Chapter 12

TCP

- TCP Services
- Segments and Options
- Flow Control and Error Control
- TCP Timers
- Connections
- State Transition Diagram
- Congestion Control
- TCP Operation and Design

Figure 12-1

Position of TCP in TCP/IP protocol suite

Application layer
SMTP FTP TFTP DNS SNMP ... BOOTP

Transport layer
TCP UDP

Network layer
IGMP ICMP IP

Data link layer
Underlying LAN or WAN technology

Physical layer

Forouzan Notes
COSC 6377 - Fall 2000
12-1
Figure 12-2

TCP versus IP

Domain of IP protocol

Domain of TCP protocol

Forouzan Notes 12-3

Figure 12-3

Port numbers

TELNET (Client)

TELNET (Server)

Forouzan Notes 12-4
Figure 12-4

TCP segment format

Source port address
16 bits

Destination port address
16 bits

Sequence number
32 bits

Acknowledgment number
32 bits

Window size
16 bits

HLEN
4 bits

Reserved
6 bits

URG
1 bit

ACK
1 bit

PSH
1 bit

RST
1 bit

SYN
1 bit

FIN
1 bit

Checksum
16 bits

Urgent pointer
16 bits

Options & padding

Figure 12-5

Control field

URG: Urgent pointer is valid
ACK: Acknowledgment is valid
PSH: Request for push
RST: Reset the connection
SYN: Synchronize sequence numbers
FIN: Terminate the connection
Forouzan Notes 12-7

Figure 12-6

Options

- Single-byte
 - End of option
 - No operation
- Multiple-byte
 - Maximum segment size
 - Window scale factor
 - Timestamp

Figure 12-7

End of option

- Code: 0 00000000
 - a. End of option
 - b. Used for padding
Forouzan Notes 12-9

Figure 12-8

No operation option

- Code: 1
 00000001
 a. No operation option

 NO-OP
 An 11-byte option

 b. Used to align beginning of an option

 A 7-byte option
 NO-OP
 An 8-byte option

 c. Used to align the next option

Forouzan Notes 12-10

Figure 12-9

Maximum segment size option

- Code: 2
 00000010
 Length: 4
 00000100
 Maximum segment size

 1 byte 1 byte 2 bytes
Figure 12-10
Window scale factor option

<table>
<thead>
<tr>
<th>Code: 3</th>
<th>Length: 3</th>
<th>Scale factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000011</td>
<td>00000011</td>
<td></td>
</tr>
</tbody>
</table>

1 byte 1 byte 1 byte

Figure 12-11
Timestamp option

<table>
<thead>
<tr>
<th>Code: 8</th>
<th>Length: 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001000</td>
<td>00001010</td>
</tr>
</tbody>
</table>

Timestamp value

Timestamp echo reply
Figure 12-12

Pseudoheader added to the TCP segment

- 32-bit source IP address
- 32-bit destination IP address
- All 0s
- 8-bit protocol (6)
- 16-bit TCP total length
- Source port
- Destination port
- Sequence number
- Acknowledgment number
- HLEN
- Reserved
- Control
- Window size
- Checksum
- Urgent pointer

Data and Option
(Padding must be added to make the data a multiple of 16-bits)

Figure 12-13

Sliding window

a. Before sliding

b. After sliding
Figure 12-14 Sliding window with pointer

Sliding window

Acknowledged bytes

Bytes 4 to 7 have been sent
Bytes 8 to 13 can be sent
Bytes 14 to 16 cannot be sent

Figure 12-15 Increasing the window size

a. Window of size 7

b. 3 bytes acknowledged, window size increased to 10
Figure 12-16 Decreasing the window size

Sliding window

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a. Window of size 7

Sliding window

1 2 3 4 5 6 7 8 9 10 11 12 13 14

b. 3 bytes acknowledged, window size decreased to 5

Figure 12-17 Window management

Sender
Segment 1
seq: 1001, 4000 bytes

Segment 2
seq: 5001, 1000 bytes

Receiver

ack: 5001 win:0

ack: 5001 win:1000

4000

Buffer

1000

3000

Buffer
Slides from *TCP/IP - Forouzan*

Figure 12-18

Corrupted segment

Sender

Segment 1
seq: 1201, 100 bytes

Segment 2
seq: 1401, 200 bytes

Segment 3
seq: 1601, 200 bytes

Receiver

Segment 3 corrupted

Sender

Segment 3, retransmitted
seq: 1601, 200 bytes

Receiver

Segment 3
seq: 1601, 200 bytes

ack: 1601

Time-out

Sender

Segment 3
seq: 1601, 200 bytes

Receiver

Segment 3
seq: 1601, 200 bytes

ack: 1601

Figure 12-19

Lost segment

Sender

Segment 1
seq: 1201, 100 bytes

Segment 2
seq: 1401, 200 bytes

Segment 3
seq: 1601, 200 bytes

Receiver

Segment 3 lost

Sender

Segment 3, retransmitted
seq: 1601, 200 bytes

Receiver

Segment 3
seq: 1601, 200 bytes

ack: 1601

Time-out

Sender

Segment 3
seq: 1601, 200 bytes

Receiver

Segment 3
seq: 1601, 200 bytes

ack: 1601
Lost acknowledgment

Sender

Receiver

Figure 12-20

Acknowledgment

lost

Figure 12-21

TCP Timers

Retransmission

Persistence

Keepalive

Time-waited
Three-Way Handshaking

Three-Way Handshaking:
- Segment 1: SYN
 seq: 1200, ack: ---
- Segment 2: SYN + ACK
 seq: 4800, ack: 1201
- Segment 3: ACK
 seq: 1201, ack: 4801

Four-way Handshaking

Four-way Handshaking:
- Segment 1: RST
 seq: 2500, ack: ---
- Segment 2: ACK
 seq: 7000, ack: 2501
- Segment 3: ACK
 seq: 7001, ack: 2501
- Segment 4: ACK
 seq: 2501, ack: 7002
Figure 12-24
State Transition Diagram

Figure 12-25
Window Size Increase Strategy

Transmission number

Congestion window size

Threshold

02 04 06 08 10 12 14 16 18 20 22 24 26

02 06 10 14 18 22 26

Forouzan Notes 12-25
COSC 6377 - Fall 2000

Forouzan Notes 12-26
COSC 6377 - Fall 2000

Forouzan Notes

COSC 6377 - Fall 2000

12-1
Figure 12-26
Encapsulation and Decapsulation

Forouzan Notes
COSC 6377 - Fall 2000
12-27

Figure 12-27
Queues in TCP

Forouzan Notes
COSC 6377 - Fall 2000
12-28
Slides from *TCP/IP* - Forouzan

Figure 12-28
Multiplexing and demultiplexing

Application Programs
TCP (Multiplexer)
IP
TCP (Demultiplexer)
Application Programs

Figure 12-29
TCP design

Application layer

Message from application

TCP segment
TCP segment

Input processing module
Main module
Output processing module
TCBs

Forouzan Notes
COSC 6377 - Fall 2000
12-29

Forouzan Notes
COSC 6377 - Fall 2000
12-30
Figure 12-30 Transmission Control Blocks (TCBs)

<table>
<thead>
<tr>
<th>State</th>
<th>Process</th>
<th>Pointer</th>
<th>Buffers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Forouzan Notes COSC 6377 - Fall 2000 12-31