection for Replicated MPI Processes. Submitted to: EuroMPI
2010 Conference, Stuttgart, Germany, September 12-15,2010

•Troy LeBlanc, Rakhi Anand, Edgar Gabriel, and Jaspal Subhlok. A
Robust and Efficient Message Passing Library for Volunteer
Computing Environments. Submitted to: Journal of Grid Computing,
April 2010.

